Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Genetic localization of a locus controlling the intensity of infection by Schistosoma mansoni on chromosome 5q31–q33

Abstract

Three hundred million individuals are at risk of infection by schistosomes and around 200,000 die each year of this disease1. Severe clinical disease in schistosomiasis is often the consequence of heavy infection which, in several endemic areas, are determined largely by the susceptibility/resistance of individuals2–6. Previously, we reported evidence, based on a segregation analysis in Brazilian pedigrees, that intensity of infection by Schistosoma mansoni was influenced by a major gene, indicating that host genetic factors are probably critical in controlling schistosome infection and disease development6. To localize this gene, referred to as SM1, we performed a genome-wide study on 142 Brazilian subjects belonging to 11 informative families. Our results show a linkage to only one region, on chromosome 5q31–q33, with maximum two-point lod scores of +4.74 and +4.52 for D5S636 and the colony stimulating factor-1 receptor marker (CSF1R), respectively. This was corroborated by multipoint analysis, indicating a close proximity to CSF1R as the most likely location of SM1. This region contains several candidate genes encoding immunological molecules that were shown to play important roles in human protection against schistosomes.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. UNDP/World Bank/WHO. Schistosomiasis. in Tropical diseases: progress in research. 41–48 (WHO, Geneva, 1990).

  2. Butterworth, A.E. et al. Immunity after treatment of human schistosomiasis. II. Identification of resistant individuals and analysis of their immune responses. Trans. R. Soc. Trop. Med. Hyg. 79, 393–408 (1985).

    Article  CAS  Google Scholar 

  3. Hagan, P. et al. Resistance to reinfection with Schistosoma haematobium in Gambian children: analysis of their immune response. Trans. R. Soc. Trop. Med. Hyg. 81, 938–946 (1987).

    Article  CAS  Google Scholar 

  4. Wilkins, H.A., Blumenthal, U.J., Hagan, P., Tulloch, S. & Hayes, R.J. Resistance to reinfection after treatment of urinary schistosomiasis. Trans. R. Soc. Trop. Med. Hyg. 81, 29–35 (1987).

    Article  CAS  Google Scholar 

  5. Dessein, A.J. et al. Human resistance to Schistosoma mansoni is associated with IgG reactivity to a 37-kDa larval surface antigen. J. Immunol. 140, 2727–2736 (1988).

    CAS  PubMed  Google Scholar 

  6. Abel, L., Demenais, F., Prata, A., Souza, A.E. & Dessein, A. Evidence for the segregation of a major gene in human susceptibility/resistance to infection by Schistosoma mansoni . Am. J. Hum. Genet. 48, 959–970 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Gyapay, G. et al. The 1993–94 Généthon human genetic linkage map. Nature Genet. 7, 246–339 (1994).

    Article  CAS  Google Scholar 

  8. Dib, C. et al. A comprehensive genetic map of the human genome based on 5,264 microsatellites. Nature 380, 152–154 (1996).

    Article  CAS  Google Scholar 

  9. Lander, E. & Kruglyak, L. Genetic dissection of complex traits: guidelines for interpreting and reporting linkage results. Nature Genet. 11, 241–247 (1995).

    Article  CAS  Google Scholar 

  10. Clerget-Darpoux, F., Bonaïti-Pellié, C. & Hochez, J. Effects of misspecifying genetic parameters in lod score analysis. Biometrics 42, 393–399 (1986).

    Article  CAS  Google Scholar 

  11. Stanley, E.R., Colony Stimulating Factor-1 (Macrophage Colony Stimulating Factor). in The cytokine handbook (ed. Thomson, A.) 387–418 (Academic Press, New York, 1994).

    Google Scholar 

  12. Chandrasekharappa, S.C., Rebelsky, M.S., Firak, T.A., Le Beau, M.M. & Westbrook, C.A. A long-range restriction map of the interleukin-4 and interleukin-5 linkage group on chromosome 5. Genomics 6, 94–99 (1990).

    Article  CAS  Google Scholar 

  13. Saltman, D.L., Dolganov, G.M., Warrington, J.A., Wasmuth, J.J. & Lovett, M. A physical map of 15 loci on human chromosome 5q23–q33 by two-color fluorescence in situ hybridization. Genomics 16, 726–732 (1990).

    Article  Google Scholar 

  14. Marsh, D.G. et al. Linkage analysis of IL4 and other chromosome 5q31.1 markers and total serum immunoglobulin E concentrations. Science 264, 1152–1156 (1994).

    Article  CAS  Google Scholar 

  15. Roberts, M. et al. Immunity after treatment of human schistosomiasis: association between cellular responses and resistance to reinfection. Infect. Immun. 61, 4984–4993 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Couissinier-Paris, P. & Dessein, A.J. Schistosoma-specific helper T cell clones from subjects resistant to infection by Schistosoma mansoni are Th0/2. Eur. J. Immunol. 25, 2295–2302 (1995).

    Article  CAS  Google Scholar 

  17. Meyers, D.A. et al. Evidence for a locus regulating total serum IgE levels mapping to chromosome 5. Genomics 23, 464–470 (1994).

    Article  CAS  Google Scholar 

  18. Postma, D.S. et al. Genetic susceptibility to asthma — bronchial hyperresponsiveness coinherited with a major gene for atopy. N. Engl. J. Med. 333, 894–900 (1995).

    Article  CAS  Google Scholar 

  19. Rihet, P., Demeure, C., Bourgois, A. & Dessein, A.J. Evidence for an association between human resistance to Schistosoma mansoni and high anti-larval IgE levels. Eur. J. Immunol. 21, 2679–2686 (1991).

    Article  CAS  Google Scholar 

  20. Hagan, P., Blumenthal, U.J., Dunne, D., Simpson, A.J.G. & Wilkins, H.A. Human IgE, IgG4, and resistance to reinfection with Schistosoma haematobium . Nature 349, 243–245 (1991).

    Article  CAS  Google Scholar 

  21. Dunne, D.W. et al. Immunity after treatment of human schistosomiasis: association between IgE antibodies to adult worm antigens and resistance to reinfection. Eur. J. Immunol. 22, 1483–1494 (1992).

    Article  CAS  Google Scholar 

  22. Demeure, C.E. et al. Resistance to Schistosoma mansoni in humans: influence of the IgE/IgG4 balance and IgG2 in immunity to reinfection after chemotherapy. J. Inf. Dis. 168, 1000–1008 (1993).

    Article  CAS  Google Scholar 

  23. Dessein, A.J. et al. Environmental, genetic and immunological factors in human resistance to Schistosoma mansoni . Immunol. Invest. 21, 423–453 (1992).

    Article  CAS  Google Scholar 

  24. Vignal, A. et al. A non-radioactive multiplex procedure for genotyping of microsatellite markers. in Methods in molecular genetics 1: Gene and chromosome analysis (ed. Adolph, K.W.) 211–221 (Academic Press, San Diego, 1993).

    Google Scholar 

  25. Mout, R., Willemze, R. & Landegent, J.E. Repeat polymorphisms in the interleukin-4 gene (IL4). Nucl. Acids Res. 19, 3763 (1991).

    Article  CAS  Google Scholar 

  26. Van Lieshout, L. et al. Analysis of worm burden variation in human Schistosoma mansoni infections by determination of serum levels of circulating anodic antigen and circulating cathodic antigen. J. Inf. Dis. 172, 1336–1342 (1995).

    Article  CAS  Google Scholar 

  27. Bonney, G.E. On the statistical determination of major gene mechanisms in continuous human traits: regressive models. Am. J. Med. Genet. 18, 731–749 (1984).

    Article  CAS  Google Scholar 

  28. Demenais, R.M., & Lathrop, M. REGRESS: A computer program including the regression approach into the LINKAGE package. Genet. Epidemiol. 11, 291 (1994).

    Google Scholar 

  29. Lathrop, G.M., Lalouel, J.M., Julier, C. & Ott, J. Strategies for multilocus linkage analysis in humans. Proc. Natl. Acad. Sci. USA 81, 3443–3446 (1984).

    Article  CAS  Google Scholar 

  30. O'Connell, J.R. & Weeks, D.E. The VITESSE algorithm for rapid exact multilocus linkage analysis via genotype set-recoding and fuzzy inheritance. Nature Genet. 11, 402–408 (1995).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marquet, S., Abel, L., Hillaire, D. et al. Genetic localization of a locus controlling the intensity of infection by Schistosoma mansoni on chromosome 5q31–q33. Nat Genet 14, 181–184 (1996). https://doi.org/10.1038/ng1096-181

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng1096-181

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing