Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

An overview of small-molecule inhibitors of VEGFR signaling

Abstract

VEGFR inhibitors are in broad use for the treatment of metastatic renal-cell carcinoma, gastrointestinal stromal tumors and hepatocellular carcinoma and in development in a number of other oncology indications, including colorectal cancer, non-small-cell lung cancer, pancreatic cancer, thyroid malignancies, ovarian cancer, breast cancer and sarcomas. This Review outlines the structure–activity relationships of the 44 VEGFR inhibitors currently in development. An overview of the pharmacokinetic profile of each molecule and its stage in development is provided. Phase III clinical trials being conducted for licensing of these agents for specific indications and phase III developmental efficacy trials are described in detailed tables that include the disease studied, trial design including combination therapy, study end points, and projected or final accrual. The relative frequency of on-target and off-target adverse events observed in 3,060 patients is described for a subset of agents in development in clinical trials sponsored by the National Cancer Institute. No interagent comparisons were undertaken and no data from pharmaceutical pharmacovigilance databases were used. The on-target effects seem to be mechanistically based and predicted by VEGFR inhibition. Small-molecule inhibitors of angiogenesis are active in a wide variety of malignancies and fill a unique niche for cancer therapeutics.

Key Points

  • Small-molecule inhibitors of VEGFRs are in clinical development both as single agents and in combination with other cancer therapies; these agents are licensed for use in a limited number of indications

  • Small-molecule inhibitors of VEGFRs are often designed to inhibit other receptors as well, so these agents have a varied adverse-event profile and spectrum of activity

  • Sunitinib and sorafenib are indicated for the treatment of renal-cell carcinoma; sunitinib is also used to treat gastrointestinal stromal cell tumors and sorafenib is also used to treat hepatocellular carcinoma

  • Toxic effects of VEGFR inhibitors include hypertension, proteinuria, hemorrhage and/or bleeding, hypothyroidism, fistula, bowel perforation, left ventricular diastolic dysfunction, thrombotic microangiopathy, reversible posterior leukoencephalopathy syndrome and arterial thrombosis

  • The off-target toxic effects of VEGFR inhibitors are attributed to their split kinase activity (which can be on-target for a specific kinase inhibitor), comorbid illness or complication caused by the cancer

  • The identification of biomarkers to personalize treatment with angiogenesis inhibitors, such as VEGFR inhibitors, is a pressing medical need

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The role of VEGFR signaling in tumor angiogenesis.

Similar content being viewed by others

References

  1. Dvorak, H. F. Angiogenesis: update 2005. J. Thromb. Haemost. 3, 1835–1842 (2005).

    CAS  PubMed  Google Scholar 

  2. Ferrara, N. & Kerbel, R. S. Angiogenesis as a therapeutic target. Nature 438, 967–974 (2005).

    CAS  PubMed  Google Scholar 

  3. Carmeliet, P. VEGF as a key mediator of angiogenesis in cancer. Oncology 69 (Suppl. 3), 4–10 (2005).

    CAS  PubMed  Google Scholar 

  4. Folkman, J. Tumor angiogenesis: therapeutic implications. N. Engl. J. Med. 285, 1182–1186 (1971).

    CAS  PubMed  Google Scholar 

  5. Verheul, H. M., Voest, E. E. & Schlingemann, R. O. Are tumours angiogenesis-dependent? J. Pathol. 202, 5–13 (2004).

    CAS  PubMed  Google Scholar 

  6. Zhong, H. & Bowen, J. P. Antiangiogenesis drug design: multiple pathways targeting tumor vasculature. Curr. Med. Chem. 13, 849–862 (2006).

    CAS  PubMed  Google Scholar 

  7. Keck, P. J. et al. Vascular permeability factor, an endothelial cell mitogen related to PDGF. Science 246, 1309–1312 (1989).

    CAS  PubMed  Google Scholar 

  8. Senger, D. R., Connolly, D. T., Van de Water, L., Feder, J. & Dvorak, H. F. Purification and NH2-terminal amino acid sequence of guinea pig tumor-secreted vascular permeability factor. Cancer Res. 50, 1774–1778 (1990).

    CAS  PubMed  Google Scholar 

  9. Roy, H., Bhardwaj, S. & Yla-Herttuala, S. Biology of vascular endothelial growth factors. FEBS Lett. 580, 2879–2887 (2006).

    CAS  PubMed  Google Scholar 

  10. Ferrara, N. & Henzel, W. J. Pituitary follicular cells secrete a novel heparin-binding growth factor specific for vascular endothelial cells. Biochem. Biophys. Res. Commun. 161, 851–858 (1989).

    CAS  PubMed  Google Scholar 

  11. Carmeliet, P. Angiogenesis in life, disease and medicine. Nature 438, 932–936 (2005).

    CAS  PubMed  Google Scholar 

  12. Ferrara, N. Vascular endothelial growth factor as a target for anticancer therapy. Oncologist 9 (Suppl. 1), 2–10 (2004).

    CAS  PubMed  Google Scholar 

  13. Holmes, D. I. & Zachary, I. The vascular endothelial growth factor (VEGF) family: angiogenic factors in health and disease. Genome Biol. 6, 209 (2005).

    PubMed  PubMed Central  Google Scholar 

  14. Levy, A. P., Levy, N. S. & Goldberg, M. A. Post-transcriptional regulation of vascular endothelial growth factor by hypoxia. J. Biol. Chem. 271, 2746–2753 (1996).

    CAS  PubMed  Google Scholar 

  15. Levy, A. P., Levy, N. S., Wegner, S. & Goldberg, M. A. Transcriptional regulation of the rat vascular endothelial growth factor gene by hypoxia. J. Biol. Chem. 270, 13333–13340 (1995).

    CAS  PubMed  Google Scholar 

  16. Mukhopadhyay, D., Tsiokas, L. & Sukhatme, V. P. Wild-type p53 and v-Src exert opposing influences on human vascular endothelial growth factor gene expression. Cancer Res. 55, 6161–6165 (1995).

    CAS  PubMed  Google Scholar 

  17. Maher, E. R. & Kaelin, W. G., Jr . von Hippel–Lindau disease. Medicine (Baltimore) 76, 381–391 (1997).

    CAS  Google Scholar 

  18. Jiang, B. H., Agani, F., Passaniti, A. & Semenza, G. L. v-Src induces expression of hypoxia-inducible factor 1 (HIF-1) and transcription of genes encoding vascular endothelial growth factor and enolase 1: involvement of HIF-1 in tumor progression. Cancer Res. 57, 5328–5335 (1997).

    CAS  PubMed  Google Scholar 

  19. Klagsbrun, M. & D'Amore, P. A. Vascular endothelial growth factor and its receptors. Cytokine Growth Factor Rev. 7, 259–270 (1996).

    CAS  PubMed  Google Scholar 

  20. Shibuya, M. Structure and dual function of vascular endothelial growth factor receptor-1 (Flt-1). Int. J. Biochem. Cell Biol. 33, 409–420 (2001).

    CAS  PubMed  Google Scholar 

  21. Wiesmann, C., Muller, Y. A. & de Vos, A. M. Ligand-binding sites in Ig-like domains of receptor tyrosine kinases. J. Mol. Med. 78, 247–260 (2000).

    CAS  PubMed  Google Scholar 

  22. Schlessinger, J. & Ullrich, A. Growth factor signaling by receptor tyrosine kinases. Neuron 9, 383–391 (1992).

    CAS  PubMed  Google Scholar 

  23. Dvorak, H. F. Vascular permeability factor/vascular endothelial growth factor: a critical cytokine in tumor angiogenesis and a potential target for diagnosis and therapy. J. Clin. Oncol. 20, 4368–4380 (2002).

    CAS  PubMed  Google Scholar 

  24. Karkkainen, M. J. & Petrova, T. V. Vascular endothelial growth factor receptors in the regulation of angiogenesis and lymphangiogenesis. Oncogene 19, 5598–5605 (2000).

    CAS  PubMed  Google Scholar 

  25. Nagy, J. A. et al. Vascular permeability factor/vascular endothelial growth factor induces lymphangiogenesis as well as angiogenesis. J. Exp. Med. 196, 1497–1506 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Ullrich, A. & Schlessinger, J. Signal transduction by receptors with tyrosine kinase activity. Cell 61, 203–212 (1990).

    CAS  PubMed  Google Scholar 

  27. Arora, A. & Scholar, E. M. Role of tyrosine kinase inhibitors in cancer therapy. J. Pharmacol. Exp. Ther. 315, 971–979 (2005).

    CAS  PubMed  Google Scholar 

  28. Hubbard, S. R. Structural analysis of receptor tyrosine kinases. Prog. Biophys. Mol. Biol. 71, 343–358 (1999).

    CAS  PubMed  Google Scholar 

  29. Sonpavde, G. & Hutson, T. E. Pazopanib: a novel multitargeted tyrosine kinase inhibitor. Curr. Oncol. Rep. 9, 115–119 (2007).

    CAS  PubMed  Google Scholar 

  30. Paavonen, K., Puolakkainen, P., Jussila, L., Jahkola, T. & Alitalo, K. Vascular endothelial growth factor receptor-3 in lymphangiogenesis in wound healing. Am. J. Pathol. 156, 1499–1504 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Olsson, A. K., Dimberg, A., Kreuger, J. & Claesson-Welsh, L. VEGF receptor signalling in control of vascular function. Nat. Rev. Mol. Cell Biol. 7, 359–371 (2006).

    CAS  PubMed  Google Scholar 

  32. Matsumoto, T. & Claesson-Welsh, L. VEGF receptor signal transduction. Science STKE 2001, RE21 (2001).

  33. Takahashi, T., Yamaguchi, S., Chida, K. & Shibuya, M. A single autophosphorylation site on KDR/Flk-1 is essential for VEGF-A-dependent activation of PLC-γ and DNA synthesis in vascular endothelial cells. EMBO J. 20, 2768–2778 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Dayanir, V., Meyer, R. D., Lashkari, K. & Rahimi, N. Identification of tyrosine residues in vascular endothelial growth factor receptor-2/FLK-1 involved in activation of phosphatidylinositol 3-kinase and cell proliferation. J. Biol. Chem. 276, 17686–17692 (2001).

    CAS  PubMed  Google Scholar 

  35. Fujio, Y. & Walsh, K. Akt mediates cytoprotection of endothelial cells by vascular endothelial growth factor in an anchorage-dependent manner. J. Biol. Chem. 274, 16349–16354 (1999).

    CAS  PubMed  Google Scholar 

  36. Sakai, R. et al. The mammalian ShcB and ShcC phosphotyrosine docking proteins function in the maturation of sensory and sympathetic neurons. Neuron 28, 819–833 (2000).

    CAS  PubMed  Google Scholar 

  37. Warner, A. J., Lopez-Dee, J., Knight, E. L., Feramisco, J. R. & Prigent, S. A. The Shc-related adaptor protein, Sck, forms a complex with the vascular-endothelial-growth-factor receptor KDR in transfected cells. Biochem. J. 347, 501–509 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Shu, X., Wu, W., Mosteller, R. D. & Broek, D. Sphingosine kinase mediates vascular endothelial growth factor-induced activation of Ras and mitogen-activated protein kinases. Mol. Cell Biol. 22, 7758–7768 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Meadows, K. N., Bryant, P. & Pumiglia, K. Vascular endothelial growth factor induction of the angiogenic phenotype requires Ras activation. J. Biol. Chem. 276, 49289–49298 (2001).

    CAS  PubMed  Google Scholar 

  40. Takahashi, T., Ueno, H. & Shibuya, M. VEGF activates protein kinase C-dependent, but Ras-independent Raf–MEK–MAP kinase pathway for DNA synthesis in primary endothelial cells. Oncogene 18, 2221–2230 (1999).

    CAS  PubMed  Google Scholar 

  41. Abedi, H. & Zachary, I. Vascular endothelial growth factor stimulates tyrosine phosphorylation and recruitment to new focal adhesions of focal adhesion kinase and paxillin in endothelial cells. J. Biol. Chem. 272, 15442–15451 (1997).

    CAS  PubMed  Google Scholar 

  42. Le Boeuf, F., Houle, F. & Huot, J. Regulation of vascular endothelial growth factor receptor 2-mediated phosphorylation of focal adhesion kinase by heat shock protein 90 and Src kinase activities. J. Biol. Chem. 279, 39175–39185 (2004).

    CAS  PubMed  Google Scholar 

  43. Fong, G. H., Rossant, J., Gertsenstein, M. & Breitman, M. L. Role of the Flt-1 receptor tyrosine kinase in regulating the assembly of vascular endothelium. Nature 376, 66–70 (1995).

    CAS  PubMed  Google Scholar 

  44. Makinen, T. et al. Isolated lymphatic endothelial cells transduce growth, survival and migratory signals via the VEGF-C/D receptor VEGFR-3. EMBO J. 20, 4762–4773 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Karkkainen, M. J. et al. Vascular endothelial growth factor C is required for sprouting of the first lymphatic vessels from embryonic veins. Nat. Immunol. 5, 74–80 (2004).

    CAS  PubMed  Google Scholar 

  46. Wang, J. F., Zhang, X. & Groopman, J. E. Activation of vascular endothelial growth factor receptor-3 and its downstream signaling promote cell survival under oxidative stress. J. Biol. Chem. 279, 27088–27097 (2004).

    CAS  PubMed  Google Scholar 

  47. Korpelainen, E. I., Karkkainen, M., Gunji, Y., Vikkula, M. & Alitalo, K. Endothelial receptor tyrosine kinases activate the STAT signaling pathway: mutant Tie-2 causing venous malformations signals a distinct STAT activation response. Oncogene 18, 1–8 (1999).

    CAS  PubMed  Google Scholar 

  48. Blume-Jensen, P. & Hunter, T. Oncogenic kinase signalling. Nature 411, 355–365 (2001).

    CAS  PubMed  Google Scholar 

  49. Hubbard, S. R. & Till, J. H. Protein tyrosine kinase structure and function. Annu. Rev. Biochem. 69, 373–398 (2000).

    CAS  PubMed  Google Scholar 

  50. Manning, G., Whyte, D. B., Martinez, R., Hunter, T. & Sudarsanam, S. The protein kinase complement of the human genome. Science 298, 1912–1934 (2002).

    CAS  PubMed  Google Scholar 

  51. Woolfrey, J. R. & Weston, G. S. The use of computational methods in the discovery and design of kinase inhibitors. Curr. Pharm. Des. 8, 1527–1545 (2002).

    CAS  PubMed  Google Scholar 

  52. Cohen, P. The development and therapeutic potential of protein kinase inhibitors. Curr. Opin. Chem. Biol. 3, 459–465 (1999).

    CAS  PubMed  Google Scholar 

  53. Relf, M. et al. Expression of the angiogenic factors vascular endothelial cell growth factor, acidic and basic fibroblast growth factor, tumor growth factor β1, platelet-derived endothelial cell growth factor, placenta growth factor, and pleiotrophin in human primary breast cancer and its relation to angiogenesis. Cancer Res. 57, 963–969 (1997).

    CAS  PubMed  Google Scholar 

  54. Taylor, A. P. et al. Tumor-specific regulation of angiogenic growth factors and their receptors during recovery from cytotoxic therapy. Clin. Cancer Res. 8, 1213–1222 (2002).

    CAS  PubMed  Google Scholar 

  55. Kiselyov, A., Balakin, K. V. & Tkachenko, S. E. VEGF/VEGFR signalling as a target for inhibiting angiogenesis. Expert Opin. Investig. Drugs 16, 83–107 (2007).

    CAS  PubMed  Google Scholar 

  56. Underiner, T. L., Ruggeri, B. & Gingrich, D. E. Development of vascular endothelial growth factor receptor (VEGFR) kinase inhibitors as anti-angiogenic agents in cancer therapy. Curr. Med. Chem. 11, 731–745 (2004).

    CAS  PubMed  Google Scholar 

  57. Boyer, S. J. Small molecule inhibitors of KDR (VEGFR-2) kinase: an overview of structure activity relationships. Curr. Top. Med. Chem. 2, 973–1000 (2002).

    CAS  PubMed  Google Scholar 

  58. Hennequin, L., Ple, P., Stokes, E. & McKerrecher, D. Quinozoline derivatives as angiogenesis inhibitors. WO0047212 (2000).

  59. Ellis, L. M. & Hicklin, D. J. VEGF-targeted therapy: mechanisms of anti-tumour activity. Nat. Rev. Cancer 8, 579–591 (2008).

    CAS  PubMed  Google Scholar 

  60. Clifford, S. C. & Maher, E. R. Von Hippel–Lindau disease: clinical and molecular perspectives. Adv. Cancer Res. 82, 85–105 (2001).

    CAS  PubMed  Google Scholar 

  61. Ouyang, B. et al. Inhibitors of Raf kinase activity block growth of thyroid cancer cells with RET/PTC or BRAF mutations in vitro and in vivo. Clin. Cancer Res. 12, 1785–1793 (2006).

    CAS  PubMed  Google Scholar 

  62. Manley, P. W. et al. Anthranilic acid amides: a novel class of antiangiogenic VEGF receptor kinase inhibitors. J. Med. Chem. 45, 5687–5693 (2002).

    CAS  PubMed  Google Scholar 

  63. Traxler, P. et al. AEE788: a dual family epidermal growth factor receptor/ErbB2 and vascular endothelial growth factor receptor tyrosine kinase inhibitor with antitumor and antiangiogenic activity. Cancer Res. 64, 4931–4941 (2004).

    CAS  PubMed  Google Scholar 

  64. Ghosh, S. et al. Alpha-cyano-beta-hydroxy-beta-methyl-N-[4-(trifluoromethoxy)phenyl] propenamide: an inhibitor of the epidermal growth factor receptor tyrosine kinase with potent cytotoxic activity against breast cancer cells. Clin. Cancer Res. 4, 2657–2668 (1998).

    CAS  PubMed  Google Scholar 

  65. Klohs, W. D., Fry, D. W. & Kraker, A. J. Inhibitors of tyrosine kinase. Curr. Opin. Oncol. 9, 562–568 (1997).

    CAS  PubMed  Google Scholar 

  66. Lawrence, D. S. & Niu, J. Protein kinase inhibitors: the tyrosine-specific protein kinases. Pharmacol. Ther. 77, 81–114 (1998).

    CAS  PubMed  Google Scholar 

  67. Polverino, A. et al. AMG 706, an oral, multikinase inhibitor that selectively targets vascular endothelial growth factor, platelet-derived growth factor, and kit receptors, potently inhibits angiogenesis and induces regression in tumor xenografts. Cancer Res. 66, 8715–8721 (2006).

    CAS  PubMed  Google Scholar 

  68. Wedge, S. R. et al. AZD2171: a highly potent, orally bioavailable, vascular endothelial growth factor receptor-2 tyrosine kinase inhibitor for the treatment of cancer. Cancer Res. 65, 4389–4400 (2005).

    CAS  PubMed  Google Scholar 

  69. Hennequin, L. F. et al. Novel 4-anilinoquinazolines with C-7 basic side chains: design and structure activity relationship of a series of potent, orally active, VEGF receptor tyrosine kinase inhibitors. J. Med. Chem. 45, 1300–1312 (2002).

    CAS  PubMed  Google Scholar 

  70. Wedge, S. R. et al. ZD4190: an orally active inhibitor of vascular endothelial growth factor signaling with broad-spectrum antitumor efficacy. Cancer Res. 60, 970–975 (2000).

    CAS  PubMed  Google Scholar 

  71. Wedge, S. R. et al. ZD6474 inhibits vascular endothelial growth factor signaling, angiogenesis, and tumor growth following oral administration. Cancer Res. 62, 4645–4655 (2002).

    CAS  PubMed  Google Scholar 

  72. Wilhelm, S. M. et al. BAY 43–9006 exhibits broad spectrum oral antitumor activity and targets the RAF–MEK–ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis. Cancer Res. 64, 7099–7109 (2004).

    CAS  PubMed  Google Scholar 

  73. Jain, R. K. et al. Biomarkers of response and resistance to antiangiogenic therapy. Nat. Rev. Clin. Oncol. 6, 327–338 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Steeghs, N. et al. Hypertension and rarefaction during treatment with telatinib, a small molecule angiogenesis inhibitor. Clin. Cancer Res. 14, 3470–3476 (2008).

    CAS  PubMed  Google Scholar 

  75. Mross, K. et al. Results from an in vitro and a clinical/pharmacological phase I study with the combination irinotecan and sorafenib. Eur. J. Cancer 43, 55–63 (2007).

    CAS  PubMed  Google Scholar 

  76. Moreno-Aspitia, A. et al. Phase II trial of sorafenib in patients with metastatic breast cancer previously exposed to anthracyclines or taxanes: North Central Cancer Treatment Group and Mayo Clinic Trial N0336. J. Clin. Oncol. 27, 11–15 (2009).

    CAS  PubMed  Google Scholar 

  77. Burstein, H. J. et al. Phase II study of sunitinib malate, an oral multitargeted tyrosine kinase inhibitor, in patients with metastatic breast cancer previously treated with an anthracycline and a taxane. J. Clin. Oncol. 26, 1810–1816 (2008).

    CAS  PubMed  Google Scholar 

  78. Hilberg, F. et al. BIBF 1120: triple angiokinase inhibitor with sustained receptor blockade and good antitumor efficacy. Cancer Res. 68, 4774–4782 (2008).

    CAS  PubMed  Google Scholar 

  79. Marathe, P. H. Preclinical pharmacokinetics and in vitro metabolism of brivanib (BMS-540215), a potent VEGFR2 inhibitor and its alanine ester prodrug brivanib alaninate. Cancer Chemother. Pharmacol. doi:10.1007/s00280-009-1002-0

    CAS  PubMed  Google Scholar 

  80. Eremina, V. et al. VEGF inhibition and renal thrombotic microangiopathy. N. Engl. J. Med. 358, 1129–1136 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Strumberg, D. et al. Safety, pharmacokinetics, and preliminary antitumor activity of sorafenib: a review of four phase I trials in patients with advanced refractory solid tumors. Oncologist 12, 426–437 (2007).

    CAS  PubMed  Google Scholar 

  82. Strumberg, D. et al. Phase I clinical and pharmacokinetic study of the Novel Raf kinase and vascular endothelial growth factor receptor inhibitor BAY 43–9006 in patients with advanced refractory solid tumors. J. Clin. Oncol. 23, 965–972

    CAS  PubMed  Google Scholar 

  83. Rugo, H. S. et al. Phase I trial of the oral antiangiogenesis agent AG-013736 in patients with advanced solid tumors: pharmacokinetic and clinical results. J. Clin. Oncol. 23, 5474–5483 (2005).

    CAS  PubMed  Google Scholar 

  84. Rosen, L. S. et al. Safety, pharmacokinetics, and efficacy of AMG 706, an oral multikinase inhibitor, in patients with advanced solid tumors. J. Clin. Oncol. 25, 2369–2376 (2007).

    CAS  PubMed  Google Scholar 

  85. Drevs, J. et al. Phase I clinical study of AZD2171, an oral vascular endothelial growth factor signaling inhibitor, in patients with advanced solid tumors. J. Clin. Oncol. 25, 3045–3054 (2007).

    CAS  PubMed  Google Scholar 

  86. Ryan, C. J. et al. Phase I dose escalation and pharmacokinetic study of AZD2171, an inhibitor of the vascular endothelial growth factor receptor tyrosine kinase, in patients with hormone refractory prostate cancer (HRPC). Invest. New Drugs 25, 445–451 (2007).

    CAS  PubMed  Google Scholar 

  87. Holden, S. N. et al. Clinical evaluation of ZD6474, an orally active inhibitor of VEGF and EGF receptor signaling, in patients with solid, malignant tumors. Ann. Oncol. 16, 1391–1397 (2005).

    CAS  PubMed  Google Scholar 

  88. Strumberg, D. et al. Safety, pharmacokinetics, and preliminary antitumor activity of sorafenib: a review of four phase I trials in patients with advanced refractory solid tumors. Oncologist 12, 426–437 (2007).

    CAS  PubMed  Google Scholar 

  89. Strumberg, D. et al. Phase I clinical and pharmacokinetic study of the Novel Raf kinase and vascular endothelial growth factor receptor inhibitor BAY 43–9006 in patients with advanced refractory solid tumors. J. Clin. Oncol. 23, 965–972 (2005).

    CAS  PubMed  Google Scholar 

  90. Strumberg, D. et al. Phase I dose escalation study of telatinib (BAY 57–9352) in patients with advanced solid tumours. Br. J. Cancer 99, 1579–1585 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Sarker, D. et al. A phase I pharmacokinetic and pharmacodynamic study of TKI258, an oral, multitargeted receptor tyrosine kinase inhibitor in patients with advanced solid tumors. Clin. Cancer Res. 14, 2075–2081 (2008).

    CAS  PubMed  Google Scholar 

  92. Cohen, R. B. et al. A phase I/randomized phase II, non-comparative, multicenter, open label trial of CP-547, 632 in combination with paclitaxel and carboplatin or paclitaxel and carboplatin alone as first-line treatment for advanced non-small cell lung cancer (NSCLC). Cancer Chemother. Pharmacol. 60, 81–89 (2007).

    CAS  PubMed  Google Scholar 

  93. Mross, K. et al. Phase I clinical and pharmacokinetic study of PTK/ZK, a multiple VEGF receptor inhibitor, in patients with liver metastases from solid tumours. Eur. J. Cancer 41, 1291–1299 (2005).

    CAS  PubMed  Google Scholar 

  94. Kuenen, B. C. et al. Dose-finding and pharmacokinetic study of cisplatin, gemcitabine, and SU5416 in patients with solid tumors. J. Clin. Oncol. 20, 1657–1667 (2002).

    CAS  PubMed  Google Scholar 

  95. Salzberg, M. et al. A phase I study with oral SU5416 in patients with advanced solid tumors: a drug inducing its clearance. Invest. New Drugs 24, 299–304 (2006).

    PubMed  Google Scholar 

  96. Sessa, C. et al. Phase I clinical and pharmacological evaluation of the multi-tyrosine kinase inhibitor SU006668 by chronic oral dosing. Eur. J. Cancer 42, 171–178 (2006).

    CAS  PubMed  Google Scholar 

  97. Xiong, H. Q. et al. A phase I surrogate endpoint study of SU6668 in patients with solid tumors. Invest. New Drugs 22, 459–466 (2004).

    CAS  PubMed  Google Scholar 

  98. Faivre, S. et al. Safety, pharmacokinetic, and antitumor activity of SU11248, a novel oral multitarget tyrosine kinase inhibitor, in patients with cancer. J. Clin. Oncol. 24, 25–35 (2006).

    CAS  PubMed  Google Scholar 

  99. Garton, A. J. et al. OSI-930: a novel selective inhibitor of Kit and kinase insert domain receptor tyrosine kinases with antitumor activity in mouse xenograft models. Cancer Res. 66, 1015–1024 (2006).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Percy Ivy.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ivy, S., Wick, J. & Kaufman, B. An overview of small-molecule inhibitors of VEGFR signaling. Nat Rev Clin Oncol 6, 569–579 (2009). https://doi.org/10.1038/nrclinonc.2009.130

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrclinonc.2009.130

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing