Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Restoring polyamines protects from age-induced memory impairment in an autophagy-dependent manner

Subjects

Abstract

Age-dependent memory impairment is known to occur in several organisms, including Drosophila, mouse and human. However, the fundamental cellular mechanisms that underlie these impairments are still poorly understood, effectively hampering the development of pharmacological strategies to treat the condition. Polyamines are among the substances found to decrease with age in the human brain. We found that levels of polyamines (spermidine, putrescine) decreased in aging fruit flies, concomitant with declining memory abilities. Simple spermidine feeding not only restored juvenile polyamine levels, but also suppressed age-induced memory impairment. Ornithine decarboxylase-1, the rate-limiting enzyme for de novo polyamine synthesis, also protected olfactory memories in aged flies when expressed specifically in Kenyon cells, which are crucial for olfactory memory formation. Spermidine-fed flies showed enhanced autophagy (a form of cellular self-digestion), and genetic deficits in the autophagic machinery prevented spermidine-mediated rescue of memory impairments. Our findings indicate that autophagy is critical for suppression of memory impairments by spermidine and that polyamines, which are endogenously present, are candidates for pharmacological intervention.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Spermidine feeding prevents the age-related decline of endogenous spermidine and putrescine levels.
Figure 2: Spermidine-feeding rescues AMI.
Figure 3: Ca2+ imaging in the Kenyon cells in response to odors in aging wild-type flies.
Figure 4: Spermidine feeding induces autophagy in the Drosophila brain.
Figure 5: Autophagy is required for spermidine's effects on AMI.
Figure 6: Spermidine feeding induces widespread transcriptional changes in fly heads during aging.
Figure 7: Brain-specific expression of Odc-1 is sufficient to suppress AMI.

Similar content being viewed by others

Accession codes

Primary accessions

Gene Expression Omnibus

References

  1. Tamura, T. et al. Aging specifically impairs amnesiac-dependent memory in Drosophila. Neuron 40, 1003–1011 (2003).

    Article  CAS  PubMed  Google Scholar 

  2. Yamazaki, D. et al. The Drosophila DCO mutation suppresses age-related memory impairment without affecting lifespan. Nat. Neurosci. 10, 478–484 (2007).

    Article  CAS  PubMed  Google Scholar 

  3. Tonoki, A. & Davis, R.L. Aging impairs intermediate-term behavioral memory by disrupting the dorsal paired medial neuron memory trace. Proc. Natl. Acad. Sci. USA 109, 6319–6324 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Saitoe, M., Horiuchi, J., Tamura, T. & Ito, N. Drosophila as a novel animal model for studying the genetics of age-related memory impairment. Rev. Neurosci. 16, 137–149 (2005).

    Article  CAS  PubMed  Google Scholar 

  5. Tully, T. & Quinn, W.G. Classical conditioning and retention in normal and mutant Drosophila melanogaster. J. Comp. Physiol. A 157, 263–277 (1985).

    Article  CAS  PubMed  Google Scholar 

  6. Bishop, N.A., Lu, T. & Yankner, B.A. Neural mechanisms of ageing and cognitive decline. Nature 464, 529–535 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Meléndez, A. et al. Autophagy genes are essential for dauer development and life-span extension in C. elegans. Science 301, 1387–1391 (2003).

    Article  PubMed  CAS  Google Scholar 

  8. Hansen, M. et al. A role for autophagy in the extension of lifespan by dietary restriction in C. elegans. PLoS Genet. 4, e24 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Simonsen, A. et al. Promoting basal levels of autophagy in the nervous system enhances longevity and oxidant resistance in adult Drosophila. Autophagy 4, 176–184 (2008).

    Article  CAS  PubMed  Google Scholar 

  10. Juhász, G., Erdi, B., Sass, M. & Neufeld, T.P. Atg7-dependent autophagy promotes neuronal health, stress tolerance, and longevity but is dispensable for metamorphosis in Drosophila. Genes Dev. 21, 3061–3066 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Das, R. & Kanungo, M.S. Activity and modulation of ornithine decarboxylase and concentrations of polyamines in various tissues of rats as a function of age. Exp. Gerontol. 17, 95–103 (1982).

    Article  CAS  PubMed  Google Scholar 

  12. Vivó, M. et al. Polyamines in the basal ganglia of human brain. Influence of aging and degenerative movement disorders. Neurosci. Lett. 304, 107–111 (2001).

    Article  PubMed  Google Scholar 

  13. Minois, N., Carmona-Gutierrez, D. & Madeo, F. Polyamines in aging and disease. Aging (Albany, NY) 3, 716–732 (2011).

    Article  Google Scholar 

  14. Eisenberg, T. et al. Induction of autophagy by spermidine promotes longevity. Nat. Cell Biol. 11, 1305–1314 (2009).

    Article  CAS  PubMed  Google Scholar 

  15. Heisenberg, M. Mushroom body memoir: from maps to models. Nat. Rev. Neurosci. 4, 266–275 (2003).

    Article  CAS  PubMed  Google Scholar 

  16. Quinn, W.G. & Dudai, Y. Memory phases in Drosophila. Nature 262, 576–577 (1976).

    Article  CAS  PubMed  Google Scholar 

  17. Liu, X. & Davis, R.L. The GABAergic anterior paired lateral neuron suppresses and is suppressed by olfactory learning. Nat. Neurosci. 12, 53–59 (2009).

    Article  CAS  PubMed  Google Scholar 

  18. Hara, T. et al. Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature 441, 885–889 (2006).

    Article  CAS  PubMed  Google Scholar 

  19. Komatsu, M. et al. Homeostatic levels of p62 control cytoplasmic inclusion body formation in autophagy-deficient mice. Cell 131, 1149–1163 (2007).

    Article  CAS  PubMed  Google Scholar 

  20. Rubinsztein, D.C., Marino, G. & Kroemer, G. Autophagy and aging. Cell 146, 682–695 (2011).

    Article  CAS  PubMed  Google Scholar 

  21. Klionsky, D.J. et al. Guidelines for the use and interpretation of assays for monitoring autophagy in higher eukaryotes. Autophagy 4, 151–175 (2008).

    Article  CAS  PubMed  Google Scholar 

  22. Bartlett, B.J. et al. p62, Ref(2)P and ubiquitinated proteins are conserved markers of neuronal aging, aggregate formation and progressive autophagic defects. Autophagy 7, 572–583 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Pankiv, S. et al. p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J. Biol. Chem. 282, 24131–24145 (2007).

    Article  CAS  PubMed  Google Scholar 

  24. Mizushima, N. et al. A protein conjugation system essential for autophagy. Nature 395, 395–398 (1998).

    Article  CAS  PubMed  Google Scholar 

  25. Nakatogawa, H., Ichimura, Y. & Ohsumi, Y. Atg8, a ubiquitin-like protein required for autophagosome formation, mediates membrane tethering and hemifusion. Cell 130, 165–178 (2007).

    Article  CAS  PubMed  Google Scholar 

  26. Xie, Z., Nair, U. & Klionsky, D.J. Atg8 controls phagophore expansion during autophagosome formation. Mol. Biol. Cell 19, 3290–3298 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Morselli, E. et al. Spermidine and resveratrol induce autophagy by distinct pathways converging on the acetylproteome. J. Cell Biol. 192, 615–629 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Minois, N. et al. Spermidine promotes stress resistance in Drosophila melanogaster through autophagy-dependent and -independent pathways. Cell Death Dis. 3, e401 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Anders, S. & Huber, W. Differential expression analysis for sequence count data. Genome Biol. 11, R106 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Huang, D.W., Sherman, B.T. & Lempicki, R.A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 4, 44–57 (2009).

    Article  CAS  Google Scholar 

  31. Pegg, A.E. Regulation of ornithine decarboxylase. J. Biol. Chem. 281, 14529–14532 (2006).

    Article  CAS  PubMed  Google Scholar 

  32. Davis, R.L. Olfactory memory formation in Drosophila: from molecular to systems neuroscience. Annu. Rev. Neurosci. 28, 275–302 (2005).

    Article  CAS  PubMed  Google Scholar 

  33. McGuire, S.E., Le, P.T., Osborn, A.J., Matsumoto, K. & Davis, R.L. Spatiotemporal rescue of memory dysfunction in Drosophila. Science 302, 1765–1768 (2003).

    Article  CAS  PubMed  Google Scholar 

  34. Liu, P., Gupta, N., Jing, Y. & Zhang, H. Age-related changes in polyamines in memory-associated brain structures in rats. Neuroscience 155, 789–796 (2008).

    Article  CAS  PubMed  Google Scholar 

  35. Lee, J.A. Neuronal autophagy: a housekeeper or a fighter in neuronal cell survival? Exp. Neurobiol. 21, 1–8 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Wang, I.F. et al. Autophagy activators rescue and alleviate pathogenesis of a mouse model with proteinopathies of the TAR DNA-binding protein 43. Proc. Natl. Acad. Sci. USA 109, 15024–15029 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Chang, Y.Y. & Neufeld, T.P. An Atg1/Atg13 complex with multiple roles in TOR-mediated autophagy regulation. Mol. Biol. Cell 20, 2004–2014 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Demontis, F. & Perrimon, N. FOXO/4E-BP signaling in Drosophila muscles regulates organism-wide proteostasis during aging. Cell 143, 813–825 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Komatsu, M. et al. Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature 441, 880–884 (2006).

    Article  CAS  PubMed  Google Scholar 

  40. Burger, J.M., Buechel, S.D. & Kawecki, T.J. Dietary restriction affects lifespan but not cognitive aging in Drosophila melanogaster. Aging Cell 9, 327–335 (2010).

    Article  CAS  PubMed  Google Scholar 

  41. Isabel, G., Pascual, A. & Preat, T. Exclusive consolidated memory phases in Drosophila. Science 304, 1024–1027 (2004).

    Article  CAS  PubMed  Google Scholar 

  42. Dubnau, J. et al. The staufen/pumilio pathway is involved in Drosophila long-term memory. Curr. Biol. 13, 286–296 (2003).

    Article  CAS  PubMed  Google Scholar 

  43. Heisenberg, M., Borst, A., Wagner, S. & Byers, D. Drosophila mushroom body mutants are deficient in olfactory learning. J. Neurogenet. 2, 1–30 (1985).

    Article  CAS  PubMed  Google Scholar 

  44. Keleman, K. et al. Dopamine neurons modulate pheromone responses in Drosophila courtship learning. Nature 489, 145–149 (2012).

    Article  CAS  PubMed  Google Scholar 

  45. Xia, S. et al. NMDA receptors mediate olfactory learning and memory in Drosophila. Curr. Biol. 15, 603–615 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zhou, C. et al. Molecular genetic analysis of sexual rejection: roles of octopamine and its receptor OAMB in Drosophila courtship conditioning. J. Neurosci. 32, 14281–14287 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Schwartz, C.E., Wang, X., Stevenson, R.E. & Pegg, A.E. Spermine synthase deficiency resulting in X-linked intellectual disability (Snyder-Robinson syndrome). Methods Mol. Biol. 720, 437–445 (2011).

    Article  CAS  PubMed  Google Scholar 

  48. Elliott, D.A., Weickert, C.S. & Garner, B. Apolipoproteins in the brain: implications for neurological and psychiatric disorders. Clin. Lipidol. 51, 555–573 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Peleg, S. et al. Altered histone acetylation is associated with age-dependent memory impairment in mice. Science 328, 753–756 (2010).

    Article  CAS  PubMed  Google Scholar 

  50. Fischer, A., Sananbenesi, F., Wang, X., Dobbin, M. & Tsai, L.H. Recovery of learning and memory is associated with chromatin remodeling. Nature 447, 178–182 (2007).

    Article  CAS  PubMed  Google Scholar 

  51. Bateman, J.R., Lee, A.M. & Wu, C.T. Site-specific transformation of Drosophila via phiC31 integrase-mediated cassette exchange. Genetics 173, 769–777 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Groth, A.C., Fish, M., Nusse, R. & Calos, M.P. Construction of transgenic Drosophila by using the site-specific integrase from phage phiC31. Genetics 166, 1775–1782 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Minocha, R., Shortle, W.C., Long, S.L. & Minocha, S.C. A rapid and reliable procedure for extraction of cellular polyamines and inorganic ions from plant tissues. J. Plant Growth Regul. 13, 187–193 (1994).

    Article  CAS  Google Scholar 

  54. Byun, J.A. et al. Analysis of polyamines as carbamoyl derivatives in urine and serum by liquid chromatography-tandem mass spectrometry. Biomed. Chromatogr. 22, 73–80 (2008).

    Article  CAS  PubMed  Google Scholar 

  55. Nezis, I.P. et al. Ref(2)P, the Drosophila melanogaster homologue of mammalian p62, is required for the formation of protein aggregates in adult brain. J. Cell Biol. 180, 1065–1071 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Tian, L. et al. Imaging neural activity in worms, flies and mice with improved GCaMP calcium indicators. Nat. Methods 6, 875–881 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Estes, P.S. et al. Traffic of dynamin within individual Drosophila synaptic boutons relative to compartment-specific markers. J. Neurosci. 16, 5443–5456 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Hulsen, T., de Vlieg, J. & Alkema, W. BioVenn: a web application for the comparison and visualization of biological lists using area-proportional Venn diagrams. BMC Genomics 9, 488 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Feany, M.B. & Bender, W.W. A Drosophila model of Parkinson's disease. Nature 404, 394–398 (2000).

    Article  CAS  PubMed  Google Scholar 

  60. Zarnack, K. et al. Direct competition between hnRNP C and U2AF65 protects the transcriptome from the exonization of Alu elements. Cell 152, 453–466 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank T. Neufeld (University of Minnesota), L. Luo (Stanford University) and the Bloomington Stock Center for fly stocks, and S. Gaumer (University Versailles) for ref(2)P antibody. We are also grateful to M.G. Holt and B. Gerber for critically reading the manuscript. This work was supported by grants from the Deutsche Forschungsgemeinschaft to S.J.S. (Exc257, FOR1363), as well as A6/SFB 958 and DynAge Focus Area (Freie Universität Berlin) to S.J.S., the European Union (FP7 Gencodys HEALTH-241995) to H.G.S. and A.S., a VIDI grant from the Netherlands Organization for Scientific Research (917-96-346) to A.S., the BMBF (BCCNII, grant number 01GQ1005A) to A.F., and the Emmy Noether Program to M.S. F.M. is grateful to the FWF for grants LIPOTOX, P23490, P24381 and I1000 (DACH). T.E. is recipient of an APART fellowship of the Austrian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Contributions

V.K.G., F.M. and S.J.S. designed the study. V.K.G., L.S., T.E., C.M., S.M., T.S.K., J.M.K., A.B., S.D., K.S.Y.L., S.S. and C.M. performed the experiments. V.K.G., L.S., T.E., T.S.K., J.M.K., A.B., K.S.Y.L., S.S., S.D., C.M., F.M. and S.J.S. analyzed the data. F.S., M.S., T.R.P., A.F. and H.G.S. provided protocols, reagents and advice. All of the authors commented on the manuscript. V.K.G., A.S., F.M. and S.J.S. wrote the manuscript.

Corresponding authors

Correspondence to Frank Madeo or Stephan J Sigrist.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Integrated supplementary information

Supplementary Figure 1 Effect of spermidine feeding on spermine levels.

Endogenous level of Spermine in chronologically aging wild-type flies fed with food supplemented by 1 mM or 5mM spermidine (Spd1mM+ or Spd5mM+ respectively), compared with normal food (Spd–). Data are shown normalized to spermine levels of 1-day old (1d) flies on Spd– food (or Spd–, 1d; n=4 for all data; F=10.37 for Spd– flies, F=5.78 for Spd1mM+ flies, F=12.31 for Spd5mM+ flies; one-way-ANOVA with Bonferroni correction). *:p<0.05; **:p<0.01, ns: p>0.05, not significant; all values are mean ± SEM.

Source data

Supplementary Figure 2 Effect of spermidine on 3-d-old wild-type flies trained with two electric shocks.

(a) Aversive olfactory-associative memory performance in 3-min after training (STM) deficit in chronologically aging wild-type (n=10 for all data; F=8.50; one-way-ANOVA with Bonferroni correction). (b) Short-term memory (STM) performance 3min after training (training under non-saturating conditions, 2-shocks instead of 12 electricshocks) of 3d- Spd1mM+ and Spd5mM+ as compared to Spd– flies with (n=8-9 for all data; F=0.77; one-way-ANOVA with Bonferroni correction). **:p<0.01; ***:p<0.001, ns: p>0.05, not significant; all values are mean ± SEM.

Source data

Supplementary Figure 3 Climbing ability of aged flies was not rescued by spermidine feeding.

Climbing ability of aged Spd5mM+ as compared to to Spd– flies (n=6 for all data; F=35.87; one-way-ANOVA with Bonferroni correction). ***:p<0.001, ns: p>0.05, not significant; all values are mean ± SEM.

Source data

Supplementary Figure 4 Kinetics of age-related decline of polyamines.

Level of Spermidine (a) and Putrescine (b) in chronologically aging wild-type flies fed with food supplemented with 5mM spermidine (Spd5mM+), and compared to age-matched control flies (Spd–). Data are shown normalized to the level of respective polyamines found in 1-day old (1d) flies on Spd– food (or Spd–, 1d; n=3 for all data; F=19.32 for (a) and F=16.31 for (b) respectively; one-way-ANOVA with Bonferroni correction). *: p<0.05; ns: p>0.05, not significant; all values are mean ± SEM.

Source data

Supplementary Figure 5 Graph of estimated dispersion versus base mean expression values.

Per gene dispersion values (orange dots) and estimated dispersion values (black line) determined using DESeq, plotted against the base mean expression level. In cases where the per-gene dispersion was greater than estimated, we used the per-gene dispersion value to determine the probability of differential expression.

Supplementary Figure 6 Changes in gene expression under spermidine treatment as determined by RNA-seq and quantitative real-time PCR (qPCR).

Several of the genes found be modulated by spermidine feeding (by RNA-seq) were analyzed and validated by quantitative real-time PCR (qPCR; data represent the mean of two independent aging experiments for both 10 day old Spd5mM+ as as well as Spd– flies).

Source data

Supplementary Figure 7 Mushroom body–specific expression of Odc-1 in 3-d-old flies.

(a) Aversive associative memory performance in 3 min after training (STM) in 3 day-old female flies expressing UAS-Odc-1 only in mushroom body (n=7-8 for all data; F=0.05; one-way-ANOVA with Bonferroni correction) (b) Aversive associative memory performance in 3hr after training (ITM), anesthesia-resistant memory (ARM) and anesthesia-sensitive memory (ASM) in 3 day-old female flies with UAS-Odc-1 expressed specifically in mushroom body (n=7 for all data; F=2.81 for ITM, F=0.27 for ARM, F=1.12 for ASM; one-way-ANOVA with Bonferroni correction). ns: p>0.05, not significant; all values are mean ± SEM.

Source data

Supplementary Figure 8 Upregulation of autophagy was not sufficient to suppress AMI.

(a) Aversive associative memory performance in 3 min after training (STM) in 3d-female flies pan-neuronal expression of Atg8a (n=8 for all data; F=1.21; one-way-ANOVA with Bonferroni correction) (b) Pan-neuronal expression of Atg8a in a wildtype background (using appl-Gal4) did not suppress AMI in 30d-female flies (n=8 for all data; F=8.66; one-way-ANOVA with Bonferroni correction). **:p<0.01; ns: p>0.05, not significant; all values are mean ± SEM.

Source data

Supplementary Figure 9 Full-length image of the blots presented in Figure 4.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–9 and Supplementary Tables 1–5 (PDF 9526 kb)

Source data

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gupta, V., Scheunemann, L., Eisenberg, T. et al. Restoring polyamines protects from age-induced memory impairment in an autophagy-dependent manner. Nat Neurosci 16, 1453–1460 (2013). https://doi.org/10.1038/nn.3512

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.3512

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing