Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Antitumor activity of a phosphorothioate antisense oligodeoxynucleotide targeted against C-raf kinase

Abstract

Substantial evidence exists supporting a direct role for raf kinases in the development and maintenance of certain human malignancies. Here we test the potential of phosphorothioate antisense oligodeoxynucleotides targeted against human C–raf–1 kinase to specifically inhibit C–raf–1 kinase gene expression and tumor progression in cell culture and in vivo, using human tumor xenograft mouse models. Treatment of human tumor cells with appropriate phosphorothioate antisense oligodeoxynucleotides led to specific inhibition of C–raf kinase gene expression in cell culture and in vivo at well–tolerated doses. Moreover, oligodeoxynucleotide treatment resulted in potent antiproliferative effects in cell culture and potent antitumor effects in vivo against a variety of tumor types that were highly consistent with an antisense mechanism of action for these compounds. These studies strongly suggest that antisense inhibitors targeted against C–raf–1 kinase may be of considerable value as antineoplastic agents that display activity against a wide spectrum of tumor types at well–tolerated doses.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Daum, G. et al. The ins and cuts of Raf kinases. Trends Biol. Sci. 19, 474–480 (1994).

    Article  CAS  Google Scholar 

  2. Nishida, E. & Gotoh, Y. The MAP kinase cascade is essential for diverse signal transduction pathways. Trends Biol. Sci. 18, 128–131 (1993).

    Article  CAS  Google Scholar 

  3. Vojtek, A.B., Hollenberg, S.M. & Cooper, J.A. Mammalian ras interacts directly with the serine/threonine kinase raf. Cell 74, 205–214 (1993).

    Article  CAS  Google Scholar 

  4. Zhang, X.F. et al. Normal and oncogenic p21ras proteins bind to the amino-terminal regulatory domain of c-raf-1. Nature 364, 308–313 (1993).

    Article  CAS  Google Scholar 

  5. Warne, P.E., Viciana, P.R. & Downward, J. Direct interaction of ras and the amino-terminal region of raf-1 in vitro. Nature 364, 352–355 (1993).

    Article  CAS  Google Scholar 

  6. Fabian, J.R., Vojtek, A.B., Cooper, J.A. & Morrison, D.K. A single amino acid change in raf-1 inhibits ras binding and alters raf-1 function. Proc. Natl. Acad. Sci. USA 91, 5982–5986 (1984).

    Article  Google Scholar 

  7. Bos, J.L. The ras gene family and human carcinogenesis. Mutat. Res. 195, 255–271 (1988).

    Article  CAS  Google Scholar 

  8. Bos, J.L. ras oncogenes in human cancer: A review. Cancer Res. 49, 4682–4689 (1989).

    CAS  Google Scholar 

  9. Rapp, U.R. et al. Structure and biological activity of v-raf, a unique oncogene transduced by a retrovirus. Proc. Natl. Acad. Sci. USA 80, 4218–4222 (1983).

    Article  CAS  Google Scholar 

  10. Heidecker, G. et al. Mutational activation of C-raf-1 and definition of the minimal transforming sequence. Mol Cell. Biol. 10, 2503–2512 (1990).

    Article  CAS  Google Scholar 

  11. Stanton, V.P., Jr. & Cooper, G.M. Activation of human raf transforming genes by deletion of normal amino-terminal coding sequences. Mol. Cell. Biol. 7, 1171–1179 (1987).

    Article  CAS  Google Scholar 

  12. Fabian, J.R., Daar, I.O. & Morrison, D.K. Critical tyrosine residues regulate the enzymatic and biological activity of raf-1 kinase. Mol. Cell. Biol. 13, 7170–7179 (1993).

    Article  CAS  Google Scholar 

  13. Shimizu, K. et al. Molecular cloning of an activated human oncogene, homologous to v-raf, from primary stomach cancer. Proc. Natl. Acad. Sci. USA 82, 5641–5645 (1985).

    Article  CAS  Google Scholar 

  14. Fukui, M. et al. Detection of a raf-related and two other transforming DNA sequences in human tumors maintained in nude mice. Proc. Natl. Acad. Sci. USA 81, 5954–5958 (1985).

    Article  Google Scholar 

  15. Rapp, U.R. et al. Role of raf oncogenes in lung carcinogenesis. Proc. from the Intl. Conf. on Hormones, Growth Factors and Oncogenes in Pulmonary Carcinoma (ed. Dunbar, B.S.) 122–137 (Plenum, London, 1987).

    Google Scholar 

  16. Rapp, U.R., Cleveland, J.L. & Storm, S.M. Oncogenes: Clinical Relevance. in Proceedings from Modern Trends in Leukemia VII: Hematology and Blood Transfusion. (eds. Neth, R., Gallo, R., Greaves, M.F. & Vanka, G.) 69–77 (Springer, Berlin, 1987).

    Google Scholar 

  17. Rapp, U.R., Cleveland, J.L., Bonner, T.I. & Storm, S.M. The raf oncogenes. in The Oncogene Handbook. (eds. Reddy, E.P., Skalka, A.M. & Curran, T.) 213–251 (Elsevier Science Publ., Amsterdam, 1988).

    Google Scholar 

  18. Wagner, R.W. The state of the art in antisense research. Nature Med. 1, 1116–1118 (1995).

    Article  CAS  Google Scholar 

  19. Stein, C.A. Does antisense exist? Nature Med. 1, 1119–1121 (1995).

    Article  CAS  Google Scholar 

  20. Crooke, S.T. Therapeutic applications of oligonucleotides. Annu. Rev. Pharmacol. Toxicol. 32, 329–376 (1993).

    Article  Google Scholar 

  21. Monia, B.P. et al. Evaluation of 2′ modified oligonucleotides containing 2′-deoxy gaps as antisense inhibitors of gene expression. J. Biol. Chem. 268, 14514–14522 (1993).

    CAS  PubMed  Google Scholar 

  22. Bennett, C.F. et al. Cationic lipids enhance cellular uptake and activity of phosphorothioate antisense oligonucleotides. Mol. Pharmacol. 41, 1023–1033 (1992).

    CAS  Google Scholar 

  23. Monia, B.P. et al. Selective inhibition of mutant Ha-ras mRNA expression by antisense oligonucleotides. J. Biol. Chem. 267, 19954–19962 (1992).

    CAS  PubMed  Google Scholar 

  24. Crooke, R.M., Graham, M.J., Cooke, M.E. & Crooke, S.T. In vitro pharmacokinetics of phosphorothioate antisense oligonucleotides. J. Pharmacol. Exp. Ther. 275, 462–473 (1995).

    CAS  PubMed  Google Scholar 

  25. Crooke, S.T. et al. Pharmacokinetic properties of several novel oligonucleotide analogues in mice. J. Pharmacol. Exp. Ther. (in the press).

  26. Hoke, G. et al. Effects of phosphorothioate capping on antisense oligonucleotide stability, hybridization and antiviral efficacy versus herpes simplex virus infection. Nucleic Acids Res. 19, 5743–5748 (1991).

    Article  CAS  Google Scholar 

  27. Cailleau, R., Young, R., Olive, M. & Reeves, W.J., Jr. Breast tumor cell lines from pleural effusions. J. Natl. Cancer Inst. 53, 661–674 (1974).

    Article  CAS  Google Scholar 

  28. Shih, C. & Weinberg, R.A. Isolation of a transforming sequence from a human bladder carcinoma cell line. Cell 29, 161–169 (1982).

    Article  CAS  Google Scholar 

  29. Dean, N.M. & McKay, R. Inhibition of protein kinase C-alpha expression in mice after systemic administration of phosphorothioate antisense oligodeoxynucleotides. Proc. Natl. Acad. Sci. USA 91, 11762–11766 (1994).

    Article  CAS  Google Scholar 

  30. Stepkowski, S.M., Tu, Y., Condon, T.P. & Bennett, C.F. Blocking of heart allograft rejection by intercellular adhesion molecule-1 antisense oligonucleotides alone or in combination with other immunosuppressive modalities. J. Immunol. 153, 5336–5346 (1994).

    CAS  PubMed  Google Scholar 

  31. Ulmer, J.B. et al. Heterologous protection against influenza by injection of DNA encoding a viral protein. Science 259, 1745–1749 (1993).

    Article  CAS  Google Scholar 

  32. Uhlenbeck, O.C. Complementary oligonucleotide binding to transfer RNA. J. Mol. Biol. 65, 25–41 (1972).

    Article  CAS  Google Scholar 

  33. Freier, S.M. & Tinoco, I., Jr. The binding of complementary oligoribonucleotides to yeast initiator transfer RNA. Biochemistry 14, 3310–3314 (1975).

    Article  CAS  Google Scholar 

  34. Herschlag, D. & Cech, T.R. Catalysis of RNA cleavage by the Tetrahymena thermophila ribozyme: Kinetic description of the reaction of an RNA substrate that forms a mismatch at the active site. Biochemistry 29, 10172–10780 (1990).

    Article  CAS  Google Scholar 

  35. Lima, W.F., Monia, B.P., Ecker, D.J. & Freier, S.M. Implication of RNA structure on antisense oligonucleotide hybridization kinetics. Biochemistry 31, 12055–12061 (1992).

    Article  CAS  Google Scholar 

  36. Bacon, T.A. & Wickstrom, E. Walking along human C-myc mRNA with antisense oligodeoxynucleotides: Maximum efficacy at the 5′ cap region. Oncogene Res. 6, 13–19 (1991).

    CAS  PubMed  Google Scholar 

  37. Chiang, M.-Y. et al. Antisense oligonucleotides inhibit intercellular adhesion molecule 1 expression by two distinct mechanisms. J. Biol. Chem. 266, 18162–18172 (1991).

    CAS  PubMed  Google Scholar 

  38. Yamamoto, S. et al. DNA from bacteria, but not from vertebrates, induces interferons, activates natural killer cells and inhibits tumor growth. Microbiol. Immunol. 36, 983–997 (1992).

    Article  CAS  Google Scholar 

  39. Kuramoto, E. et al. Oligonucleotide sequences required for natural killer cell activation. Jpn. J. Cancer Res. 83, 1128–1131 (1992).

    Article  CAS  Google Scholar 

  40. Yamamoto, T., Yamamoto, S., Kataoka, T. & Tokunaga, T. Lipofection of synthetic oligodeoxyribonucleotide having a palindromic sequence of AACGTT to murine splenocytes enhances interferon production and natural killer activity. Microbiol. Immunol. 38, 831–836 (1994).

    Article  CAS  Google Scholar 

  41. Reddy, E.P. Nucleotide sequence analysis of the T24 human bladder carcinoma oncogene. Science 220, 1061–1063 (1983).

    Article  CAS  Google Scholar 

  42. Valenzuela, D.M. & Groffen, J. Four human carcinoma cell lines with novel mutations in position 12 of C-K-ras oncogene. Nucleic Acids Res. 14, 844–852 (1986).

    Article  Google Scholar 

  43. Bennett, C.F. et al. An ICAM-1 antisense oligonucleotide prevents and reverses dextran sulfate-induced colitis in mice. J. Pharmacol. Exp. Ther. (in the press).

  44. Ausubel, F.M. et al. (eds.) Preparation and analysis of RNA. in Current Protocols in Molecular Biology. (Greene Publishing Assoc. and Wiley Interscience, New York, 1987).

    Google Scholar 

  45. Meyer, T. et al. A derivative of staurosporin (CGP 41 251) shows selectivity for protein kinase C inhibition and in vivo antitumor activity. Int. J. Cancer 43, 851–856 (1989).

    Article  CAS  Google Scholar 

  46. Blumer, K.J. & Johnson, G.L. Diversity in function and regulation of MAP kinase pathways. Trends Biol. Sci. 19, 236–240 (1994).

    Article  CAS  Google Scholar 

  47. Porras, A., Muszynski, K., Rapp, U.R. & Santos, E. Dissociation between activation of Raf-1 kinase and the 42-kDa mitogen-activated protein kinase/90-kDa S6 kinase (MAPK/RSK) cascade in the insulin/Ras pathway of adipocytic differentiation of 3T3 L1 cells. J. Biol. Chem. 269, 12741–12748 (1994).

    CAS  PubMed  Google Scholar 

  48. Indolfi, C. et al. Inhibition of cellular ras prevents smooth muscle cell proliferation after vascular injury in vivo. Nature Med. 1, 541–545 (1995).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Monia, B., Johnston, J., Geiger, T. et al. Antitumor activity of a phosphorothioate antisense oligodeoxynucleotide targeted against C-raf kinase. Nat Med 2, 668–675 (1996). https://doi.org/10.1038/nm0696-668

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm0696-668

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing