Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Microtubule-binding agents: a dynamic field of cancer therapeutics

A Corrigendum to this article was published on 29 October 2010

Key Points

  • Microtubule-binding agents are one of the oldest and most diverse family of anticancer agents. This family has recently been enriched with the approval of ixabepilone, vinflunine and cabazitaxel. Most approved and investigational agents are either natural or semi-synthetic compounds.

  • These agents act primarily by reducing microtubule dynamics, inducing mitotic arrest and tumour cell death. They are therefore complementary to agents that target DNA or to targeted therapies such as tyrosine kinase inhibitors or monoclonal antibodies.

  • Novel agents are being developed as vascular-disrupting agents. Although cardiac toxicity of such agents remains a possible issue, some of them have proceeded to Phase III clinical trials.

  • Although hundreds of agents have been shown to influence microtubule dynamics in vitro, a large number of novel agents are currently being evaluated in clinical trials. These agents bind either to the vinca site, the taxane site or the colchicine site, although some novel agents seem to bind to other sites.

  • Resistance mechanisms to microtubule-binding agents are complex and include ATP binding cassette efflux pumps, microtubular alterations and modifications in apoptotic signalling. Identification of these mechanisms has prompted the identification of novel agents indifferent to these resistance mechanisms.

  • Although neurological toxicity remains a key issue associated with microtubule-binding agents, myeloid toxicity is usually manageable. The development of novel agents with reduced neurological toxicity or of assays that predict toxicity in individual patients are priorities for the optimization of this family of compounds.

  • The long-term mutagenic effect of this family of agents has not yet been evaluated. Given the prolonged life expectancy of many patients treated with these compounds, this effect should be determined.

Abstract

Microtubules are dynamic filamentous cytoskeletal proteins composed of tubulin and are an important therapeutic target in tumour cells. Agents that bind to microtubules have been part of the pharmacopoeia of anticancer therapy for decades and until the advent of targeted therapy, microtubules were the only alternative to DNA as a therapeutic target in cancer. The screening of a range of botanical species and marine organisms has yielded promising new antitubulin agents with novel properties. In the current search for novel microtubule-binding agents, enhanced tumour specificity, reduced neurotoxicity and insensitivity to chemoresistance mechanisms are the three main objectives.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Chemical structures of microtubule-binding agents arranged according to their binding domains.
Figure 2: Microtubule formation and the binding sites of microtubule inhibitors.

Similar content being viewed by others

References

  1. Noble, R. L., Beer, C. T. & Cutts, J. H. Role of chance observations in chemotherapy: Vinca rosea. Ann. NY Acad. Sci. 76, 882–894 (1958).

    Article  CAS  PubMed  Google Scholar 

  2. Schiff, P. B., Fant, J. & Horwitz, S. B. Promotion of microtubule assembly in vitro by taxol. Nature 277, 665–667 (1979). This study reported the initial description of paclitaxel inducing tubulin polymerization.

    Article  CAS  PubMed  Google Scholar 

  3. Wani, M. C., Taylor, H. L., Wall, M. E., Coggon, P. & McPhail, A. T. Plant antitumor agents. VI. The isolation and structure of taxol, a novel antileukemic and antitumor agent from Taxus brevifolia. J. Am. Chem. Soc. 93, 2325–2327 (1971).

    Article  CAS  PubMed  Google Scholar 

  4. Pajk, B. et al. Anti-tumor activity of capecitabine and vinorelbine in patients with anthracycline- and taxane-pretreated metastatic breast cancer: findings from the EORTC 10001 randomized Phase II trial. Breast 17, 180–185 (2008).

    Article  PubMed  Google Scholar 

  5. Norris, B. et al. Phase III comparative study of vinorelbine combined with doxorubicin versus doxorubicin alone in disseminated metastatic/recurrent breast cancer: National Cancer Institute of Canada Clinical Trials Group Study MA8. J. Clin. Oncol. 18, 2385–2394 (2000).

    Article  CAS  PubMed  Google Scholar 

  6. Dimitroulis, J. & Stathopoulos, G. P. Evolution of non-small cell lung cancer chemotherapy (Review). Oncol. Rep. 13, 923–930 (2005).

    CAS  PubMed  Google Scholar 

  7. Gridelli, C. et al. Treatment of advanced non-small-cell lung cancer in the elderly: results of an international expert panel. J. Clin. Oncol. 23, 3125–3137 (2005).

    Article  CAS  PubMed  Google Scholar 

  8. Markman, M. Antineoplastic agents in the management of ovarian cancer: current status and emerging therapeutic strategies. Trends Pharmacol. Sci. 29, 515–519 (2008).

    Article  CAS  PubMed  Google Scholar 

  9. Amador, M. L., Jimeno, J., Paz-Ares, L., Cortes-Funes, H. & Hidalgo, M. Progress in the development and acquisition of anticancer agents from marine sources. Ann. Oncol. 14, 1607–1615 (2003).

    Article  CAS  PubMed  Google Scholar 

  10. Nicolaou, K. C. et al. Total synthesis of taxol. Nature 367, 630–634 (1994).

    Article  CAS  PubMed  Google Scholar 

  11. de Lemos, E. et al. Total synthesis of discodermolide: optimization of the effective synthetic route. Chemistry 14, 11092–11112 (2008).

    Article  CAS  PubMed  Google Scholar 

  12. Busch, T. & Kirschning, A. Recent advances in the total synthesis of pharmaceutically relevant diterpenes. Nat. Prod. Rep. 25, 318–341 (2008).

    Article  CAS  PubMed  Google Scholar 

  13. Wender, P. A., Hegde, S. G., Hubbard, R. D. & Zhang, L. Total synthesis of (−)-laulimalide. J. Am. Chem. Soc. 124, 4956–4957 (2002).

    Article  CAS  PubMed  Google Scholar 

  14. Sammak, P. J. & Borisy, G. G. Direct observation of microtubule dynamics in living cells. Nature 332, 724–726 (1988).

    Article  CAS  PubMed  Google Scholar 

  15. Kelling, J., Sullivan, K., Wilson, L. & Jordan, M. A. Suppression of centromere dynamics by Taxol in living osteosarcoma cells. Cancer Res. 63, 2794–2801 (2003).

    CAS  PubMed  Google Scholar 

  16. Okouneva, T., Azarenko, O., Wilson, L., Littlefield, B. A. & Jordan, M. A. Inhibition of centromere dynamics by eribulin (E7389) during mitotic metaphase. Mol. Cancer Ther. 7, 2003–2011 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hamel, E. & Covell, D. G. Antimitotic peptides and depsipeptides. Curr. Med. Chem. Anticancer Agents 2, 19–53 (2002).

    Article  CAS  PubMed  Google Scholar 

  18. Lacey, E. & Gill, J. H. Biochemistry of benzimidazole resistance. Acta Trop. 56, 245–262 (1994).

    Article  CAS  PubMed  Google Scholar 

  19. Azarenko, O., Okouneva, T., Singletary, K. W., Jordan, M. A. & Wilson, L. Suppression of microtubule dynamic instability and turnover in MCF7 breast cancer cells by sulforaphane. Carcinogenesis 29, 2360–2368 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lobert, S., Ingram, J. W. & Correia, J. J. Additivity of dilantin and vinblastine inhibitory effects on microtubule assembly. Cancer Res. 59, 4816–4822 (1999).

    CAS  PubMed  Google Scholar 

  21. Buey, R. M. et al. Microtubule interactions with chemically diverse stabilizing agents: thermodynamics of binding to the paclitaxel site predicts cytotoxicity. Chem. Biol. 12, 1269–1279 (2005).

    Article  CAS  PubMed  Google Scholar 

  22. Hamel, E. et al. Synergistic effects of peloruside A and laulimalide with taxoid site drugs, but not with each other, on tubulin assembly. Mol. Pharmacol. 70, 1555–1564 (2006).

    Article  CAS  PubMed  Google Scholar 

  23. Huzil, J. T. et al. A unique mode of microtubule stabilization induced by peloruside A. J. Mol. Biol. 378, 1016–1030 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Jordan, M. A. & Kamath, K. How do microtubule-targeted drugs work? An overview. Curr. Cancer Drug Targets. 7, 730–742 (2007).

    Article  CAS  PubMed  Google Scholar 

  25. Zhou, J. & Giannakakou, P. Targeting microtubules for cancer chemotherapy. Curr. Med. Chem. Anticancer Agents 5, 65–71 (2005).

    Article  CAS  PubMed  Google Scholar 

  26. Infante, J. R. et al. Phase II trial of weekly docetaxel, vinorelbine and trastuzumab in the first-line treatment of patients with HER2-positive metastatic breast cancer. Clin. Breast Cancer 9, 23–28 (2009).

    Article  CAS  PubMed  Google Scholar 

  27. William, W. N. Jr et al. Phase II study of vinorelbine and docetaxel in the treatment of advanced non-small-cell lung cancer as frontline and second-line therapy. Am. J. Clin. Oncol. (2009).

  28. Hudes, G. R. et al. Phase II study of estramustine and vinblastine, two microtubule inhibitors, in hormone-refractory prostate cancer. J. Clin. Oncol. 10, 1754–1761 (1992).

    Article  CAS  PubMed  Google Scholar 

  29. Giannakakou, P., Villalba, L., Li, H., Poruchynsky, M. & Fojo, T. Combinations of paclitaxel and vinblastine and their effects on tubulin polymerization and cellular cytotoxicity: characterization of a synergistic schedule. Int. J. Cancer 75, 57–63 (1998). A preclinical study that analysed cytotoxicity of microtubule-binding agents in cell lines and showed that under certain conditions a vinca alkaloid and a taxane can act synergistically.

    Article  CAS  PubMed  Google Scholar 

  30. Photiou, A., Shah, P., Leong, L. K., Moss, J. & Retsas, S. In vitro synergy of paclitaxel (Taxol) and vinorelbine (navelbine) against human melanoma cell lines. Eur. J. Cancer 33, 463–470 (1997).

    Article  CAS  PubMed  Google Scholar 

  31. Jordan, M. A., Toso, R. J., Thrower, D. & Wilson, L. Mechanism of mitotic block and inhibition of cell proliferation by taxol at low concentrations. Proc. Natl Acad. Sci. USA 90, 9552–9556 (1993). This study showed that paclitaxel modifies microtubule dynamics at concentrations that do not affect microtubule mass and shares a common antiproliferative mechanism with vinblastine.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ng, S. S. et al. Influence of formulation vehicle on metronomic taxane chemotherapy: albumin-bound versus cremophor EL-based paclitaxel. Clin. Cancer Res. 12, 4331–4338 (2006).

    Article  CAS  PubMed  Google Scholar 

  33. Tozer, G. M., Kanthou, C. & Baguley, B. C. Disrupting tumour blood vessels. Nature Rev. Cancer 5, 423–435 (2005).

    Article  CAS  Google Scholar 

  34. Lippert, J. W. III . Vascular disrupting agents. Bioorg Med. Chem. 15, 605–615 (2007).

    Article  CAS  PubMed  Google Scholar 

  35. Dark, G. G. et al. Combretastatin A-4, an agent that displays potent and selective toxicity toward tumor vasculature. Cancer Res. 57, 1829–1834 (1997).

    CAS  PubMed  Google Scholar 

  36. Griggs, J., Metcalfe, J. C. & Hesketh, R. Targeting tumour vasculature: the development of combretastatin A4. Lancet Oncol. 2, 82–87 (2001).

    Article  CAS  PubMed  Google Scholar 

  37. Kanthou, C. & Tozer, G. M. The tumor vascular targeting agent combretastatin A-4-phosphate induces reorganization of the actin cytoskeleton and early membrane blebbing in human endothelial cells. Blood 99, 2060–2069 (2002).

    Article  CAS  PubMed  Google Scholar 

  38. Tozer, G. M. et al. Mechanisms associated with tumor vascular shut-down induced by combretastatin A-4 phosphate: intravital microscopy and measurement of vascular permeability. Cancer Res. 61, 6413–6422 (2001). These authors describe the rapid and reversible in vivo effect of the vascular-disrupting agent combretastatin in a tumour implanted in a rat model.

    CAS  PubMed  Google Scholar 

  39. Hori, K., Saito, S. & Kubota, K. A novel combretastatin A-4 derivative, AC7700, strongly stanches tumour blood flow and inhibits growth of tumours developing in various tissues and organs. Br. J. Cancer 86, 1604–1614 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Anderson, H. L. et al. Assessment of pharmacodynamic vascular response in a Phase I trial of combretastatin A4 phosphate. J. Clin. Oncol. 21, 2823–2830 (2003).

    Article  CAS  PubMed  Google Scholar 

  41. Beauregard, D. A. et al. Magnetic resonance imaging and spectroscopy of combretastatin A4 prodrug-induced disruption of tumour perfusion and energetic status. Br. J. Cancer 77, 1761–1767 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Galbraith, S. M. et al. Combretastatin A4 phosphate has tumor antivascular activity in rat and man as demonstrated by dynamic magnetic resonance imaging. J. Clin. Oncol. 21, 2831–2842 (2003).

    Article  CAS  PubMed  Google Scholar 

  43. Fojo, A. T. & Menefee, M. Microtubule targeting agents: basic mechanisms of multidrug resistance (MDR). Semin. Oncol. 32, S3–S8 (2005).

    Article  CAS  PubMed  Google Scholar 

  44. Breuninger, L. M. et al. Expression of multidrug resistance-associated protein in NIH/3T3 cells confers multidrug resistance associated with increased drug efflux and altered intracellular drug distribution. Cancer Res. 55, 5342–5347 (1995).

    CAS  PubMed  Google Scholar 

  45. Huisman, M. T., Chhatta, A. A., van Tellingen, O., Beijnen, J. H. & Schinkel, A. H. MRP2 (ABCC2) transports taxanes and confers paclitaxel resistance and both processes are stimulated by probenecid. Int. J. Cancer 116, 824–829 (2005).

    Article  CAS  PubMed  Google Scholar 

  46. Hopper-Borge, E., Chen, Z. S., Shchaveleva, I., Belinsky, M. G. & Kruh, G. D. Analysis of the drug resistance profile of multidrug resistance protein 7 (ABCC10): resistance to docetaxel. Cancer Res. 64, 4927–4930 (2004).

    Article  CAS  PubMed  Google Scholar 

  47. Kuttesch, J. F. et al. P-glycoprotein expression at diagnosis may not be a primary mechanism of therapeutic failure in childhood rhabdomyosarcoma. J. Clin. Oncol. 14, 886–900 (1996).

    Article  CAS  PubMed  Google Scholar 

  48. Beck, W. T. et al. Methods to detect P-glycoprotein-associated multidrug resistance in patients' tumors: consensus recommendations. Cancer Res. 56, 3010–3020 (1996).

    CAS  PubMed  Google Scholar 

  49. Meisel, C., Roots, I., Cascorbi, I., Brinkmann, U. & Brockmoller, J. How to manage individualized drug therapy: application of pharmacogenetic knowledge of drug metabolism and transport. Clin. Chem. Lab. Med. 38, 869–876 (2000).

    Article  CAS  PubMed  Google Scholar 

  50. Lhomme, C. et al. Phase III study of valspodar (PSC 833) combined with paclitaxel and carboplatin compared with paclitaxel and carboplatin alone in patients with stage IV or suboptimally debulked stage III epithelial ovarian cancer or primary peritoneal cancer. J. Clin. Oncol. 26, 2674–2682 (2008).

    Article  CAS  PubMed  Google Scholar 

  51. Fromm, M. F. P-glycoprotein: a defense mechanism limiting oral bioavailability and CNS accumulation of drugs. Int. J. Clin. Pharmacol. Ther. 38, 69–74 (2000).

    Article  CAS  PubMed  Google Scholar 

  52. Chaudhuri, A. R. et al. The tumor suppressor protein Fhit. A novel interaction with tubulin. J. Biol. Chem. 274, 24378–24382 (1999).

    Article  CAS  PubMed  Google Scholar 

  53. Cheung, C. H. et al. Survivin counteracts the therapeutic effect of microtubule de-stabilizers by stabilizing tubulin polymers. Mol. Cancer 8, 43 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Don, S. et al. Neuronal-associated microtubule proteins class III β-tubulin and MAP2c in neuroblastoma: role in resistance to microtubule-targeted drugs. Mol. Cancer Ther. 3, 1137–1146 (2004).

    Article  CAS  PubMed  Google Scholar 

  55. Tian, G. et al. Pathway leading to correctly folded β-tubulin. Cell 86, 287–296 (1996). These authors report interactions between tubulin-binding cofactors, key proteins that are involved in the proper folding of α-tubulin and β-tubulin peptides.

    Article  CAS  PubMed  Google Scholar 

  56. Alli, E., Bash-Babula, J., Yang, J. M. & Hait, W. N. Effect of stathmin on the sensitivity to antimicrotubule drugs in human breast cancer. Cancer Res. 62, 6864–6869 (2002).

    CAS  PubMed  Google Scholar 

  57. Galmarini, C. M. et al. Drug resistance associated with loss of p53 involves extensive alterations in microtubule composition and dynamics. Br. J. Cancer 88, 1793–1799 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Seve, P. & Dumontet, C. Is class III β-tubulin a predictive factor in patients receiving tubulin-binding agents? Lancet Oncol. 9, 168–175 (2008).

    Article  CAS  PubMed  Google Scholar 

  59. Dumontet, C., Jordan, M. A. & Lee, F. F. Ixabepilone: targeting βIII-tubulin expression in taxane-resistant malignancies. Mol. Cancer Ther. 8, 17–25 (2009).

    Article  CAS  PubMed  Google Scholar 

  60. Bhattacharya, R. & Cabral, F. Molecular basis for class V β-tubulin effects on microtubule assembly and paclitaxel resistance. J. Biol. Chem. 284, 13023–13032 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Haber, M. et al. Altered expression of Mβ2, the class II β-tubulin isotype, in a murine J774.2 cell line with a high level of taxol resistance. J. Biol. Chem. 270, 31269–31275 (1995).

    Article  CAS  PubMed  Google Scholar 

  62. Kavallaris, M., Burkhart, C. A. & Horwitz, S. B. Antisense oligonucleotides to class III β-tubulin sensitize drug-resistant cells to Taxol. Br. J. Cancer 80, 1020–1025 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Kavallaris, M. et al. Multiple microtubule alterations are associated with Vinca alkaloid resistance in human leukemia cells. Cancer Res. 61, 5803–5809 (2001).

    CAS  PubMed  Google Scholar 

  64. Gan, P. P., Pasquier, E. & Kavallaris, M. Class III β-tubulin mediates sensitivity to chemotherapeutic drugs in non small cell lung cancer. Cancer Res. 67, 9356–9363 (2007).

    Article  CAS  PubMed  Google Scholar 

  65. McCarroll, J. A., Gan, P. P., Liu, M. & Kavallaris, M. β III-tubulin is a multifunctional protein involved in drug sensitivity and tumorigenesis in non-small cell lung cancer. Cancer Res. 70, 4995–5003 (2010). This study showed that the βIII-tubulin peptide is involved not only in resistance to therapy, an observation confirmed in clinical trials by several authors, but in tumorigenesis as well.

    Article  CAS  PubMed  Google Scholar 

  66. Ferrandina, G. et al. Class III β-tubulin overexpression is a marker of poor clinical outcome in advanced ovarian cancer patients. Clin. Cancer Res. 12, 2774–2779 (2006).

    Article  CAS  PubMed  Google Scholar 

  67. Giannakakou, P. et al. Paclitaxel-resistant human ovarian cancer cells have mutant β-tubulins that exhibit impaired paclitaxel-driven polymerization. J. Biol. Chem. 272, 17118–17125 (1997).

    Article  CAS  PubMed  Google Scholar 

  68. Gokmen-Polar, Y. et al. β-tubulin mutations are associated with resistance to 2-methoxyestradiol in MDA-MB-435 cancer cells. Cancer Res. 65, 9406–9414 (2005).

    Article  PubMed  Google Scholar 

  69. Hari, M. et al. Paclitaxel-resistant cells have a mutation in the paclitaxel-binding region of β-tubulin (Asp26Glu) and less stable microtubules. Mol. Cancer Ther. 5, 270–278 (2006).

    Article  CAS  PubMed  Google Scholar 

  70. Monzo, M. et al. Paclitaxel resistance in non-small-cell lung cancer associated with β-tubulin gene mutations. J. Clin. Oncol. 17, 1786–1793 (1999). This study linked mutations in tubulin genes to taxane resistance but was later discovered to be mistaken owing to the sequencing of tubulin pseudogenes rather than the genes themselves.

    Article  CAS  PubMed  Google Scholar 

  71. Sale, S. et al. Conservation of the class I β-tubulin gene in human populations and lack of mutations in lung cancers and paclitaxel-resistant ovarian cancers. Mol. Cancer Ther. 1, 215–225 (2002).

    CAS  PubMed  Google Scholar 

  72. Sale, S., Oefner, P. J. & Sikic, B. I. Genetic analysis of the β-tubulin gene, TUBB, in non-small-cell lung cancer. J. Natl Cancer Inst. 94, 776–777 (2002).

    Article  CAS  PubMed  Google Scholar 

  73. Wahl, A. F. et al. Loss of normal p53 function confers sensitization to Taxol by increasing G2/M arrest and apoptosis. Nature Med. 2, 72–79 (1996). These data suggested that paclitaxel could be more active in cells that had lost normal p53 function, a common occurrence in tumour cells.

    Article  CAS  PubMed  Google Scholar 

  74. Fan, S., Cherney, B., Reinhold, W., Rucker, K. & O'Connor, P. M. Disruption of p53 function in immortalized human cells does not affect survival or apoptosis after taxol or vincristine treatment. Clin. Cancer Res. 4, 1047–1054 (1998).

    CAS  PubMed  Google Scholar 

  75. Debernardis, D. et al. p53 status does not affect sensitivity of human ovarian cancer cell lines to paclitaxel. Cancer Res. 57, 870–874 (1997).

    CAS  PubMed  Google Scholar 

  76. King, T. C. et al. p53 mutations do not predict response to paclitaxel in metastatic nonsmall cell lung carcinoma. Cancer 89, 769–773 (2000).

    Article  CAS  PubMed  Google Scholar 

  77. Malamou-Mitsi, V. et al. Evaluation of the prognostic and predictive value of p53 and Bcl-2 in breast cancer patients participating in a randomized study with dose-dense sequential adjuvant chemotherapy. Ann. Oncol. 17, 1504–1511 (2006).

    Article  CAS  PubMed  Google Scholar 

  78. Shoemaker, A. R. et al. A small-molecule inhibitor of Bcl-XL potentiates the activity of cytotoxic drugs in vitro and in vivo. Cancer Res. 66, 8731–8739 (2006).

    Article  CAS  PubMed  Google Scholar 

  79. Bublik, D. R., Scolz, M., Triolo, G., Monte, M. & Schneider, C. Human GTSE-1 regulates p21CIP1/WAF1 stability conferring resistance to paclitaxel treatment. J. Biol. Chem. 285, 5274–5281 (2010).

    Article  CAS  PubMed  Google Scholar 

  80. Patel, N. et al. Rescue of paclitaxel sensitivity by repression of Prohibitin1 in drug-resistant cancer cells. Proc. Natl Acad. Sci. USA 107, 2503–2508 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Huang, L. et al. Hypoxia induced paclitaxel resistance in human ovarian cancers via hypoxia-inducible factor 1α. J. Cancer Res. Clin. Oncol. 136, 447–456 (2009).

    Article  CAS  PubMed  Google Scholar 

  82. Bauer, J. A. et al. Identification of markers of taxane sensitivity using proteomic and genomic analyses of breast tumors from patients receiving neoadjuvant paclitaxel and radiation. Clin. Cancer Res. 16, 681–690 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Townsend, D. M. & Tew, K. D. The role of glutathione-S-transferase in anti-cancer drug resistance. Oncogene 22, 7369–7375 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Zhou, M. et al. MicroRNA-125b confers the resistance of breast cancer cells to paclitaxel through suppression of pro-apoptotic Bcl-2 antagonist killer 1 (Bak1). J. Biol. Chem. 28, 21496–21507 (2010).

    Article  CAS  Google Scholar 

  85. Fujita, Y. et al. MiR-148a attenuates paclitaxel resistance of hormone-refractory, drug-resistant prostate cancer PC3 cells by regulating MSK1 expression. J. Biol. Chem. 285, 19076–19084 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Bellmunt, J. et al. Phase III trial of vinflunine plus best supportive care compared with best supportive care alone after a platinum-containing regimen in patients with advanced transitional cell carcinoma of the urothelial tract. J. Clin. Oncol. 27, 4454–4461 (2009).

    Article  CAS  PubMed  Google Scholar 

  87. Cormier, A., Marchand, M., Ravelli, R. B., Knossow, M. & Gigant, B. Structural insight into the inhibition of tubulin by vinca domain peptide ligands. EMBO Rep. 9, 1101–1106 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Horti, J. et al. Phase I study of TZT-1027, a novel synthetic dolastatin 10 derivative, for the treatment of patients with non-small cell lung cancer. Cancer Chemother. Pharmacol. 62, 173–180 (2008).

    Article  CAS  PubMed  Google Scholar 

  89. Tamura, K. et al. Phase I study of TZT-1027, a novel synthetic dolastatin 10 derivative and inhibitor of tubulin polymerization, which was administered to patients with advanced solid tumors on days 1 and 8 in 3-week courses. Cancer Chemother. Pharmacol. 60, 285–293 (2007).

    Article  CAS  PubMed  Google Scholar 

  90. Piekarz, R. L. et al. Phase II multi-institutional trial of the histone deacetylase inhibitor romidepsin as monotherapy for patients with cutaneous T-cell lymphoma. J. Clin. Oncol. 27, 5410–5417 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Twelves, C. et al. A phase III study (EMBRACE) of eribulin mesylate versus treatment of physician's choice in patients with locally recurrent or metastatic breast cancer previously treated with an anthracycline and a taxane. J. Clin. Oncol. Abstr. 28, 1004 (2010).

    Article  Google Scholar 

  92. Besse-Hammer, T. et al. A dose-escalating study of XRP6258 in combination with capecitabine, in patients (pts) with metastatic breast cancer (MBC) progressing after anthracycline and taxane therapy: preliminary results. J. Clin. Oncol. Abstr. 27, 1053 (2009).

    Google Scholar 

  93. Sampath, D. et al. MAC-321, a novel taxane with greater efficacy than paclitaxel and docetaxel in vitro and in vivo. Mol. Cancer Ther. 2, 873–884 (2003).

    CAS  PubMed  Google Scholar 

  94. Terwogt, J. M., Nuijen, B., Huinink, W. W. & Beijnen, J. H. Alternative formulations of paclitaxel. Cancer Treat. Rev. 23, 87–95 (1997).

    Article  CAS  PubMed  Google Scholar 

  95. Gelderblom, H., Verweij, J., Nooter, K. & Sparreboom, A. Cremophor EL: the drawbacks and advantages of vehicle selection for drug formulation. Eur. J. Cancer 37, 1590–1598 (2001).

    Article  CAS  PubMed  Google Scholar 

  96. Gradishar, W. J. et al. Significantly longer progression-free survival with nab-paclitaxel compared with docetaxel as first-line therapy for metastatic breast cancer. J. Clin. Oncol. 27, 3611–3619 (2009).

    Article  CAS  PubMed  Google Scholar 

  97. Shepard, D. R. et al. Phase II trial of neoadjuvant nab-paclitaxel in high risk patients with prostate cancer undergoing radical prostatectomy. J. Urol. 181, 1672–1677 (2009).

    Article  CAS  PubMed  Google Scholar 

  98. Stinchcombe, T. E. et al. Phase I and pharmacokinetic trial of carboplatin and albumin-bound paclitaxel, ABI-007 (Abraxane) on three treatment schedules in patients with solid tumors. Cancer Chemother. Pharmacol. 60, 759–766 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Teneriello, M. G. et al. Phase II evaluation of nanoparticle albumin-bound paclitaxel in platinum-sensitive patients with recurrent ovarian, peritoneal, or fallopian tube cancer. J. Clin. Oncol. 27, 1426–1431 (2009).

    Article  CAS  PubMed  Google Scholar 

  100. Kim, T. Y. et al. Phase I and pharmacokinetic study of Genexol-PM, a cremophor-free, polymeric micelle-formulated paclitaxel, in patients with advanced malignancies. Clin. Cancer Res. 10, 3708–3716 (2004).

    Article  CAS  PubMed  Google Scholar 

  101. Chou, T. C. et al. Desoxyepothilone B is curative against human tumor xenografts that are refractory to paclitaxel. Proc. Natl Acad. Sci. USA 95, 15798–15802 (1998). This study showed the preclinical activity of epothilones in paclitaxel-resistant models.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. De Geest, K. et al. Phase II clinical trial of ixabepilone in patients with recurrent or persistent platinum- and taxane-resistant ovarian or primary peritoneal cancer: a gynecologic oncology group study. J. Clin. Oncol. 28, 149–153 (2010).

    Article  CAS  PubMed  Google Scholar 

  103. Lee, J. J. & Swain, S. M. Development of novel chemotherapeutic agents to evade the mechanisms of multidrug resistance (MDR). Semin. Oncol. 32, S22–S26 (2005).

    Article  CAS  PubMed  Google Scholar 

  104. Hoffmann, J. et al. Sagopilone crosses the blood-brain barrier in vivo to inhibit brain tumor growth and metastases. Neuro Oncol. 11, 158–166 (2009). A preclinical study that showed the diffusion of sagopilone through the blood–brain barrier, raising the possibility that this agent may be active for the treatment of brain metastases.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Lee, D. Activity of epothilone B analogues ixabepilone and patupilone in hormone-refractory prostate cancer. Clin. Prostate Cancer 3, 80–82 (2004).

    Article  PubMed  Google Scholar 

  106. Arnold, D. et al. Weekly administration of sagopilone (ZK-EPO), a fully synthetic epothilone, in patients with refractory solid tumours: results of a phase I trial. Br. J. Cancer 101, 1241–1247 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Galmarini, C. M. Sagopilone, a microtubule stabilizer for the potential treatment of cancer. Curr. Opin. Investig Drugs 10, 1359–1371 (2009).

    CAS  PubMed  Google Scholar 

  108. Silvani, A. et al. Systemic sagopilone (ZK-EPO) treatment of patients with recurrent malignant gliomas. J. Neurooncol. 95, 61–64 (2009).

    Article  CAS  PubMed  Google Scholar 

  109. Beer, T. M. et al. Phase II study of KOS-862 in patients with metastatic androgen independent prostate cancer previously treated with docetaxel. Invest. New Drugs 25, 565–570 (2007).

    Article  CAS  PubMed  Google Scholar 

  110. Kolman, A. Epothilone D (Kosan/Roche). Curr. Opin. Investig Drugs 5, 657–667 (2004).

    CAS  PubMed  Google Scholar 

  111. Rustin, G. J. et al. Phase I clinical trial of weekly combretastatin A4 phosphate: clinical and pharmacokinetic results. J. Clin. Oncol. 21, 2815–2822 (2003).

    Article  CAS  PubMed  Google Scholar 

  112. Stevenson, J. P. et al. Phase I trial of the antivascular agent combretastatin A4 phosphate on a 5-day schedule to patients with cancer: magnetic resonance imaging evidence for altered tumor blood flow. J. Clin. Oncol. 21, 4428–4438 (2003). This study presented in vivo imaging of reduced vascularization in patients receiving a vascular-disrupting agent.

    Article  CAS  PubMed  Google Scholar 

  113. Cooney, M. M. et al. Cardiovascular safety profile of combretastatin a4 phosphate in a single-dose Phase I study in patients with advanced cancer. Clin. Cancer Res. 10, 96–100 (2004).

    Article  CAS  PubMed  Google Scholar 

  114. Mooney, C. J. et al. A Phase II trial of fosbretabulin in advanced anaplastic thyroid carcinoma and correlation of baseline serum-soluble intracellular adhesion molecule-1 with outcome. Thyroid 19, 233–240 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. LoRusso, P. M. et al. Phase I clinical evaluation of ZD6126, a novel vascular-targeting agent, in patients with solid tumors. Invest. New Drugs 26, 159–167 (2008).

    Article  CAS  PubMed  Google Scholar 

  116. Hua, J. et al. Oxi4503, a novel vascular targeting agent: effects on blood flow and antitumor activity in comparison to combretastatin A-4 phosphate. Anticancer Res. 23, 1433–1440 (2003).

    CAS  PubMed  Google Scholar 

  117. Delmonte, A. & Sessa, C. AVE8062: a new combretastatin derivative vascular disrupting agent. Expert Opin. Investig. Drugs 18, 1541–1548 (2009).

    Article  CAS  PubMed  Google Scholar 

  118. Anthony, S. P. et al. Initial results of a first-in-man Phase I study of EPC2407, a novel small molecule microtubule inhibitor anticancer agent with tumor vascular endothelial disrupting activity. J. Clin. Oncol. Abstr. 26, 2531 (2008).

    Article  Google Scholar 

  119. Shnyder, S. D., Cooper, P. A., Millington, N. J., Pettit, G. R. & Bibby, M. C. Auristatin PYE, a novel synthetic derivative of dolastatin 10, is highly effective in human colon tumour models. Int. J. Oncol. 31, 353–360 (2007).

    CAS  PubMed  Google Scholar 

  120. Michels, J. et al. A Phase IB study of ABT-751 in combination with docetaxel in patients with advanced castration-resistant prostate cancer. Ann. Oncol. 21, 305–311 (2010).

    Article  CAS  PubMed  Google Scholar 

  121. Sweeney, C. et al. A Phase II multicenter, randomized, double-blind, safety trial assessing the pharmacokinetics, pharmacodynamics, and efficacy of oral 2-methoxyestradiol capsules in hormone-refractory prostate cancer. Clin. Cancer Res. 11, 6625–6633 (2005).

    Article  CAS  PubMed  Google Scholar 

  122. James, J. et al. Phase I safety, pharmacokinetic and pharmacodynamic studies of 2-methoxyestradiol alone or in combination with docetaxel in patients with locally recurrent or metastatic breast cancer. Invest. New Drugs 25, 41–48 (2007).

    Article  CAS  PubMed  Google Scholar 

  123. Rajkumar, S. V. et al. Novel therapy with 2-methoxyestradiol for the treatment of relapsed and plateau phase multiple myeloma. Clin. Cancer Res. 13, 6162–6167 (2007).

    Article  CAS  PubMed  Google Scholar 

  124. Tevaarwerk, A. J. et al. Phase I trial of 2-methoxyestradiol nanocrystal dispersion in advanced solid malignancies. Clin. Cancer Res. 15, 1460–1465 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Escuin, D. et al. The hematopoietic-specific β1-tubulin is naturally resistant to 2-methoxyestradiol and protects patients from drug-induced myelosuppression. Cell Cycle 8, 3914–3924 (2009).

    Article  CAS  PubMed  Google Scholar 

  126. Ayral-Kaloustian, S., Zhang, N. & Beyer, C. Cevipabulin (TTI-237): preclinical and clinical results for a novel antimicrotubule agent. Methods Find. Exp. Clin. Pharmacol. 31, 443–447 (2009).

    Article  CAS  PubMed  Google Scholar 

  127. Landen, J. W. et al. Noscapine crosses the blood–brain barrier and inhibits glioblastoma growth. Clin. Cancer Res. 10, 5187–5201 (2004).

    Article  CAS  PubMed  Google Scholar 

  128. Honore, S. et al. Synergistic suppression of microtubule dynamics by discodermolide and paclitaxel in non-small cell lung carcinoma cells. Cancer Res. 64, 4957–4964 (2004).

    Article  CAS  PubMed  Google Scholar 

  129. Martello, L. A. et al. Taxol and discodermolide represent a synergistic drug combination in human carcinoma cell lines. Clin. Cancer Res. 6, 1978–1987 (2000).

    CAS  PubMed  Google Scholar 

  130. Paterson, I., Gardner, N. M., Guzman, E. & Wright, A. E. Total synthesis and biological evaluation of potent analogues of dictyostatin: modification of the C2–C6 dienoate region. Bioorg. Med. Chem. Lett. 18, 6268–6272 (2008).

    Article  CAS  PubMed  Google Scholar 

  131. D'Agostino, G. et al. A multicenter Phase II study of the cryptophycin analog LY355703 in patients with platinum-resistant ovarian cancer. Int. J. Gynecol. Cancer 16, 71–76 (2006).

    Article  CAS  PubMed  Google Scholar 

  132. Edelman, M. J. et al. Phase 2 study of cryptophycin 52 (LY355703) in patients previously treated with platinum based chemotherapy for advanced non-small cell lung cancer. Lung Cancer 39, 197–199 (2003).

    Article  PubMed  Google Scholar 

  133. Canta, A., Chiorazzi, A. & Cavaletti, G. Tubulin: a target for antineoplastic drugs into the cancer cells but also in the peripheral nervous system. Curr. Med. Chem. 16, 1315–1324 (2009).

    Article  CAS  PubMed  Google Scholar 

  134. Argyriou, A. A., Koltzenburg, M., Polychronopoulos, P., Papapetropoulos, S. & Kalofonos, H. P. Peripheral nerve damage associated with administration of taxanes in patients with cancer. Crit. Rev. Oncol. Hematol. 66, 218–228 (2008).

    Article  PubMed  Google Scholar 

  135. Kuroi, K. & Shimozuma, K. Neurotoxicity of taxanes: symptoms and quality of life assessment. Breast Cancer 11, 92–99 (2004).

    Article  PubMed  Google Scholar 

  136. Lee, J. J. et al. Changes in neurologic function tests may predict neurotoxicity caused by ixabepilone. J. Clin. Oncol. 24, 2084–2091 (2006).

    Article  CAS  PubMed  Google Scholar 

  137. Lyubimova, N. V., Toms, M. G., Shakirova, I. N., Gurina, O. I. & Kushlinskii, N. E. Biochemical parameters in the diagnosis and monitoring of neurotoxicity of antitumor cytostatics. Bull. Exp. Biol. Med. 132, 1093–1095 (2001).

    Article  CAS  PubMed  Google Scholar 

  138. Bokemeyer, C., Berger, C. C., Kuczyk, M. A. & Schmoll, H. J. Evaluation of long-term toxicity after chemotherapy for testicular cancer. J. Clin. Oncol. 14, 2923–2932 (1996). This study discovered that in a group of young patients treated with cisplatinum, bleomycin and etoposide, 21% developed ototoxicity and 17% developed peripheral neuropathy.

    Article  CAS  PubMed  Google Scholar 

  139. Schiff, D., Wen, P. Y. & van den Bent, M. J. Neurological adverse effects caused by cytotoxic and targeted therapies. Nature Rev. Clin. Oncol. 6, 596–603 (2009).

    Article  Google Scholar 

  140. Poruchynsky, M. S. et al. Proteasome inhibitors increase tubulin polymerization and stabilization in tissue culture cells: a possible mechanism contributing to peripheral neuropathy and cellular toxicity following proteasome inhibition. Cell Cycle 7, 940–949 (2008). These authors present provocative data suggesting that proteasome inhibitors could alter tubulin polymerization, thereby explaining, in part, the neurotoxicity observed with these agents.

    Article  CAS  PubMed  Google Scholar 

  141. Anderl, J. L., Redpath, S. & Ball, A. J. A neuronal and astrocyte co-culture assay for high content analysis of neurotoxicity. J. Vis. Exp. 27, doi: 10.3791/1173 (2009).

  142. Authier, N. et al. Animal models of chemotherapy-evoked painful peripheral neuropathies. Neurotherapeutics 6, 620–629 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Davis, R. E., Schlumpf, B. E. & Klinger, P. D. Comparative neurotoxicity of tubulin-binding drugs: inhibition of goldfish optic nerve regeneration. Toxicol. Appl. Pharmacol. 80, 308–315 (1985).

    Article  CAS  PubMed  Google Scholar 

  144. Fan, C. Y., Cowden, J., Simmons, S. O., Padilla, S. & Ramabhadran, R. Gene expression changes in developing zebrafish as potential markers for rapid developmental neurotoxicity screening. Neurotoxicol. Teratol. (2009).

  145. Kiburg, B., Moorer-van Delft, C., Heimans, J. J., Huijgens, P. C. & Boer, H. H. In vivo modulation of vincristine-induced neurotoxicity in Lymnaea stagnalis, by the ACTH(4–9) analogue Org 2766. J. Neurooncol. 30, 173–180 (1996).

    Article  CAS  PubMed  Google Scholar 

  146. Wozniak, K. M. et al. Comparison of neuropathy-inducing effects of eribulin versus paclitaxel in mice. Proc. Annu. Meet. Am. Assoc. Cancer Res. Abstr. 4438 (2010).

  147. Vahdat, L. T. et al. Phase II study of eribulin mesylate, a halichondrin B analog, in patients with metastatic breast cancer previously treated with an anthracycline and a taxane. J. Clin. Oncol. 27, 2954–2961 (2009).

    Article  CAS  PubMed  Google Scholar 

  148. Wienecke, A. & Bacher, G. Indibulin, a novel microtubule inhibitor, discriminates between mature neuronal and nonneuronal tubulin. Cancer Res. 69, 171–177 (2009).

    Article  CAS  PubMed  Google Scholar 

  149. Oostendorp, R. L. et al. Dose-finding and pharmacokinetic study of orally administered indibulin (D-24851) to patients with advanced solid tumors. Invest. New Drugs 28, 163–170 (2010).

    Article  CAS  PubMed  Google Scholar 

  150. Blagden, S. P. et al. A Phase I trial of ispinesib, a kinesin spindle protein inhibitor, with docetaxel in patients with advanced solid tumours. Br. J. Cancer 98, 894–899 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Tang, P. A. et al. Phase II study of ispinesib in recurrent or metastatic squamous cell carcinoma of the head and neck. Invest. New Drugs 26, 257–264 (2008).

    Article  CAS  PubMed  Google Scholar 

  152. Knox, J. J. et al. A Phase II and pharmacokinetic study of SB-715992, in patients with metastatic hepatocellular carcinoma: a study of the National Cancer Institute of Canada Clinical Trials Group (NCIC CTG IND.168). Invest. New Drugs 26, 265–272 (2008).

    Article  CAS  PubMed  Google Scholar 

  153. Vats, T. et al. A study of toxicity and comparative therapeutic efficacy of vindesine-prednisone vs. vincristine-prednisone in children with acute lymphoblastic leukemia in relapse. A Pediatric Oncology Group study. Invest. New Drugs 10, 231–234 (1992).

    Article  CAS  PubMed  Google Scholar 

  154. Lysitsas, D. N. et al. Antirestenotic effects of a novel polymer-coated d-24851 eluting stent. Experimental data in a rabbit iliac artery model. Cardiovasc. Intervent. Radiol. 30, 1192–1200 (2007).

    Article  PubMed  Google Scholar 

  155. Aghajanian, C. et al. Phase I study of the novel epothilone analog ixabepilone (BMS-247550) in patients with advanced solid tumors and lymphomas. J. Clin. Oncol. 25, 1082–1088 (2007).

    Article  CAS  PubMed  Google Scholar 

  156. Bissett, D. et al. Phase I and pharmacokinetic study of rhizoxin. Cancer Res. 52, 2894–2898 (1992).

    CAS  PubMed  Google Scholar 

  157. Cunningham, C. et al. Phase I and pharmacokinetic study of the dolastatin-15 analogue tasidotin (ILX651) administered intravenously on days 1, 3, and 5 every 3 weeks in patients with advanced solid tumors. Clin. Cancer Res. 11, 7825–7833 (2005).

    Article  CAS  PubMed  Google Scholar 

  158. Zatloukal, P. et al. Randomized multicenter Phase II study of larotaxel (XRP9881) in combination with cisplatin or gemcitabine as first-line chemotherapy in non-irradiable stage IIIB or stage IV non-small cell lung cancer. J. Thorac Oncol. 3, 894–901 (2008).

    Article  PubMed  Google Scholar 

  159. Larkin, J. M. & Kaye, S. B. Epothilones in the treatment of cancer. Expert Opin. Investig. Drugs 15, 691–702 (2006).

    Article  CAS  PubMed  Google Scholar 

  160. Greystoke, A. et al. A Phase I study of intravenous TZT-1027 administered on day 1 and day 8 of a three-weekly cycle in combination with carboplatin given on day 1 alone in patients with advanced solid tumours. Ann. Oncol. 17, 1313–1319 (2006).

    Article  CAS  PubMed  Google Scholar 

  161. Markman, M. Managing taxane toxicities. Support. Care Cancer 11, 144–147 (2003).

    PubMed  Google Scholar 

  162. Swanton, C. et al. Chromosomal instability determines taxane response. Proc. Natl Acad. Sci. USA 106, 8671–8676 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  163. Bouchet, B. P. et al. Paclitaxel resistance in untransformed human mammary epithelial cells is associated with an aneuploidy-prone phenotype. Br. J. Cancer 97, 1218–1224 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Rao, V. K. et al. The extent of chromosomal aberrations induced by chemotherapy in non-human primates depends on the schedule of administration. Mutat. Res. 583, 105–119 (2005). The authors showed that paclitaxel can cause chromosomal aberrations after bolus injections in a primate model.

    Article  CAS  PubMed  Google Scholar 

  165. Hamel, E., Sackett, D. L., Vourloumis, D. & Nicolaou, K. C. The coral-derived natural products eleutherobin and sarcodictyins A and B: effects on the assembly of purified tubulin with and without microtubule-associated proteins and binding at the polymer taxoid site. Biochemistry 38, 5490–5498 (1999).

    Article  CAS  PubMed  Google Scholar 

  166. Mooberry, S. L., Tien, G., Hernandez, A. H., Plubrukarn, A. & Davidson, B. S. Laulimalide and isolaulimalide, new paclitaxel-like microtubule-stabilizing agents. Cancer Res. 59, 653–660 (1999).

    CAS  PubMed  Google Scholar 

  167. Gapud, E. J., Bai, R., Ghosh, A. K. & Hamel, E. Laulimalide and paclitaxel: a comparison of their effects on tubulin assembly and their synergistic action when present simultaneously. Mol. Pharmacol. 66, 113–121 (2004).

    Article  CAS  PubMed  Google Scholar 

  168. Loganzo, F. et al. Cells resistant to HTI-286 do not overexpress P-glycoprotein but have reduced drug accumulation and a point mutation in α-tubulin. Mol. Cancer Ther. 3, 1319–1327 (2004).

    CAS  PubMed  Google Scholar 

  169. Gaitanos, T. N. et al. Peloruside A does not bind to the taxoid site on β-tubulin and retains its activity in multidrug-resistant cell lines. Cancer Res. 64, 5063–5067 (2004).

    Article  CAS  PubMed  Google Scholar 

  170. Risinger, A. L. et al. The taccalonolides: microtubule stabilizers that circumvent clinically relevant taxane resistance mechanisms. Cancer Res. 68, 8881–8888 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  171. Bailly, C. et al. Synthesis and biological evaluation of 4-arylcoumarin analogues of combretastatins. J. Med. Chem. 46, 5437–5444 (2003).

    Article  CAS  PubMed  Google Scholar 

  172. Buey, R. M. et al. Cyclostreptin binds covalently to microtubule pores and lumenal taxoid binding sites. Nature Chem. Biol. 3, 117–125 (2007).

    Article  CAS  Google Scholar 

  173. Mozzetti, S. et al. Molecular mechanisms of patupilone resistance. Cancer Res. 68, 10197–10204 (2008).

    Article  CAS  PubMed  Google Scholar 

  174. Ferlini, C. et al. The seco-taxane IDN5390 is able to target class III β-tubulin and to overcome paclitaxel resistance. Cancer Res. 65, 2397–2405 (2005).

    Article  CAS  PubMed  Google Scholar 

  175. Lewis Phillips, G. D. et al. Targeting HER2-positive breast cancer with trastuzumab–DM1, an antibody-cytotoxic drug conjugate. Cancer Res. 68, 9280–9290 (2008).

    Article  CAS  PubMed  Google Scholar 

  176. Al-Katib, A. M., Aboukameel, A., Mohammad, R., Bissery, M. C. & Zuany-Amorim, C. Superior antitumor activity of SAR3419 to rituximab in xenograft models for non-Hodgkin's lymphoma. Clin. Cancer Res. 15, 4038–4045 (2009).

    Article  CAS  PubMed  Google Scholar 

  177. Beeram, M. et al. A Phase I study of trastuzumab-MCC-DM1 (T-DM1), a first-in-class HER2 antibody-drug conjugate (ADC), in patients (pts) with HER2+ metastatic breast cancer (BC). J. Clin. Oncol. 25 (Suppl. 18), 1042 (2007).

    Google Scholar 

  178. Krop, I. E. et al. Phase I study of trastuzumab-DM1, an HER2 antibody-drug conjugate, given every 3 weeks to patients with HER2-positive metastatic breast cancer. J. Clin. Oncol. 28, 2698–2704 (2010).

    Article  CAS  PubMed  Google Scholar 

  179. Smith, S. V. Technology evaluation: huN901-DM1, ImmunoGen. Curr. Opin. Mol. Ther. 7, 394–401 (2005).

    CAS  PubMed  Google Scholar 

  180. Jordan, M. A. & Wilson, L. Microtubules as a target for anticancer drugs. Nature Rev. Cancer 4, 253–265 (2004).

    Article  CAS  Google Scholar 

  181. Stephenson, J. J. et al. Phase I multicenter study to assess the safety, tolerability, and pharmacokinetics of AZD4877 administered twice weekly in adult patients with advanced solid malignancies. J. Clin. Oncol. 26 (Suppl. 15), 2516 (2008).

    Article  Google Scholar 

  182. Pusztai, L. et al. Evaluation of microtubule-associated protein-Tau expression as a prognostic and predictive marker in the NSABP-B 28 randomized clinical trial. J. Clin. Oncol. 27, 4287–4292 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Altieri, D. C. The case for survivin as a regulator of microtubule dynamics and cell-death decisions. Curr. Opin. Cell Biol. 18, 609–615 (2006).

    Article  CAS  PubMed  Google Scholar 

  184. Cooper, J. R., Wagenbach, M., Asbury, C. L. & Wordeman, L. Catalysis of the microtubule on-rate is the major parameter regulating the depolymerase activity of MCAK. Nature Struct. Mol. Biol. 17, 77–82 (2010).

    Article  CAS  Google Scholar 

  185. Rana, S., Maples, P. B., Senzer, N. & Nemunaitis, J. Stathmin 1: a novel therapeutic target for anticancer activity. Expert Rev. Anticancer Ther. 8, 1461–1470 (2008).

    Article  CAS  PubMed  Google Scholar 

  186. Pusztai, L. Markers predicting clinical benefit in breast cancer from microtubule-targeting agents. Ann. Oncol. 18 (Suppl. 12), xii15–xii20 (2007).

    PubMed  Google Scholar 

  187. Seve, P. & Dumontet, C. Chemoresistance in non-small cell lung cancer. Curr. Med. Chem. Anticancer Agents 5, 73–88 (2005).

    Article  CAS  PubMed  Google Scholar 

  188. Marsh, S. et al. Pharmacogenetic assessment of toxicity and outcome after platinum plus taxane chemotherapy in ovarian cancer: the Scottish Randomised Trial in Ovarian Cancer. J. Clin. Oncol. 25, 4528–4535 (2007).

    Article  CAS  PubMed  Google Scholar 

  189. Bruggemann, E. P., Currier, S. J., Gottesman, M. M. & Pastan, I. Characterization of the azidopine and vinblastine binding site of P-glycoprotein. J. Biol. Chem. 267, 21020–21026 (1992).

    CAS  PubMed  Google Scholar 

  190. Chen, G. K., Duran, G. E., Mangili, A., Beketic-Oreskovic, L. & Sikic, B. I. MDR 1 activation is the predominant resistance mechanism selected by vinblastine in MES-SA cells. Br. J. Cancer 83, 892–898 (2000). This study showed that overexpression of the P-gp efflux pump is frequently observed in cell lines exposed to vinca alkaloids in vitro .

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Cole, S. P. et al. Pharmacological characterization of multidrug resistant MRP-transfected human tumor cells. Cancer Res. 54, 5902–5910 (1994).

    CAS  PubMed  Google Scholar 

  192. Hua, X. H. et al. Biochemical genetic analysis of indanocine resistance in human leukemia. Cancer Res. 61, 7248–7254 (2001).

    CAS  PubMed  Google Scholar 

  193. Wagner, M. M. et al. In vitro pharmacology of cryptophycin 52 (LY355703) in human tumor cell lines. Cancer Chemother. Pharmacol. 43, 115–125 (1999).

    Article  CAS  PubMed  Google Scholar 

  194. Toppmeyer, D. L., Slapak, C. A., Croop, J. & Kufe, D. W. Role of P-glycoprotein in dolastatin 10 resistance. Biochem. Pharmacol. 48, 609–612 (1994).

    Article  CAS  PubMed  Google Scholar 

  195. Chou, T. C. et al. Therapeutic effect against human xenograft tumors in nude mice by the third generation microtubule stabilizing epothilones. Proc. Natl Acad. Sci. USA 105, 13157–13162 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  196. Xiao, J. J. et al. Efflux of depsipeptide FK228 (FR901228, NSC-630176) is mediated by P-glycoprotein and multidrug resistance-associated protein 1. J. Pharmacol. Exp. Ther. 313, 268–276 (2005).

    Article  CAS  PubMed  Google Scholar 

  197. Gertsch, J. et al. Making epothilones fluoresce: design, synthesis, and biological characterization of a fluorescent n12-aza-epothilone (azathilone). Chembiochem 10, 2513–2521 (2009).

    Article  CAS  PubMed  Google Scholar 

  198. Akashi, Y. et al. The novel microtubule-interfering agent TZT-1027 enhances the anticancer effect of radiation in vitro and in vivo. Br. J. Cancer 96, 1532–1539 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Simoni, D. et al. Heterocyclic and phenyl double-bond-locked combretastatin analogues possessing potent apoptosis-inducing activity in HL60 and in MDR cell lines. J. Med. Chem. 48, 723–736 (2005).

    Article  CAS  PubMed  Google Scholar 

  200. Bayes, M. & Rabasseda, X. Gateways to clinical trials. Methods Find. Exp. Clin. Pharmacol. 30, 67–99 (2008).

    CAS  PubMed  Google Scholar 

  201. Wehbe, H., Kearney, C. M. & Pinney, K. G. Combretastatin A-4 resistance in H460 human lung carcinoma demonstrates distinctive alterations in β-tubulin isotype expression. Anticancer Res. 25, 3865–3870 (2005).

    CAS  PubMed  Google Scholar 

  202. Schumacher, G. et al. Antineoplastic activity of 2-methoxyestradiol in human pancreatic and gastric cancer cells with different multidrug-resistant phenotypes. J. Gastroenterol. Hepatol 22, 1469–1473 (2007).

    Article  CAS  PubMed  Google Scholar 

  203. Lockhart, A. C. et al. Phase I trial of oral MAC-321 in subjects with advanced malignant solid tumors. Cancer Chemother. Pharmacol. 60, 203–209 (2007).

    Article  CAS  PubMed  Google Scholar 

  204. Ramanathan, R. K. et al. A Phase II study of milataxel: a novel taxane analogue in previously treated patients with advanced colorectal cancer. Cancer Chemother. Pharmacol. 61, 453–458 (2008).

    Article  CAS  PubMed  Google Scholar 

  205. Yamamoto, N., Boku, N. & Minami, H. Phase I study of larotaxel administered as a 1-h intravenous infusion every 3 weeks to Japanese patients with advanced solid tumours. Cancer Chemother. Pharmacol. 65, 129–136 (2009).

    Article  CAS  PubMed  Google Scholar 

  206. Dieras, V. et al. Phase II multicenter study of larotaxel (XRP9881), a novel taxoid, in patients with metastatic breast cancer who previously received taxane-based therapy. Ann. Oncol. 19, 1255–1260 (2008).

    Article  CAS  PubMed  Google Scholar 

  207. Metzger-Filho, O., Moulin, C., de Azambuja, E. & Ahmad, A. Larotaxel: broadening the road with new taxanes. Expert Opin. Investig. Drugs 18, 1183–1189 (2009).

    Article  CAS  PubMed  Google Scholar 

  208. Beer, M., Lenaz, L. & Amadori, D. Phase II study of ortataxel in taxane-resistant breast cancer. J. Clin. Oncol. 26 (Suppl. 15), 1066 (2008).

    Article  Google Scholar 

  209. Rhee, J., Lee, F. & Saif, M. Phase II trial of DJ-927 as a second-line treatment for colorectal cancer demonstrates objective responses. J. Clin. Oncol. 23 (Suppl. 16), 3654 (2005).

    Article  Google Scholar 

  210. Baas, P. et al. Phase I/II study of a 3 weekly oral taxane (DJ-927) in patients with recurrent, advanced non-small cell lung cancer. J. Thorac Oncol. 3, 745–750 (2008).

    Article  PubMed  Google Scholar 

  211. Patel, S. R. et al. Phase II study of CI-980 (NSC 635370) in patients with previously treated advanced soft-tissue sarcomas. Invest. New Drugs 16, 87–92 (1998).

    Article  CAS  PubMed  Google Scholar 

  212. Pazdur, R. et al. Phase II trial of intravenous CI-980 (NSC 370147) in patients with metastatic colorectal carcinoma. Model for prospective evaluation of neurotoxicity. Am. J. Clin. Oncol. 20, 573–576 (1997).

    Article  CAS  PubMed  Google Scholar 

  213. Judson, I. et al. Phase I trial and pharmacokinetics of the tubulin inhibitor 1069C85–a synthetic agent binding at the colchicine site designed to overcome multidrug resistance. Br. J. Cancer 75, 608–613 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Yamamoto, K. et al. Phase I study of E7010. Cancer Chemother. Pharmacol. 42, 127–134 (1998).

    Article  CAS  PubMed  Google Scholar 

  215. Kuppens, I. E. et al. Phase I dose-finding and pharmacokinetic trial of orally administered indibulin (D-24851) to patients with solid tumors. Invest. New Drugs 25, 227–235 (2007).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the Association pour la Recherche sur le Cancer and La Ligue contre le cancer. The video file was provided courtesy of Kathy Kamath, University of California Santa Barbara, USA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles Dumontet.

Ethics declarations

Competing interests

C.D. has received research funding from Pierre Fabre and Sanofi-Aventis and has worked as a consultant for Sanofi-Aventis and Bristol-Myers Squibb. M.A.J. has received research support from Bristol-Myers Squibb, Eisai Pharmaceuticals and Immunogen.

Supplementary information

Related links

Related links

FURTHER INFORMATION

Initiation of a Phase I/II study of oral indibulin in patients with breast cancer by ZIOPHARM

Noscapine clinical trial

Ixabepilone clinical trial

Glossary

Dynamic

The non-equilibrium behaviour of microtubules in cells. Microtubule dynamics are faster during mitosis than during interphase and are crucial to cell division, making mitotic cells highly susceptible to microtubule-targeted drugs. They are also important in cellular trafficking and for cell migration.

Adjuvant therapy

A treatment that is administered to patients with minimal or no detectable sign of disease in order to prevent disease recurrence.

Tubulin dimer

The heterodimeric protein subunit that polymerizes into microtubules. Each subunit is composed of one α-tubulin and one β-tubulin molecule.

Tubulin isotype

Tubulin peptides with slightly different amino acid sequences. The isotype varies between cell types in the same tissue and between tissues and also differs between tumour and non-tumour cells. The distribution of tubulin isotypes can be induced to change in response to drug treatment.

Rescue

The switch of a shortening microtubule end to growth or to a state of stable microtubule length.

Catastrophe

The switch of a growing or stable microtubule end to rapid shortening.

BCL-XL

B cell lymphoma extra large protein, an anti-apoptotic member of the BCL-2 family.

Superacid transformation

Chemical modifications induced by exposure to an extremely acidic environment.

Neutropaenia

Reduced granulocyte counts in blood, predisposing patients to infection.

Corrected QT interval

The correlated QT interval is a heart rate corrected value that measures the time between the onset and the end of the heart's electrical cycle. A prolonged QT interval is a risk factor for ventricular tachyarrhythmias and sudden death.

Myelosuppression

Inhibition of bone marrow function, leading to reduced numbers of red blood cells (anaemia), white blood cells (leukopaenia) and platelets (thrombocytopaenia).

Kinetochore

The complex assemblage of proteins at the chromosome centromere to which dynamic mitotic spindle microtubules attach, ultimately producing equal segregation of chromosomes to the daughter cells.

Grade 4 neuropathy

Neurological toxicity induced by exposure to microtubule-binding agents, most often manifested as pain and numbness.

Iatrogenic leukaemia

Acute leukaemia caused by exposure to cancer chemotherapy; the prognosis is unfavourable.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dumontet, C., Jordan, M. Microtubule-binding agents: a dynamic field of cancer therapeutics. Nat Rev Drug Discov 9, 790–803 (2010). https://doi.org/10.1038/nrd3253

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd3253

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing