Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Approaches for the sequence-specific knockdown of mRNA

Abstract

Over the past 25 years there have been thousands of published reports describing applications of antisense nucleic acid derivatives for targeted inhibition of gene function. The major classes of antisense agents currently used by investigators for sequence-specific mRNA knockdowns are antisense oligonucleotides (ODNs), ribozymes, DNAzymes and RNA interference (RNAi). Whatever the method, the problems for effective application are remarkably similar: efficient delivery, enhanced stability, minimization of off-target effects and identification of sensitive sites in the target RNAs. These challenges have been in existence from the first attempts to use antisense research tools, and need to be met before any antisense molecule can become widely accepted as a therapeutic agent.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Model for antisense DNA ODN recruitment of RNAse H.
Figure 2: Generalized hammerhead ribozyme, hairpin ribozyme and DNAzyme motifs.
Figure 3: The RNAi pathway.
Figure 4: Various methods for introduction of siRNAs or shRNAs into mammalian cells.

Similar content being viewed by others

References

  1. Fire, A. et al. Potent and specific genetic interference by double-stranded RNA in C. elegans. Nature 391, 806–811 (1998).

    Article  CAS  PubMed  Google Scholar 

  2. Elbashir, S.M. et al. Duplexes of 21-nucleotide RNA s mediate RNA interference in cultured mammalian cells. Nature 411, 494–498 (2001).

    CAS  PubMed  Google Scholar 

  3. Caplen, N.J., Parrish, S., Imani, F., Fire, A. & Morgan, R.A. Specific inhibition of gene expression by small double-stranded RNA s in invertebrate and vertebrate systems. Proc. Natl. Acad. Sci. USA 98, 9742–9747 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Stephenson, M.L. & Zamecnik, P.C. Inhibition of Rous sarcoma viral RNA translation by a specific oligodeoxyribonucleotide. Proc. Natl. Acad. Sci. USA 75, 285–288 (1978).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Zamecnik, P.C. & Stephenson, M.L. Inhibition of Rous sarcoma virus replication and cell transformation by a specific oligodeoxynucleotide. Proc. Natl. Acad. Sci. USA 75, 280–284 (1978).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Crooke, S.T. Molecular mechanisms of action of antisense drugs. Biochem. Biophys. Acta. 1489, 31–44 (1999).

    CAS  PubMed  Google Scholar 

  7. Branch, A.D. A hitchhiker's guide to antisense and nonantisense biochemical pathways. Hepatology 24, 1517–1529 (1996).

    CAS  PubMed  Google Scholar 

  8. Dias, N. & Stein, C.A. Antisense oligonucleotides: basic concepts and mechanisms. Mol. Cancer Ther. 1, 347–355 (2002).

    CAS  PubMed  Google Scholar 

  9. Stein, C.A. & Cohen, J.S. Oligodeoxynucleotides as inhibitors of gene expression: a review. Cancer Res. 48, 2659–2668 (1988).

    CAS  PubMed  Google Scholar 

  10. Zon, G. Innovations in the use of antisense oligonucleotides. Ann. NY Acad. Sci. 616, 161–172 (1990).

    CAS  PubMed  Google Scholar 

  11. Kruger, K. et al. Self-splicing RNA: autoexcision and autocyclization of the ribosomal RNA intervening sequence of Tetrahymena. Cell 31, 147–157 (1982).

    CAS  PubMed  Google Scholar 

  12. Bevilacqua, P.C. & Turner, D.H. Comparison of binding of mixed ribose-deoxyribose analogues of CUCU to a ribozyme and to GGAGAA by equilibrium dialysis: evidence for ribozyme specific interactions with 2' OH groups. Biochemistry 30, 10632–10640 (1991).

    CAS  PubMed  Google Scholar 

  13. Guerrier-Takada, C., Gardiner, K., Marsh, T., Pace, N. & Altman, S. The RNA moiety of ribonuclease P is the catalytic subunit of the enzyme. Cell 35, 849–857 (1983).

    CAS  PubMed  Google Scholar 

  14. Costa, M. & Michel, F. Frequent use of the same tertiary motif by self-folding RNAs. EMBO J. 14, 1276–1285 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Hutchins, C.J., Rathjen, P.D., Forster, A.C. & Symons, R.H. Self-cleavage of plus and minus RNA transcripts of avocado sunblotch viroid. Nucleic Acids Res. 14, 3627–3640 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Buzayan, J.M., McNinch, J.S., Schneider, I.R. & Bruening, G. A nucleotide sequence rearrangement distinguishes two isolates of satellite tobacco ringspot virus RNA. Virology 160, 95–99 (1987).

    CAS  PubMed  Google Scholar 

  17. Buzayan, J.M., Hampel, A. & Bruening, G. Nucleotide sequence and newly formed phosphodiester bond of spontaneously ligated satellite tobacco ringspot virus RNA. Nucleic Acids Res. 14, 9729–9743 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Kumar, P.K. et al. Random mutations to evaluate the role of bases at two important single- stranded regions of genomic HDV ribozyme. Nucleic Acids Res. 20, 3919–3924 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Saville, B.J. & Collins, R.A. A site-specific self-cleavage reaction performed by a novel RNA in Neurospora mitochondria. Cell 61, 685–696 (1990).

    CAS  PubMed  Google Scholar 

  20. Wilson, D.S. & Szostak, J.W. In vitro selection of functional nucleic acids. Annu. Rev. Biochem. 68, 611–647 (1999).

    CAS  PubMed  Google Scholar 

  21. Szostak, J.W. Enzymatic activity of the conserved core of a group I self-splicing intron. Nature 322, 83–86 (1986).

    CAS  PubMed  Google Scholar 

  22. Jones, J.T., Lee, S.W. & Sullenger, B.A. Trans-splicing reactions by ribozymes. Methods Mol. Biol. 74, 341–348 (1997).

    CAS  PubMed  Google Scholar 

  23. Sullenger, B.A. & Cech, T.R. Ribozyme-mediated repair of defective mRNA by targeted, trans-splicing. Nature 371, 619–622 (1994).

    CAS  PubMed  Google Scholar 

  24. Lan, N. et al. Enhancing RNA repair efficiency by combining trans-splicing ribozymes that recognize different accessible sites on a target RNA. Mol. Ther. 2, 245–255 (2000).

    CAS  PubMed  Google Scholar 

  25. Lan, N., Howrey, R.P., Lee, S.W., Smith, C.A. & Sullenger, B.A. Ribozyme-mediated repair of sickle beta-globin mRNAs in erythrocyte precursors. Science 280, 1593–1596 (1998).

    CAS  PubMed  Google Scholar 

  26. Watanabe, T. & Sullenger, B.A. Induction of wild-type p53 activity in human cancer cells by ribozymes that repair mutant p53 transcripts. Proc. Natl. Acad. Sci. USA 97, 8490–8494 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Phylactou, L.A., Darrah, C. & Wood, M.J. Ribozyme-mediated trans-splicing of a trinucleotide repeat. Nat. Genet. 18, 378–381 (1998).

    CAS  PubMed  Google Scholar 

  28. Kurz, J.C. & Fierke, C.A. Ribonuclease P: a ribonucleoprotein enzyme. Curr. Opin. Chem. Biol. 4, 553–558 (2000).

    CAS  PubMed  Google Scholar 

  29. Forster, A.C. & Altman, S. External guide sequences for an RNA enzyme. Science 249, 783–786 (1990).

    CAS  PubMed  Google Scholar 

  30. Ikawa, Y., Shiraishi, H. & Inoue, T. Trans-activation of the Tetrahymena ribozyme by its P2-2.1 domains. J. Biochem. (Tokyo) 123, 528–533 (1998).

    CAS  Google Scholar 

  31. Duhamel, J. et al. Secondary structure content of the HDV ribozyme in 95% formamide. Nucleic Acids Res. 24, 3911–3917 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Trang, P., Kilani, A., Kim, J. & Liu, F. A ribozyme derived from the catalytic subunit of RNase P from Escherichia coli is highly effective in inhibiting replication of herpes simplex virus 1. J. Mol. Biol. 301, 817–826 (2000).

    CAS  PubMed  Google Scholar 

  33. Kilani, A.F. et al. RNase P ribozymes selected in vitro to cleave a viral mRNA effectively inhibit its expression in cell culture. J. Biol. Chem. 275, 10611–10622 (2000).

    CAS  PubMed  Google Scholar 

  34. Dunn, W., Trang, P., Khan, U., Zhu, J. & Liu, F. RNase P-mediated inhibition of cytomegalovirus protease expression and viral DNA encapsidation by oligonucleotide external guide sequences. Proc. Natl. Acad. Sci. USA 98, 14831–14836 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Trang, P. et al. Engineered RNase P ribozymes inhibit gene expression and growth of cytomegalovirus by increasing rate of cleavage and substrate binding. J. Mol. Biol. 315, 573–586 (2002).

    CAS  PubMed  Google Scholar 

  36. Trang, P. et al. Effective inhibition of human cytomegalovirus gene expression and replication by a ribozyme derived from the catalytic RNA subunit of RNase P from Escherichia coli. Proc. Natl. Acad. Sci. USA 97, 5812–5817 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Forster, A.C., Jeffries, A.C., Sheldon, C.C. & Symons, R.H. Structural and ionic requirements for self-cleavage of virusoid RNAs and trans self-cleavage of viroid RNA. Cold Spring Harb. Symp. Quant. Biol. 52, 249–259 (1987).

    CAS  PubMed  Google Scholar 

  38. Haseloff, J. & Gerlach, W.L. Simple RNA enzymes with new and highly specific endoribonuclease activities. Biotechnology 24, 264–269 (1992).

    CAS  PubMed  Google Scholar 

  39. Hampel, A., Tritz, R., Hicks, M. & Cruz, P. 'Hairpin' catalytic RNA model: evidence for helices and sequence requirement for substrate RNA. Nucleic Acids Res. 18, 299–304 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Haseloff, J. & Gerlach, W.L. Simple RNA enzymes with new and highly specific endoribonuclease activities. Nature 334, 585–591 (1988).

    CAS  PubMed  Google Scholar 

  41. Sarver, N. et al. Ribozymes as potential anti-HIV-1 therapeutic agents. Science 247, 1222–1225 (1990).

    CAS  PubMed  Google Scholar 

  42. Opalinska, J.B. & Gewirtz, A.M. Nucleic-acid therapeutics: basic principles and recent applications. Nat. Rev. Drug Discov. 1, 503–514 (2002).

    CAS  PubMed  Google Scholar 

  43. Sullenger, B.A. & Gilboa, E. Emerging clinical applications of RNA. Nature 418, 252–258 (2002).

    CAS  PubMed  Google Scholar 

  44. Rossi, J.J. The application of ribozymes to HIV infection. Curr. Opin. Mol. Ther. 1, 316–322 (1999).

    CAS  PubMed  Google Scholar 

  45. Rossi, J.J. Therapeutic applications of catalytic antisense RNAs (ribozymes). Ciba Found. Symp. 209, 195–204 (1997).

    CAS  PubMed  Google Scholar 

  46. Couture, L.A. & Stinchcomb, D.T. Anti-gene therapy: the use of ribozymes to inhibit gene function. Trends Genet. 12, 510–515 (1996).

    CAS  PubMed  Google Scholar 

  47. Santoro, S.W. & Joyce, G.F. A general purpose RNA-cleaving DNA enzyme. Proc. Natl. Acad. Sci. USA 94, 4262–4266 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Santoro, S.W. & Joyce, G.F. Mechanism and utility of an RNA-cleaving DNA enzyme. Biochemistry 37, 13330–13342 (1998).

    CAS  PubMed  Google Scholar 

  49. Khachigian, L.M. DNAzymes: cutting a path to a new class of therapeutics. Curr. Opin. Mol. Ther. 4, 119–121 (2002).

    CAS  PubMed  Google Scholar 

  50. Emilsson, G.M. & Breaker, R.R. Deoxyribozymes: new activities and new applications. Cell Mol. Life Sci. 59, 596–607 (2002).

    CAS  PubMed  Google Scholar 

  51. Cairns, M.J., Saravolac, E.G. & Sun, L.Q. Catalytic DNA: a novel tool for gene suppression. Curr. Drug Targets 3, 269–279 (2002).

    CAS  PubMed  Google Scholar 

  52. Zhang, L. et al. Angiogenic inhibition mediated by a DNAzyme that targets vascular endothelial growth factor receptor 2. Cancer Res. 62, 5463–5469 (2002).

    CAS  PubMed  Google Scholar 

  53. Wu, Y. et al. Inhibition of bcr-abl oncogene expression by novel deoxyribozymes (DNAzymes). Hum. Gene Ther. 10, 2847–2857 (1999).

    CAS  PubMed  Google Scholar 

  54. Bernstein, E., Caudy, A.A., Hammond, S.M. & Hannon, G.J. Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 409, 363–366 (2001).

    CAS  PubMed  Google Scholar 

  55. Volpe, T.A. et al. Regulation of heterochromatic silencing and histone H3 lysine-9 methylation by RNAi. Science 297, 1833–1837 (2002).

    CAS  PubMed  Google Scholar 

  56. Reinhart, B.J. & Bartel, D.P. Small RNAs correspond to centromere heterochromatic repeats. Science 297, 1831 (2002).

    CAS  PubMed  Google Scholar 

  57. Hall, I.M. et al. Establishment and maintenance of a heterochromatin domain. Science 297, 2232–2237 (2002).

    CAS  PubMed  Google Scholar 

  58. Schramke, V. & Allshire, R. Hairpin RNAs and retrotransposon LTRs effect RNAi and chromatin-based gene silencing. Science 301, 1069–1074 (2003).

    CAS  PubMed  Google Scholar 

  59. Sledz, C.A., Holko, M., De Veer, M.J., Silverman, R.H. & Williams, B.R. Activation of the interferon system by short-interfering RNAs. Nat. Cell Biol. 5, 834–839 (2003).

    CAS  PubMed  Google Scholar 

  60. Lee, Y. et al. The nuclear RNase III Drosha initiates microRNA processing. Nature 425, 415–419 (2003).

    CAS  PubMed  Google Scholar 

  61. Schwarz, D.S. et al. Asymmetry in the assembly of the RNAi enzyme complex. Cell 115, 199–208 (2003).

    CAS  PubMed  Google Scholar 

  62. Zeng, Y. & Cullen, B.R. Sequence requirements for micro RNA processing and function in human cells. RNA 9, 112–123 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Carrington, J.C. & Ambros, V. Role of microRNAs in plant and animal development. Science 301, 336–338 (2003).

    CAS  PubMed  Google Scholar 

  64. Lim, L.P., Glasner, M.E., Yekta, S., Burge, C.B. & Bartel, D.P. Vertebrate microRNA genes. Science 299, 1540 (2003).

    CAS  PubMed  Google Scholar 

  65. Hutvagner, G. & Zamore, P.D. RNAi: nature abhors a double-strand. Curr. Opin. Genet. Dev. 12, 225–232 (2002).

    CAS  PubMed  Google Scholar 

  66. Doench, J.G., Petersen, C.P. & Sharp, P.A. siRNAs can function as miRNAs. Genes Dev. 17, 438–442 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Zeng, Y., Wagner, E.J. & Cullen, B.R. Both natural and designed micro RNAs can inhibit the expression of cognate mRNAs when expressed in human cells. Mol. Cell 9, 1327–1333 (2002).

    CAS  PubMed  Google Scholar 

  68. Tuschl, T. Expanding small RNA interference. Nat. Biotechnol. 20, 446–448 (2002).

    CAS  PubMed  Google Scholar 

  69. Zeng, Y. & Cullen, B.R. RNA interference in human cells is restricted to the cytoplasm. RNA 8, 855–860 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Michienzi, A., Cagnon, L., Bahner, I. & Rossi, J.J. Ribozyme-mediated inhibition of HIV 1 suggests nucleolar trafficking of HIV-1 RNA. Proc. Natl. Acad. Sci. USA 97, 8955–8960 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Grunweller, A. et al. Comparison of different antisense strategies in mammalian cells using locked nucleic acids, 2′-O-methyl RNA, phosphorothioates and small interfering RNA. Nucleic Acids Res. 31, 3185–3193 (2003).

    PubMed  PubMed Central  Google Scholar 

  72. Vickers, T.A. et al. Efficient reduction of target RNAs by small interfering RNA and RNase H-dependent antisense agents. A comparative analysis. J. Biol. Chem. 278, 7108–7118 (2003).

    CAS  PubMed  Google Scholar 

  73. Holen, T., Amarzguioui, M., Wiiger, M.T., Babaie, E. & Prydz, H. Positional effects of short interfering RNAs targeting the human coagulation trigger Tissue Factor. Nucleic Acids Res. 30, 1757–1766 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Bohula, E.A. et al. The efficacy of small interfering RNAs targeted to the type 1 insulin-like growth factor receptor (IGF1R) is influenced by secondary structure in the IGF1R transcript. J. Biol. Chem. 278, 15991–15997 (2003).

    CAS  PubMed  Google Scholar 

  75. Rossi, J.J. Ribozymes, genomics and therapeutics. Chem. Biol. 6, R33–R37 (1999).

    CAS  PubMed  Google Scholar 

  76. Khvorova, A., Reynolds, A. & Jayasena, S.D. Functional siRNAs and miRNAs exhibit strand bias. Cell 115, 209–216 (2003).

    CAS  PubMed  Google Scholar 

  77. Lee, N.S. et al. Functional colocalization of ribozymes and target mRNAs in Drosophila oocytes. FASEB J. 15, 2390–2400 (2001).

    CAS  PubMed  Google Scholar 

  78. Lee, N.S., Bertrand, E. & Rossi, J. mRNA localization signals can enhance the intracellular effectiveness of hammerhead ribozymes. RNA 5, 1200–1209 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Castanotto, D., Scherr, M. & Rossi, J.J. Intracellular expression and function of antisense catalytic RNAs. Methods Enzymol. 313, 401–420 (2000).

    CAS  PubMed  Google Scholar 

  80. Sullenger, B.A. Colocalizing ribozymes with substrate RNAs to increase their efficacy as gene inhibitors. Appl. Biochem. Biotechnol. 54, 57–61 (1995).

    CAS  PubMed  Google Scholar 

  81. Kawasaki, H. & Taira, K. Short hairpin type of dsRNAs that are controlled by tRNA(Val) promoter significantly induce RNAi-mediated gene silencing in the cytoplasm of human cells. Nucleic Acids Res. 31, 700–707 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Giles, R.V. & Tidd, D.M. Increased specificity for antisense oligodeoxynucleotide targeting of RNA cleavage by RNase H using chimeric methylphosphonodiester/phosphodiester structures. Nucleic Acids Res. 20, 763–770 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Millington-Ward, S. et al. A mutation-independent therapeutic strategem for osteogenesis imperfecta. Antisense Nucleic Acid Drug. Dev. 9, 537–542 (1999).

    CAS  PubMed  Google Scholar 

  84. Drenser, K.A., Timmers, A.M., Hauswirth, W.W. & Lewin, A.S. Ribozyme-targeted destruction of RNA associated with autosomal-dominant retinitis pigmentosa. Invest. Ophthalmol. Vis. Sci. 39, 681–689 (1998).

    CAS  PubMed  Google Scholar 

  85. Lewin, A.S. et al. Ribozyme rescue of photoreceptor cells in a transgenic rat model of autosomal dominant retinitis pigmentosa. Nat. Med. 4, 967–971 (1998).

    CAS  PubMed  Google Scholar 

  86. Jackson, A.L. et al. Expression profiling reveals off-target gene regulation by RNAi. Nat. Biotechnol. 21, 635–637 (2003).

    CAS  PubMed  Google Scholar 

  87. Chi, J.T. et al. Genome-wide view of gene silencing by small interfering RNAs. Proc. Natl. Acad. Sci. USA 100, 6343–6346 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Krieg, A.M. CpG motifs in bacterial DNA and their immune effects. Annu. Rev. Immunol. 20, 709–760 (2002).

    CAS  PubMed  Google Scholar 

  89. Mirmohammadsadegh, A., Maschke, J., Basner-Tschakarjan, E., Bar, A. & Hengge, U.R. Induction of acute phase response genes in keratinocytes following exposure to oligodeoxynucleotides. J. Mol. Med. 80, 377–383 (2002).

    CAS  PubMed  Google Scholar 

  90. Gewirtz, A.M. Oligonucleotide therapeutics: clothing the emperor. Curr. Opin. Mol. Ther. 1, 297–306 (1999).

    CAS  PubMed  Google Scholar 

  91. Bridge, A.J., Pebernard, S., Ducraux, A., Nicoulaz, A.L. & Iggo, R. Induction of an interferon response by RNAi vectors in mammalian cells. Nat. Genet. 34, 263–264 (2003).

    CAS  PubMed  Google Scholar 

  92. Matsukura, S., Jones, P.A. & Takai, D. Establishment of conditional vectors for hairpin siRNA knockdowns. Nucleic Acids Res. 31, e77 (2003).

    PubMed  PubMed Central  Google Scholar 

  93. Chen, Y., Stamatoyannopoulos, G. & Song, C.Z. Down-regulation of CXCR4 by inducible small interfering RNA inhibits breast cancer cell invasion in vitro. Cancer Res. 63, 4801–4804 (2003).

    CAS  PubMed  Google Scholar 

  94. Chiu, Y.L. & Rana, T.M. siRNA function in RNAi: a chemical modification analysis. RNA 9, 1034–1048 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Fortes, P. et al. Inhibiting expression of specific genes in mammalian cells with 5′ end-mutated U1 small nuclear RNAs targeted to terminal exons of pre-mRNA. Proc. Natl. Acad. Sci. USA 100, 8264–8269 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Editorial. Whither RNAi? Nat. Cell. Biol. 5, 489–490 (2003).

  97. Bartel, D. Whither RNAi? Nat. Cell. Biol. 5, 489–490 (2003).

    Google Scholar 

  98. Scott, W.G., Finch, J.T. & Klug, A. The crystal structure of an all-RNA hammerhead ribozyme. Nucleic Acids Symp. Ser. 34, 214–216 (1995).

    CAS  Google Scholar 

  99. Pley, H.W., Flaherty, K.M. & McKay, D.B. Three-dimensional structure of a hammerhead ribozyme. Nature 372, 68–74 (1994).

    CAS  PubMed  Google Scholar 

  100. Hertel, K.J. et al. Numbering system for the hammerhead. Nucleic Acids Res. 20, 3252 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors were supported by grants from the National Institutes of Health, AI29329, AI42552 and NHL074704.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John J Rossi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scherer, L., Rossi, J. Approaches for the sequence-specific knockdown of mRNA. Nat Biotechnol 21, 1457–1465 (2003). https://doi.org/10.1038/nbt915

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt915

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing