Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Innovation
  • Published:

Molecular imaging by mass spectrometry — looking beyond classical histology

Abstract

Imaging mass spectrometry (IMS) using matrix-assisted laser desorption ionization (MALDI) is a new and effective tool for molecular studies of complex biological samples such as tissue sections. As histological features remain intact throughout the analysis of a section, distribution maps of multiple analytes can be correlated with histological and clinical features. Spatial molecular arrangements can be assessed without the need for target-specific reagents, allowing the discovery of diagnostic and prognostic markers of different cancer types and enabling the determination of effective therapies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Principles of MALDI-TOF IMS.
Figure 2: Workflow for MALDI IMS analysis.
Figure 3: Comparison of IHC and MALDI IMS results.
Figure 4: Small molecule imaging.

Similar content being viewed by others

References

  1. Liebl, H. Ion microprobe mass analyzer. J. Appl. Phys. 38, 5277–5283 (1967).

    Article  CAS  Google Scholar 

  2. Castaing, R. & Slodzian, G. Microanalysis by secondary ionic emission. J. Microsc. 1, 395–410 (1962).

    CAS  Google Scholar 

  3. Esquenazi, E., Yang, Y. L., Watrous, J., Gerwick, W. H. & Dorrestein, P. C. Imaging mass spectrometry of natural products. Nat. Prod. Rep. 26, 1521–1534 (2009).

    Article  CAS  Google Scholar 

  4. Fragu, P., Klijanienko, J., Gandia, D., Halpern, S. & Armand, J. P. Quantitative mapping of 4′-iododeoxyrubicin in metastatic squamous cellcarcinoma by secondary ion mass spectrometry (SIMS) microscopy. Cancer Res. 52, 974–977 (1992).

    CAS  PubMed  Google Scholar 

  5. Pacholski, M. L. & Winograd, N. Imaging with mass spectrometry. Chem. Rev. 99, 2977–3006 (1999).

    Article  CAS  Google Scholar 

  6. Chandra, S. & Lorey, D. R. SIMS ion microscopy in cancer research: single cell isotopic imaging for chemical composition, cytotoxicity and cell cycle recognition. Cell. Mol. Biol. (Noisy-le-grand) 47, 503–518 (2001).

    CAS  Google Scholar 

  7. Caprioli, R. M., Farmer, T. B. & Gile, J. Molecular imaging of biological samples: localization of peptides and proteins using MALDI-TOF MS. Anal. Chem. 69, 4751–4760 (1997).

    Article  CAS  Google Scholar 

  8. Seeley, E. H. & Caprioli, R. M. Molecular imaging of proteins in tissues by mass spectrometry. Proc. Natl Acad. Sci. USA 105, 18126–18131 (2008).

    Article  CAS  Google Scholar 

  9. Chaurand, P., Schriver, K. E. & Caprioli, R. M. Instrument design and characterization for high resolution MALDI-MS imaging of tissue sections. J. Mass Spectrom. 42, 476–489 (2007).

    Article  CAS  Google Scholar 

  10. Lemaire, R. et al. Direct analysis and MALDI imaging of formalin-fixed, paraffin-embedded tissue sections. J. Proteome Res. 6, 1295–1305 (2007).

    Article  CAS  Google Scholar 

  11. Ronci, M. et al. Protein unlocking procedures of formalin-fixed paraffin-embedded tissues: application to MALDI-TOF imaging MS investigations. Proteomics 8, 3702–3714 (2008).

    Article  CAS  Google Scholar 

  12. Zimmerman, T. A., Monroe, E. B., Tucker, K. R., Rubakhin, S. S. & Sweedler, J. V. Chapter 13: imaging of cells and tissues with mass spectrometry: adding chemical information to imaging. Methods Cell Biol. 89, 361–390 (2008).

    Article  CAS  Google Scholar 

  13. Chaurand, P., Sanders, M. E., Jensen, R. A. & Caprioli, R. M. Proteomics in diagnostic pathology: profiling and imaging proteins directly in tissue sections. Am. J. Pathol. 165, 1057–1068 (2004).

    Article  CAS  Google Scholar 

  14. Celis, J. E. & Gromov, P. Proteomics in translational cancer research: toward an integrated approach. Cancer Cell 3, 9–15 (2003).

    Article  CAS  Google Scholar 

  15. Hanash, S. Disease proteomics. Nature 422, 226–232 (2003).

    Article  CAS  Google Scholar 

  16. Emmert-Buck, M. R. et al. Laser capture microdissection. Science 274, 998–1001 (1996).

    Article  CAS  Google Scholar 

  17. Caprioli, R. M. Deciphering protein molecular signatures in cancer tissues to aid in diagnosis, prognosis, and therapy. Cancer Res. 65, 10642–10645 (2005).

    Article  CAS  Google Scholar 

  18. Siuzdak, G. The emergence of mass spectrometry in biochemical research. Proc. Natl Acad. Sci. USA 91, 11290–11297 (1994).

    Article  CAS  Google Scholar 

  19. Aebersold, R. & Mann, M. Mass spectrometry-based proteomics. Nature 422, 198–207 (2003).

    Article  CAS  Google Scholar 

  20. Schiller, J. et al. Matrix-assisted laser desorption and ionization time-of-flight (MALDI-TOF) mass spectrometry in lipid and phospholipid research. Prog. Lipid Res. 43, 449–488 (2004).

    Article  CAS  Google Scholar 

  21. Harvey, D. J. et al. Comparison of fragmentation modes for the structural determination of complex oligosaccharides ionized by matrix-assisted laser desorption/ionization mass spectrometry. Rapid Commun. Mass Spectrom. 9, 1556–1561 (1995).

    Article  CAS  Google Scholar 

  22. Tost, J. & Gut, I. G. DNA analysis by mass spectrometry-past, present and future. J. Mass Spectrom. 41, 981–995 (2006).

    Article  CAS  Google Scholar 

  23. Karas, M. & Hillenkamp, F. Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons. Anal. Chem. 60, 2299–2301 (1988).

    Article  CAS  Google Scholar 

  24. Tanaka, K. et al. Protein and polymer analyses up to m/z100 000 by laser ionization time-of-flight mass spectrometry. Rapid Commun. Mass Spectrom. 2, 151–153 (1988).

    Article  CAS  Google Scholar 

  25. Mann, M., Hendrickson, R. C. & Pandey, A. Analysis of proteins and proteomes by mass spectrometry. Annu. Rev. Biochem. 70, 437–473 (2001).

    Article  CAS  Google Scholar 

  26. Cornett, D. S. et al. A novel histology-directed strategy for MALDI-MS tissue profiling that improves throughput and cellular specificity in human breast cancer. Mol. Cell. Proteomics 5, 1975–1983 (2006).

    Article  CAS  Google Scholar 

  27. Crecelius, A. C. et al. Three-dimensional visualization of protein expression in mouse brain structures using imaging mass spectrometry. J. Am. Soc. Mass Spectrom. 16, 1093–1099 (2005).

    Article  CAS  Google Scholar 

  28. Schwamborn, K. et al. Identifying prostate carcinoma by MALDI-imaging. Int. J. Mol. Med. 20, 155–159 (2007).

    CAS  PubMed  Google Scholar 

  29. Becker, K. F. et al. Quantitative protein analysis from formalin-fixed tissues: implications for translational clinical research and nanoscale molecular diagnosis. J. Pathol. 211, 370–378 (2007).

    Article  CAS  Google Scholar 

  30. Cornett, D. S., Reyzer, M. L., Chaurand, P. & Caprioli, R. M. MALDI imaging mass spectrometry: molecular snapshots of biochemical systems. Nature Methods 4, 828–833 (2007).

    Article  CAS  Google Scholar 

  31. Schwartz, S. A., Reyzer, M. L. & Caprioli, R. M. Direct tissue analysis using matrix-assisted laser desorption/ionization mass spectrometry: practical aspects of sample preparation. J. Mass Spectrom. 38, 699–708 (2003).

    Article  CAS  Google Scholar 

  32. Puolitaival, S. M., Burnum, K. E., Cornett, D. S. & Caprioli, R. M. Solvent-free matrix dry-coating for MALDI imaging of phospholipids. J. Am. Soc. Mass Spectrom. 19, 882–886 (2008).

    Article  CAS  Google Scholar 

  33. Chaurand, P. et al. Integrating histology and imaging mass spectrometry. Anal. Chem. 76, 1145–1155 (2004).

    Article  CAS  Google Scholar 

  34. Aerni, H. R., Cornett, D. S. & Caprioli, R. M. Automated acoustic matrix deposition for MALDI sample preparation. Anal. Chem. 78, 827–834 (2006).

    Article  CAS  Google Scholar 

  35. Hankin, J. A., Barkley, R. M. & Murphy, R. C. Sublimation as a method of matrix application for mass spectrometric imaging. J. Am. Soc. Mass Spectrom. 18, 1646–1652 (2007).

    Article  CAS  Google Scholar 

  36. Groseclose, M. R., Massion, P. P., Chaurand, P. & Caprioli, R. M. High-throughput proteomic analysis of formalin-fixed paraffin-embedded tissue microarrays using MALDI imaging mass spectrometry. Proteomics 8, 3715–3724 (2008).

    Article  CAS  Google Scholar 

  37. Deininger, S. O., Ebert, M. P., Futterer, A., Gerhard, M. & Rocken, C. MALDI imaging combined with hierarchical clustering as a new tool for the interpretation of complex human cancers. J. Proteome Res. 7, 5230–5236 (2008).

    Article  CAS  Google Scholar 

  38. Hanselmann, M. et al. Toward digital staining using imaging mass spectrometry and random forests. J. Proteome Res. 8, 3558–3567 (2009).

    Article  CAS  Google Scholar 

  39. Andersson, M., Groseclose, M. R., Deutch, A. Y. & Caprioli, R. M. Imaging mass spectrometry of proteins and peptides: 3D volume reconstruction. Nature Methods 5, 101–108 (2008).

    Article  CAS  Google Scholar 

  40. Sinha, T. K. et al. Integrating spatially resolved three-dimensional MALDI IMS with in vivo magnetic resonance imaging. Nature Methods 5, 57–59 (2008).

    Article  CAS  Google Scholar 

  41. Schwartz, S. A. et al. Proteomic-based prognosis of brain tumor patients using direct-tissue matrix-assisted laser desorption ionization mass spectrometry. Cancer Res. 65, 7674–7681 (2005).

    Article  CAS  Google Scholar 

  42. Patel, S. A. et al. Imaging mass spectrometry using chemical inkjet printing reveals differential protein expression in human oral squamous cell carcinoma. Analyst 134, 301–307 (2009).

    Article  CAS  Google Scholar 

  43. Yanagisawa, K. et al. Proteomic patterns of tumour subsets in non-small-cell lung cancer. Lancet 362, 433–439 (2003).

    Article  CAS  Google Scholar 

  44. Rauser, S. et al. Classification of HER2 receptor status in breast cancer tissues by MALDI imaging mass spectrometry. J. Proteome Res. 9, 1854–1863 (2010).

    Article  CAS  Google Scholar 

  45. Bauer, J. A. et al. Identification of markers of taxane sensitivity using proteomic and genomic analyses of breast tumors from patients receiving neoadjuvant paclitaxel and radiation. Clin. Cancer Res. 16, 681–690 (2010).

    Article  CAS  Google Scholar 

  46. Morita, Y. et al. Imaging mass spectrometry of gastric carcinoma in formalin-fixed paraffin-embedded tissue microarray. Cancer Sci. 101, 267–273 (2010).

    Article  CAS  Google Scholar 

  47. Djidja, M. C. et al. MALDI-ion mobility separation-mass spectrometry imaging of glucose-regulated protein 78 kDa (Grp78) in human formalin-fixed, paraffin-embedded pancreatic adenocarcinoma tissue sections. J. Proteome Res. 8, 4876–4884 (2009).

    Article  CAS  Google Scholar 

  48. Oppenheimer, S. R., Mi, D., Sanders, M. & Caprioli, R. M. A molecular analysis of tumor margins by MALDI mass spectrometry in renal carcinoma. J. Proteome Res. 9, 2182–2190 (2010).

    Article  CAS  Google Scholar 

  49. Lemaire, R. et al. Specific MALDI imaging and profiling for biomarker hunting and validation: fragment of the 11S proteasome activator complex, reg α fragment, is a new potential ovary cancer biomarker. J. Proteome Res. 6, 4127–4134 (2007).

    Article  CAS  Google Scholar 

  50. Kang, S. et al. Molecular proteomics imaging of tumor interfaces by mass spectrometry. J. Proteome Res. 9, 1157–1164 (2010).

    Article  CAS  Google Scholar 

  51. Cazares, L. H. et al. Imaging mass spectrometry of a specific fragment of mitogen-activated protein kinase/extracellular signal-regulated kinase kinase kinase 2 discriminates cancer from uninvolved prostate tissue. Clin. Cancer Res. 15, 5541–5551 (2009).

    Article  CAS  Google Scholar 

  52. Herring, K. D., Oppenheimer, S. R. & Caprioli, R. M. Direct tissue analysis by matrix-assisted laser desorption ionization mass spectrometry: application to kidney biology. Semin. Nephrol. 27, 597–608 (2007).

    Article  CAS  Google Scholar 

  53. Caldwell, R. L., Gonzalez, A., Oppenheimer, S. R., Schwartz, H. S. & Caprioli, R. M. Molecular assessment of the tumor protein microenvironment using imaging mass spectrometry. Cancer Genom. Proteom. 3, 279–288 (2006).

    CAS  Google Scholar 

  54. Sijts, A. et al. The role of the proteasome activator PA28 in MHC class I antigen processing. Mol. Immunol. 39, 165–169 (2002).

    Article  CAS  Google Scholar 

  55. Wilson, K. S., Roberts, H., Leek, R., Harris, A. L. & Geradts, J. Differential gene expression patterns in HER2/neu-positive and -negative breast cancer cell lines and tissues. Am. J. Pathol. 161, 1171–1185 (2002).

    Article  CAS  Google Scholar 

  56. Bronckart, Y. et al. Development and progression of malignancy in human colon tissues are correlated with expression of specific Ca2+-binding S100 proteins. Histol. Histopathol. 16, 707–712 (2001).

    CAS  PubMed  Google Scholar 

  57. Lesniak, W., Slomnicki, L. P. & Filipek, A. S100A6 - new facts and features. Biochem. Biophys. Res. Commun. 390, 1087–1092 (2009).

    Article  CAS  Google Scholar 

  58. Puthalakath, H., Huang, D. C., O'Reilly, L. A., King, S. M. & Strasser, A. The proapoptotic activity of the Bcl-2 family member Bim is regulated by interaction with the dynein motor complex. Mol. Cell 3, 287–296 (1999).

    Article  CAS  Google Scholar 

  59. Roesch-Ely, M. et al. Proteomic analysis reveals successive aberrations in protein expression from healthy mucosa to invasive head and neck cancer. Oncogene 26, 54–64 (2007).

    Article  CAS  Google Scholar 

  60. Reyzer, M. L. et al. Early changes in protein expression detected by mass spectrometry predict tumor response to molecular therapeutics. Cancer Res. 64, 9093–9100 (2004).

    Article  CAS  Google Scholar 

  61. Jackson, S. N. & Woods, A. S. Direct profiling of tissue lipids by MALDI-TOFMS. J. Chromatogr B Analyt. Technol. Biomed. Life Sci. 877, 2822–2829 (2009).

    Article  CAS  Google Scholar 

  62. Wenk, M. R. The emerging field of lipidomics. Nature Rev. Drug Discov. 4, 594–610 (2005).

    Article  CAS  Google Scholar 

  63. Murphy, R. C., Hankin, J. A. & Barkley, R. M. Imaging of lipid species by MALDI mass spectrometry. J. Lipid Res. 50, S317–S322 (2009).

    Article  Google Scholar 

  64. Meriaux, C., Franck, J., Wisztorski, M., Salzet, M. & Fournier, I. Liquid ionic matrixes for MALDI mass spectrometry imaging of lipids. J. Proteomics 73, 1204–1218 (2010).

    Article  CAS  Google Scholar 

  65. Wang, H. Y., Jackson, S. N. & Woods, A. S. Direct MALDI-MS analysis of cardiolipin from rat organs sections. J. Am. Soc. Mass Spectrom. 18, 567–577 (2007).

    Article  CAS  Google Scholar 

  66. Burnum, K. E. et al. Spatial and temporal alterations of phospholipids determined by mass spectrometry during mouse embryo implantation. J. Lipid Res. 50, 2290–2298 (2009).

    Article  CAS  Google Scholar 

  67. Signor, L. et al. Analysis of erlotinib and its metabolites in rat tissue sections by MALDI quadrupole time-of-flight mass spectrometry. J. Mass Spectrom. 42, 900–909 (2007).

    Article  CAS  Google Scholar 

  68. Cornett, D. S., Frappier, S. L. & Caprioli, R. M. MALDI-FTICR imaging mass spectrometry of drugs and metabolites in tissue. Anal. Chem. 80, 5648–5653 (2008).

    Article  CAS  Google Scholar 

  69. Kitteringham, N. R., Jenkins, R. E., Lane, C. S., Elliott, V. L. & Park, B. K. Multiple reaction monitoring for quantitative biomarker analysis in proteomics and metabolomics. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 877, 1229–1239 (2009).

    Article  CAS  Google Scholar 

  70. Khatib-Shahidi, S., Andersson, M., Herman, J. L., Gillespie, T. A. & Caprioli, R. M. Direct molecular analysis of whole-body animal tissue sections by imaging MALDI mass spectrometry. Anal. Chem. 78, 6448–6456 (2006).

    Article  CAS  Google Scholar 

  71. Bouslimani, A., Bec, N., Glueckmann, M., Hirtz, C. & Larroque, C. Matrix-assisted laser desorption/ionization imaging mass spectrometry of oxaliplatin derivatives in heated intraoperative chemotherapy (HIPEC)-like treated rat kidney. Rapid Commun. Mass Spectrom. 24, 415–421 (2010).

    Article  CAS  Google Scholar 

  72. Trim, P. J. et al. Matrix-assisted laser desorption/ionization-ion mobility separation-mass spectrometry imaging of vinblastine in whole body tissue sections. Anal. Chem. 80, 8628–8634 (2008).

    Article  CAS  Google Scholar 

  73. Grey, A. C., Chaurand, P., Caprioli, R. M. & Schey, K. L. MALDI imaging mass spectrometry of integral membrane proteins from ocular lens and retinal tissue. J. Proteome Res. 8, 3278–3283 (2009).

    Article  CAS  Google Scholar 

  74. Norris, J. L., Porter, N. A. & Caprioli, R. M. Combination detergent/MALDI matrix: functional cleavable detergents for mass spectrometry. Anal. Chem. 77, 5036–5040 (2005).

    Article  CAS  Google Scholar 

  75. Groseclose, M.R. High-throughput analysis of tissue microarrays of disease: combining in situ proteomics with MALDI imaging mass spectrometry. Thesis, Vanderbilt Univ. (2009).

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank E. H. Seeley for brain images, M. R. Groseclose for lung images, and M. L. Reyzer, H. C. Manning and R. A. Smith for whole mouse images.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard M. Caprioli.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

National Cancer Institute Drug Dictionary

erlotinib

oxaliplatin

paclitaxel

trastuzumab

vinblastine

Pathway Interaction Database

ERBB2

FURTHER INFORMATION

Richard M. caprioli's homepage

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schwamborn, K., Caprioli, R. Molecular imaging by mass spectrometry — looking beyond classical histology. Nat Rev Cancer 10, 639–646 (2010). https://doi.org/10.1038/nrc2917

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc2917

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer