Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Translocator protein (18 kDa) (TSPO) as a therapeutic target for neurological and psychiatric disorders

Key Points

  • The translocator protein (18 kDa) (TSPO) is a five transmembrane domain protein that is localized primarily in the outer mitochondrial membrane and is expressed predominantly in steroid-synthesizing tissues, including the brain.

  • TSPO is involved in the translocation of cholesterol from the outer to the inner mitochondrial membrane, which is the rate-limiting step in the synthesis of steroids and neurosteroids and one of the most well-characterized functions of this protein.

  • TSPO expression seems to be a sensitive biomarker of brain damage and neurodegeneration, particularly of inflammation and reactive gliosis.

  • In response to injury, TSPO expression is strongly upregulated in the peripheral nervous system in Schwann cells, macrophages and neurons. Increased TSPO ligand binding has also been investigated as a molecular in vivo sensor of neuronal damage and inflammation in patients with neurodegenerative diseases of the central nervous system (CNS) that are characterized by neuronal loss in discrete areas.

  • Cholesterol, porphyrins and endozepines are endogenous ligands of TSPO. Classical synthetic ligands of TSPO include the isoquinoline PK-11195 and the benzodiazepine Ro5-4864. Over the past two decades, various additional TSPO ligands have been developed, which can be subdivided into distinct chemical classes.

  • Most of the TSPO ligands were developed primarily as neuroimaging agents and diagnostic tools for brain inflammation associated with various neuropathological conditions.

  • Certain specific TSPO ligands are under development also for the treatment of various neurological and psychiatric disorders. Possible indications include peripheral neuropathies, neurodegenerative or traumatic processes within the CNS, and psychiatric disorders, especially anxiety disorders.

  • There are ongoing trials with TSPO ligands for the treatment of chemotherapy-induced peripheral neuropathy and as an adjunct treatment in amyotrophic lateral sclerosis. Moreover, clinical studies with various TSPO ligands have been performed in patients suffering from diabetic neuropathy, in healthy volunteers undergoing an experimental anxiety challenge and in patients with generalized anxiety disorder. Etifoxine is available in France for the treatment of adjustment disorder with anxiety.

  • Systematic clinical studies involving prolonged administration and safety monitoring and differential treatment regimens are needed to evaluate the therapeutic potential of TSPO ligands in relation to their putative side-effect profile.

Abstract

The translocator protein (18 kDa) (TSPO) is localized primarily in the outer mitochondrial membrane of steroid-synthesizing cells, including those in the central and peripheral nervous system. One of its main functions is the transport of the substrate cholesterol into mitochondria, a prerequisite for steroid synthesis. TSPO expression may constitute a biomarker of brain inflammation and reactive gliosis that could be monitored by using TSPO ligands as neuroimaging agents. Moreover, initial clinical trials have indicated that TSPO ligands might be valuable in the treatment of neurological and psychiatric disorders. This Review focuses on the biology and pathophysiology of TSPO and the potential of currently available TSPO ligands for the diagnosis and treatment of neurological and psychiatric disorders.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure of TSPO, docking with cholesterol and mitochondrial localization.
Figure 2: TSPO expression in the central and peripheral nervous system, and effects of TSPO ligands.
Figure 3: Classes, names and structures of representative TSPO ligands.
Figure 4: Classes, names and structures of representative TSPO ligands.
Figure 5: Neurosteroidogenesis and neurosteroid signalling induced by TSPO ligands.
Figure 6: Neuronal networks targeted by TSPO ligand-induced neurosteroid signalling.

Similar content being viewed by others

References

  1. Papadopoulos, V. et al. Translocator protein (18kDa): new nomenclature for the peripheral-type benzodiazepine receptor based on its structure and molecular function. Trends Pharmacol. Sci. 27, 402–409 (2006).

    Article  CAS  PubMed  Google Scholar 

  2. Papadopoulos, V., Liu, J. & Culty, M. Is there a mitochondrial signaling complex facilitating cholesterol import? Mol. Cell Endocrinol. 266, 59–64 (2007).

    Article  CAS  Google Scholar 

  3. Jorda, E. G. et al. Evidence in favour of a role for peripheral-type benzodiazepine receptor ligands in amplification of neuronal apoptosis. Apoptosis 10, 91–104 (2005).

    Article  CAS  PubMed  Google Scholar 

  4. Jayakumar, A. R., Panickar, K. S. & Norenberg, M. D. Effects on free radical generation by ligands of the peripheral benzodiazepine receptor in cultured neural cells. J. Neurochem. 83, 1226–1234 (2002).

    Article  CAS  PubMed  Google Scholar 

  5. Delavoie, F. et al. In vivo and in vitro peripheral-type benzodiazepine receptor polymerization: functional significance in drug ligand and cholesterol binding. Biochemistry 42, 4506–4519 (2003).

    Article  CAS  PubMed  Google Scholar 

  6. Lacapere, J. J. & Papadopoulos, V. Peripheral-type benzodiazepine receptor: structure and function of a cholesterol-binding protein in steroid and bile acid biosynthesis. Steroids 68, 569–585 (2003).

    Article  CAS  PubMed  Google Scholar 

  7. Chen, M. K. & Guilarte, T. R. Translocator protein 18 kDa (TSPO): molecular sensor of brain injury and repair. Pharmacol. Ther. 118, 1–17 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chauveau, F., Boutin, H., Van, C. N, Dolle, F. & Tavitian, B. Nuclear imaging of neuroinflammation: a comprehensive review of [11C]PK11195 challengers. Eur. J. Nucl. Med. Mol. Imaging 35, 2304–2319 (2008).

    Article  PubMed  Google Scholar 

  9. Miyoshi, M. et al. Quantitative analysis of peripheral benzodiazepine receptor in the human brain using PET with 11C-AC-5216. J. Nucl. Med. 50, 1095–1101 (2009).

    Article  CAS  PubMed  Google Scholar 

  10. Girard, C. et al. Etifoxine improves peripheral nerve regeneration and functional recovery. Proc. Natl Acad. Sci. USA 105, 20505–20510 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Da Settimo, F. et al. Anxiolytic-like effects of N, N-dialkyl-2-phenylindol-3-ylglyoxylamides by modulation of translocator protein promoting neurosteroid biosynthesis. J. Med. Chem. 51, 5798–5806 (2008).

    Article  CAS  PubMed  Google Scholar 

  12. Rupprecht, R. et al. Translocator protein (18 kD) as target for anxiolytics without benzodiazepine-like side effects. Science 325, 490–493 (2009).

    Article  CAS  PubMed  Google Scholar 

  13. Anholt, R. R., Pedersen, P. L., De Souza, E. B. & Snyder, S. H. The peripheral-type benzodiazepine receptor. Localization to the mitochondrial outer membrane. J. Biol. Chem. 261, 576–583 (1986).

    CAS  PubMed  Google Scholar 

  14. Joseph-Liauzun, E., Delmas, P., Shire, D. & Ferrara, P. Topological analysis of the peripheral benzodiazepine receptor in yeast mitochondrial membranes supports a five-transmembrane structure. J. Biol. Chem. 273, 2146–2152 (1998).

    Article  CAS  PubMed  Google Scholar 

  15. McEnery, M. W., Snowman, A. M., Trifiletti, R. R. & Snyder, S. H. Isolation of the mitochondrial benzodiazepine receptor: association with the voltage-dependent anion channel and the adenine nucleotide carrier. Proc. Natl Acad. Sci. USA 89, 3170–3174 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Garnier, M. et al. In vitro reconstitution of a functional peripheral-type benzodiazepine receptor from mouse Leydig tumor cells. Mol. Pharmacol. 45, 201–211 (1994).

    CAS  PubMed  Google Scholar 

  17. Veenman, L., Shandalov, Y. & Gavish, M. VDAC activation by the 18 kDa translocator protein (TSPO), implications for apoptosis. J. Bioenerg. Biomembr. 40, 199–205 (2008).

    Article  CAS  PubMed  Google Scholar 

  18. Culty, M. et al. In vitro studies on the role of the peripheral-type benzodiazepine receptor in steroidogenesis. J. Steroid. Biochem. Mol. Biol. 69, 123–130 (1999).

    Article  CAS  PubMed  Google Scholar 

  19. Liu, J, Rone, M. B. & Papadopoulos, V. Protein–protein interactions mediate mitochondrial cholesterol transport and steroid biosynthesis. J. Biol. Chem. 281, 38879–38893 (2006).

    Article  CAS  PubMed  Google Scholar 

  20. Rone, M. B., Fan, J. & Papadopoulos, V. Cholesterol transport in steroid biosynthesis: role of protein-protein interactions and implications in disease states. Biochim. Biophys. Acta 1791, 646–658 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Fan, J, Rone, M. B. & Papadopoulos, V. Translocator protein 2 is involved in cholesterol redistribution during erythropoiesis. J. Biol. Chem. 284, 30484–30497 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Papadopoulos, V. et al. Peripheral benzodiazepine receptor in cholesterol transport and steroidogenesis. Steroids 62, 21–28 (1997).

    Article  CAS  PubMed  Google Scholar 

  23. Casellas, P., Galiegue, S. & Basile, A. S. Peripheral benzodiazepine receptors and mitochondrial function. Neurochem. Int. 40, 475–486 (2002).

    Article  CAS  PubMed  Google Scholar 

  24. Gavish, M. et al. Enigma of the peripheral benzodiazepine receptor. Pharmacol. Rev. 51, 29–650 (1999).

    Google Scholar 

  25. Kuhlmann, A. C. & Guilarte, T. R. Cellular and subcellular localization of peripheral benzodiazepine receptors after trimethyltin neurotoxicity. J. Neurochem. 74, 1694–1704 (2000).

    Article  CAS  PubMed  Google Scholar 

  26. Maeda, J. et al. Phase-dependent roles of reactive microglia and astrocytes in nervous system injury as delineated by imaging of peripheral benzodiazepine receptor. Brain Res. 1157, 100–111 (2007).

    Article  CAS  PubMed  Google Scholar 

  27. Anholt, R. R., Murphy, K. M., Mack, G. E. & Snyder, S. H. Peripheral-type benzodiazepine receptors in the central nervous system: localization to olfactory nerves. J. Neurosci. 4, 593–603 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Bolger, G. T. et al. Differential regulation of 'central' and 'peripheral' benzodiazepine binding sites in the rat olfactory bulb. Eur. J. Pharmacol. 105, 143–148 (1984).

    Article  CAS  PubMed  Google Scholar 

  29. Decaudin, D. et al. Peripheral benzodiazepine receptor ligands reverse apoptosis resistance of cancer cells in vitro and in vivo. Cancer Res. 62, 1388–1393 (2002).

    CAS  PubMed  Google Scholar 

  30. Karchewski, L. A., Bloechlinger, S. & Woolf, C. J. Axonal injury-dependent induction of the peripheral benzodiazepine receptor in small-diameter adult rat primary sensory neurons. Eur. J. Neurosci. 20, 671–683 (2004).

    Article  PubMed  Google Scholar 

  31. Hirsch, J. D., Beyer, C. F., Malkowitz, L., Beer, B. & Blume, A. J. Mitochondrial benzodiazepine receptors mediate inhibition of mitochondrial respiratory control. Mol. Pharmacol. 35, 157–163 (1989).

    CAS  PubMed  Google Scholar 

  32. Corsi, L., Geminiani, E. & Baraldi, M. Peripheral benzodiazepine receptor (PBR) new insight in cell proliferation and cell differentiation review. Curr. Clin. Pharmacol. 3, 38–45 (2008).

    Article  CAS  PubMed  Google Scholar 

  33. Veenman, L., Papadopoulos, V. & Gavish, M. Channel-like functions of the 18-kDa translocator protein (TSPO): regulation of apoptosis and steroidogenesis as part of the host-defense response. Curr. Pharm. Des. 13, 2385–2405 (2007).

    Article  CAS  PubMed  Google Scholar 

  34. Garnier, M., Boujrad, N., Ogwuegbu, S. O., Hudson, J. R., Jr & Papadopoulos, V. The polypeptide diazepam-binding inhibitor and a higher affinity mitochondrial peripheral-type benzodiazepine receptor sustain constitutive steroidogenesis in the R2C Leydig tumor cell line. J. Biol. Chem. 269, 22105–22112 (1994).

    CAS  PubMed  Google Scholar 

  35. Kelly-Hershkovitz, E. et al. Effects of peripheral-type benzodiazepine receptor antisense knockout on MA-10 Leydig cell proliferation and steroidogenesis. J. Biol. Chem. 273, 5478–5483 (1998).

    Article  CAS  PubMed  Google Scholar 

  36. Levin, E. et al. The peripheral-type benzodiazepine receptor and tumorigenicity: isoquinoline binding protein (IBP) antisense knockdown in the C6 glioma cell line. Biochemistry 44, 9924–9935 (2005).

    Article  CAS  PubMed  Google Scholar 

  37. Hauet, T. et al. Peripheral-type benzodiazepine receptor-mediated action of steroidogenic acute regulatory protein on cholesterol entry into Leydig cell mitochondria. Mol. Endocrinol. 19, 540–554 (2005).

    Article  CAS  PubMed  Google Scholar 

  38. Kletsas, D., Li, W., Han, Z. & Papadopoulos, V. Peripheral-type benzodiazepine receptor (PBR) and PBR drug ligands in fibroblast and fibrosarcoma cell proliferation: role of ERK, c-Jun and ligand-activated PBR-independent pathways. Biochem. Pharmacol. 67, 1927–1932 (2004).

    Article  CAS  PubMed  Google Scholar 

  39. Li, W., Hardwick, M. J., Rosenthal, D., Culty, M. & Papadopoulos, V. Peripheral-type benzodiazepine receptor overexpression and knockdown in human breast cancer cells indicate its prominent role in tumor cell proliferation. Biochem. Pharmacol. 73, 491–503 (2007).

    Article  CAS  PubMed  Google Scholar 

  40. Zeno, S., Zaaroor, M., Leschiner, S., Veenman, L. & Gavish, M. CoCl(2) induces apoptosis via the 18 kDa translocator protein in U118MG human glioblastoma cells. Biochemistry 48, 4652–4661 (2009).

    Article  CAS  PubMed  Google Scholar 

  41. Hales, D. B. et al. Mitochondrial function in Leydig cell steroidogenesis. Ann. NY Acad. Sci. 1061, 120–134 (2005).

    Article  CAS  PubMed  Google Scholar 

  42. Bernassau, J. M., Reversat, J. L., Ferrara, P., Caput, D. & Lefur, G. A 3D model of the peripheral benzodiazepine receptor and its implication in intra mitochondrial cholesterol transport. J. Mol. Graph. 11, 236–244 (1993).

    Article  CAS  PubMed  Google Scholar 

  43. Li, H. & Papadopoulos, V. Peripheral-type benzodiazepine receptor function in cholesterol transport. Identification of a putative cholesterol recognition/interaction amino acid sequence and consensus pattern. Endocrinology 139, 4991–4997 (1998).

    Article  CAS  PubMed  Google Scholar 

  44. Li, H., Yao, Z., Degenhardt, B., Teper, G. & Papadopoulos, V. Cholesterol binding at the cholesterol recognition/ interaction amino acid consensus (CRAC) of the peripheral-type benzodiazepine receptor and inhibition of steroidogenesis by an HIV TAT-CRAC peptide. Proc. Natl Acad. Sci. USA 98, 1267–1272 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Jamin, N. et al. Characterization of the cholesterol recognition amino acid consensus sequence of the peripheral-type benzodiazepine receptor. Mol. Endocrinol. 19, 588–594 (2005).

    Article  CAS  PubMed  Google Scholar 

  46. Lacapere, J. J. et al. Structural and functional study of reconstituted peripheral benzodiazepine receptor. Biochem. Biophys. Res. Commun. 284, 536–541 (2001).

    Article  CAS  PubMed  Google Scholar 

  47. Murail, S. et al. Secondary and tertiary structures of the transmembrane domains of the translocator protein TSPO determined by NMR. Stabilization of the TSPO tertiary fold upon ligand binding. Biochim. Biophys. Acta 1778, 1375–1381 (2008).

    Article  CAS  PubMed  Google Scholar 

  48. Korkhov, V. M., Sachse, C., Short, J. M. & Tate, C. G. Three-dimensional structure of TSPO by electron cryomicroscopy of helical crystals. Structure 18, 677–687 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Owen, D. R. et al. Two binding sites for [3H]PBR28 in human brain: implications for TSPO PET imaging of neuroinflammation. J. Cereb. Blood Flow Metab. 30, 1608–1618 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Mills, C. D., Bitler, J. L. & Woolf, C. J. Role of the peripheral benzodiazepine receptor in sensory neuron regeneration. Mol. Cell. Neurosci. 30, 228–237 (2005).

    Article  CAS  PubMed  Google Scholar 

  51. Lacor, P. et al. Regulation of the expression of peripheral benzodiazepine receptors and their endogenous ligands during rat sciatic nerve degeneration and regeneration: a role for PBR in neurosteroidogenesis. Brain Res. 815, 70–80 (1999).

    Article  CAS  PubMed  Google Scholar 

  52. Costigan, M. et al. Replicate high-density rat genome oligonucleotide microarrays reveal hundreds of regulated genes in the dorsal root ganglion after peripheral nerve injury. BMC Neurosci. 3, 16 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Wang, H. et al. Chronic neuropathic pain is accompanied by global changes in gene expression and shares pathobiology with neurodegenerative diseases. Neuroscience 114, 529–546 (2002).

    Article  CAS  PubMed  Google Scholar 

  54. Xiao, H. S. et al. Identification of gene expression profile of dorsal root ganglion in the rat peripheral axotomy model of neuropathic pain. Proc. Natl Acad. Sci. USA 99, 8360–8365 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Banati, R. B. Visualising microglial activation in vivo. Glia 40, 206–217 (2002).

    Article  PubMed  Google Scholar 

  56. Maeda, J. et al. Phase-dependent roles of reactive microglia and astrocytes in nervous system injury as delineated by imaging of peripheral benzodiazepine receptor. Brain Res. 1157, 100–111 (2007).

    Article  CAS  PubMed  Google Scholar 

  57. Chen, M. K., Baidoo, K., Verina, T. & Guilarte, T. R. Peripheral benzodiazepine receptor imaging in CNS demyelination: functional implications of anatomical and cellular localization. Brain 127, 1379–1392 (2004).

    Article  PubMed  Google Scholar 

  58. Gerhard, A., Schwarz, J., Myers, R., Wise, R. & Banati, R. B. Evolution of microglial activation in patients after ischemic stroke: a [11C](R)-PK11195 PET study. Neuroimage 24, 591–595 (2005).

    Article  PubMed  Google Scholar 

  59. Moustafa, R. R. & Baron, J. C. Pathophysiology of ischaemic stroke: insights from imaging, and implications for therapy and drug discovery. Br. J. Pharmacol. 153, S44–S54 (2008).

    Article  CAS  PubMed  Google Scholar 

  60. Venneti, S. et al. The high affinity peripheral benzodiazepine receptor ligand DAA1106 binds specifically to microglia in a rat model of traumatic brain injury: implications for PET imaging. Exp. Neurol. 207, 118–127 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Papadopoulos, V. & Lecanu, L. Translocator protein (18 kDa) TSPO: an emerging therapeutic target in neurotrauma. Exp. Neurol. 217, 53–57 (2009).

    Article  CAS  Google Scholar 

  62. Cosenza-Nashat, M. et al. Expression of the translocator protein of 18 kDa by microglia, macrophages and astrocytes based on immunohistochemical localization in abnormal human brain. Neuropathol. Appl. Neurobiol. 35, 306–328 (2009).

    Article  CAS  PubMed  Google Scholar 

  63. Edison, P. et al. Microglia, amyloid, and cognition in Alzheimer's disease: An [11C](R)PK11195-PET and [11C]PIB-PET study. Neurobiol. Dis. 32, 412–419 (2008).

    Article  CAS  PubMed  Google Scholar 

  64. Yasuno, F. et al. Increased binding of peripheral benzodiazepine receptor in Alzheimer's disease measured by positron emission tomography with [11C]DAA1106. Biol. Psychiatry 64, 835–841 (2008).

    Article  CAS  PubMed  Google Scholar 

  65. Papadopoulos, V., Lecanu, L., Brown, R. C., Han, Z. & Yao, Z. X. Peripheral-type benzodiazepine receptor in neurosteroid biosynthesis, neuropathology and neurological disorders. Neuroscience 138, 749–756 (2006).

    Article  CAS  PubMed  Google Scholar 

  66. Cagnin, A., Rossor, M., Sampson, E. L., Mackinnon, T. & Banati, R. B. In vivo detection of microglial activation in frontotemporal dementia. Ann. Neurol. 56, 894–897 (2004).

    Article  PubMed  Google Scholar 

  67. Vowinckel, E. et al. PK11195 binding to the peripheral benzodiazepine receptor as a marker of microglia activation in multiple sclerosis and experimental autoimmune encephalomyelitis. J. Neurosci. Res. 50, 345–353 (1997).

    Article  CAS  PubMed  Google Scholar 

  68. Versijpt, J. et al. Microglial imaging with positron emission tomography and atrophy measurements with magnetic resonance imaging in multiple sclerosis: a correlative study. Mult. Scler. 11, 127–134 (2005).

    Article  CAS  PubMed  Google Scholar 

  69. Pavese, N. et al. Microglial activation correlates with severity in Huntington disease: a clinical and PET study. Neurology 66, 1638–1643 (2006).

    Article  CAS  PubMed  Google Scholar 

  70. Turner, M. R. et al. Evidence of widespread cerebral microglial activation in amyotrophic lateral sclerosis: an [11C](R)-PK11195 positron emission tomography study. Neurobiol. Dis. 15, 601–609 (2004).

    Article  CAS  PubMed  Google Scholar 

  71. Ouchi, Y. et al. Microglial activation and dopamine terminal loss in early Parkinson's disease. Ann. Neurol. 57, 168–175 (2005).

    Article  CAS  PubMed  Google Scholar 

  72. Gerhard, A. et al. In vivo imaging of microglial activation with [11C](R.)-PK11195 PET in idiopathic Parkinson's disease. Neurobiol. Dis. 21, 404–412 (2006).

    Article  CAS  PubMed  Google Scholar 

  73. Ji, B. et al. Imaging of peripheral benzodiazepine receptor expression as biomarkers of detrimental versus beneficial glial responses in mouse models of Alzheimer's and other CNS pathologies. J. Neurosci. 28, 12255–12267 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Agnello, D. et al. Increased peripheral benzodiazepine binding sites and pentraxin 3 expression in the spinal cord during EAE: relation to inflammatory cytokines and modulation by dexamethasone and rolipram. J. Neuroimmunol. 109, 105–111 (2000).

    Article  CAS  PubMed  Google Scholar 

  75. Vlodavsky, E. & Soustiel, J. F. Immunohistochemical expression of peripheral benzodiazepine receptors in human astrocytomas and its correlation with grade of malignancy, proliferation, apoptosis and survival. J. Neurooncol. 81, 1–7 (2007).

    Article  PubMed  Google Scholar 

  76. Bai, M., Rone, M. B., Papadopoulos, V. & Bornhop, D. J. A novel functional translocator protein ligand for cancer imaging. Bioconjug. Chem. 18, 2018–2023 (2007).

    Article  CAS  PubMed  Google Scholar 

  77. Buck, J. et al. Preclinical evaluation of TSPO ligand [18F]PBR06 for PET imaging of glioma. J. Nucl. Med. 51, 279 (2010).

    Article  Google Scholar 

  78. Yamasaki, T. et al. Imaging of peripheral-type benzodiazepine receptor in tumor: in vitro binding and in vivo biodistribution of N-benzyl-N-[(11)C]methyl-2-(7-methyl-8-oxo-2-phenyl-7,8-dihydro-19H-purin-9-yl)acetamide. Nucl. Med. Biol. 36, 801–809 (2009).

    Article  CAS  PubMed  Google Scholar 

  79. Romeo, E. et al. Effects of antidepressant treatment on neuroactive steroids in major depression. Am. J. Psychiatry 155, 910–913 (1998).

    Article  CAS  PubMed  Google Scholar 

  80. Rupprecht, R. Neuroactive steroids: mechanisms of action and neuropsychopharmacological properties. Psychoneuroendocrinology 28, 139–168 (2003).

    Article  CAS  PubMed  Google Scholar 

  81. Ströhle, A. et al. Induced panic attacks shift gamma-aminobutyric acid type A receptor modulatory neuroactive steroid composition in patients with panic disorder: preliminary results. Arch. Gen. Psychiatry 60, 161–168 (2003).

    Article  PubMed  Google Scholar 

  82. Nudmamud, S. et al. Stress, anxiety and peripheral benzodiazepine receptor mRNA levels in human lymphocytes. Life Sci. 67, 2221–2231 (2000).

    Article  CAS  PubMed  Google Scholar 

  83. Rocca, P. et al. Peripheral benzodiazepine receptor messenger RNA is decreased in lymphocytes of generalized anxiety disorder patients. Biol. Psychiatry 43, 767–773 (1998).

    Article  CAS  PubMed  Google Scholar 

  84. Chelli, B. et al. Platelet 18 kDa translocator protein density is reduced in depressed patients with adult separation anxiety. Eur. Neuropsychopharmacol. 18, 249–254 (2008).

    Article  CAS  PubMed  Google Scholar 

  85. Gavish, M. et al. Altered platelet peripheral-type benzodiazepine receptor in posttraumatic stress disorder. Neuropsychopharmacology 14, 181–186 (1996).

    Article  CAS  PubMed  Google Scholar 

  86. Johnson, M. R. et al. Abnormal peripheral benzodiazepine receptor density associated with generalized social phobia. Biol. Psychiatry 43, 306–309 (1998).

    Article  CAS  PubMed  Google Scholar 

  87. Nakamura, K., Fukunishi, I., Nakamoto, Y., Iwahashi, K. & Yoshii, M. Peripheral-type benzodiazepine receptors on platelets are correlated with the degrees of anxiety in normal human subjects. Psychopharmacology 162, 301–303 (2002).

    Article  CAS  PubMed  Google Scholar 

  88. Pini, S. et al. Peripheral-type benzodiazepine receptor binding sites in platelets of patients with panic disorder associated to separation anxiety symptoms. Psychopharmacology 181, 407–411 (2005).

    Article  CAS  PubMed  Google Scholar 

  89. Ritsner, M. et al. Decreased platelet peripheral-type benzodiazepine receptors in persistently violent schizophrenia patients. J. Psychiatr. Res. 37, 549–556 (2003).

    Article  PubMed  Google Scholar 

  90. Soreni, N. et al. Decreased platelet peripheral-type benzodiazepine receptors in adolscent inpatients with repeated suicice attempts. Biol. Psychiatry 46, 484–488 (1999).

    Article  CAS  PubMed  Google Scholar 

  91. Weizman, A., Burgin, R, Harel, Y., Karp, L. & Gavish, M. Platelet peripheral-type benzodiazepine receptor in major depression. J. Affect. Disord. 33, 257–261 (1995).

    Article  CAS  PubMed  Google Scholar 

  92. Abelli, M. et al. Reductions in platelet 18-kDa translocator protein density are associated with adult separation anxiety in patients with bipolar disorder. Neuropsychobiology 62, 98–103 (2010).

    Article  CAS  PubMed  Google Scholar 

  93. Costa, B. et al. Ala147Thr substitution in translocator protein is associated with adult separation anxiety in patients with depression. Psychiatr. Genet. 19, 110–111 (2009).

    Article  PubMed  Google Scholar 

  94. Costa, B. et al. The spontaneous Ala147Thr amino acid substitution within the translocator protein influences pregnenolone production in lymphomonocytes of healthy individuals. Endocrinology 150, 5438–5445 (2009).

    Article  CAS  PubMed  Google Scholar 

  95. Nakamura, K. et al. Evidence that variation in the peripheral benzodiazepine receptor (PBR) gene influences susceptibility to panic disorder. Am. J. Med. Genet. B Neuropsychiatr. Genet. 141B, 222–226 (2006).

    Article  CAS  PubMed  Google Scholar 

  96. Takano, A. et al. Peripheral benzodiazepine receptors in patients with chronic schizophrenia: a PET study with [11C]DAA1106. Int. J. Neuropsychopharmacol. 13, 943–950 (2010).

    Article  CAS  PubMed  Google Scholar 

  97. Verma, A., Nye, J. S. & Snyder, S. H. Porphyrins are endogenous ligands for the mitochondrial (peripheral-type) benzodiazepine receptor. Proc. Natl Acad. Sci. USA 84, 2256–2260 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Costa, E. & Guidotti, A. Diazepam binding inhibitor (DBI): a peptide with multiple biological actions. Life Sci. 49, 325–344 (1991).

    Article  CAS  PubMed  Google Scholar 

  99. Farges, R. et al. Site-directed mutagenesis of the peripheral benzodiazepine receptor: identification of amino acids implicated in the binding site of Ro5-4864 Mol. Pharmacol. 46, 1160–1167 (1994).

    CAS  PubMed  Google Scholar 

  100. Anzini, M. et al. Mapping and fitting the peripheral benzodiazepine receptor binding site by carboxamide derivatives. Comparison of different approaches to quantitative ligand–receptor interaction modeling. J. Med. Chem. 44, 1134–1150 (2001).

    Article  CAS  PubMed  Google Scholar 

  101. Joseph-Liauzun, E., Farges, R., Delmas, P., Ferrara, P. & Loison, G. The Mr 18, 000 subunit of the peripheral-type benzodiazepine receptor exhibits both benzodiazepine and isoquinoline carboxamide binding sites in the absence of the voltage-dependent anion channel or of the adenine nucleotide carrier. J. Biol. Chem. 272, 28102–28106 (1997).

    Article  CAS  PubMed  Google Scholar 

  102. Mocchetti, I. & Santi, M. R. Diazepam binding inhibitor peptide: cloning and gene expression. Neuropharmacology 30, 1365–1371 (1991).

    Article  CAS  PubMed  Google Scholar 

  103. do Rego, J. C. et al. Pharmacological characterization of the receptor mediating the anorexigenic action of the octadecaneuropeptide: evidence for an endozepinergic tone regulating food intake. Neuropsychopharmacology 32, 1641–1648 (2007).

    Article  CAS  PubMed  Google Scholar 

  104. Papadopoulos, V., Berkovich, A., Krueger, K. E., Costa, E. & Guidotti, A. Diazepam binding inhibitor and its processing products stimulate mitochondrial steroid biosynthesis via an interaction with mitochondrial benzodiazepine receptors. Endocrinology 129, 1481–1488 (1991).

    Article  CAS  PubMed  Google Scholar 

  105. Faergeman, N. J. et al. Acyl-CoA binding proteins; structural and functional conservation over 2000 MYA. Mol. Cell. Biochem. 299, 55–65 (2007).

    Article  CAS  PubMed  Google Scholar 

  106. Fan, J., Liu, J., Culty, M. & Papadopoulos, V. Acyl-coenzyme A binding domain containing 3 (ACBD3; PAP7; GCP60): an emerging signaling molecule. Prog. Lipid. Res. 49, 218–234 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Li, H. et al. Identification, localization, and function in steroidogenesis of PAP7: a peripheral-type benzodiazepine receptor- and PKA (RIalpha)-associated protein. Mol. Endocrinol. 15, 2211–2228 (2001).

    CAS  PubMed  Google Scholar 

  108. Skowronski, R, Beaumont, K. & Fanestil, D. D. Modification of the peripheral-type benzodiazepine receptor by arachidonate, diethylpyrocarbonate and thiol reagents. Eur. J. Pharmacol. 143, 305–314 (1987).

    Article  CAS  PubMed  Google Scholar 

  109. Artemenko, I. P. & Jefcoate, C. R. Multiple contributions from long-chain fatty acid metabolism in Y-1 and MA-10 cells. Endocr. Res. 30, 637 (2004).

    Article  PubMed  Google Scholar 

  110. Tokay, T. et al. Beta-amyloid peptide stimulates endozepine release in cultured rat astrocytes through activation of N-formyl peptide receptors. Glia 56, 1380–1389 (2008).

    Article  PubMed  Google Scholar 

  111. Ferrarese, C. et al. Cerebrospinal fluid levels of diazepam-binding inhibitor in neurodegenerative disorders with dementia. Neurology 40, 632–635 (1990).

    Article  CAS  PubMed  Google Scholar 

  112. Verleye, M. et al. The anxiolytic etifoxine activates the peripheral benzodiazepine receptor and increases the neurosteroid levels in rat brain. Pharmacol. Biochem. Behav. 82, 712–720 (2005).

    Article  CAS  PubMed  Google Scholar 

  113. Hamon, A., Morel, A., Hue, B., Verleye, M. & Gillardin, J. M. The modulatory effects of the anxiolytic etifoxine on GABAA receptors are mediated by the beta subunit. Neuropharmacology 45, 293–303 (2003).

    Article  CAS  PubMed  Google Scholar 

  114. Schlichter, R, Rybalchenko, V., Poisbeau, P., Verleye, M. & Gillardin, J. Modulation of GABAergic synaptic transmission by the non-benzodiazepine anxiolytic etifoxine. Neuropharmacology 39, 1523–1535 (2000).

    Article  CAS  PubMed  Google Scholar 

  115. Nguyen, N. et al. Efficacy of etifoxine compared to lorazepam monotherapy in the treatment of patients with adjustment disorders with anxiety: a double-blind controlled study in general practice. Human Psychopharmacology 21, 139–149 (2006).

    Article  CAS  PubMed  Google Scholar 

  116. Langer, S. Z., Arbilla, S., Benavides, J. & Scatton, B. Zolpidem and alpidem: two imidazopyridines with selectivity for omega 1- and omega 3-receptor subtypes. Adv. Biochem. Psychopharmacol. 46, 61–72 (1990).

    CAS  PubMed  Google Scholar 

  117. Ausset, P. et al. Subfulminant hepatitis caused by alpidem and treated by liver transplantation. Gastroenterol. Clin. Biol. 19, 222–223 (1995).

    CAS  PubMed  Google Scholar 

  118. Barki, J. et al. Fatal subfulminant hepatitis during treatment with alpidem (Ananxyl). Gastroenterol. Clin. Biol. 17, 872–874 (1993).

    CAS  PubMed  Google Scholar 

  119. Baty, V. et al. Hepatitis induced by alpidem (Ananxyl). Four cases, one of them fatal. Gastroenterol. Clin. Biol. 18, 1129–1131 (1994).

    CAS  PubMed  Google Scholar 

  120. Ferzaz, B. et al. SSR180575 (7-chloro-N, N, 5-trimethyl-4-oxo-3-phenyl-3, 5-dihydro-4H-pyridazino[4, 5-b]indole-1-acetamide), a peripheral benzodiazepine receptor ligand, promotes neuronal survival and repair. J. Pharmacol. Exp. Ther. 301, 1067–1078 (2002).

    Article  CAS  PubMed  Google Scholar 

  121. Bordet, T. et al. Specific antinociceptive activity of cholest-4-en-3-one, oxime (TRO19622) in experimental models of painful diabetic and chemotherapy-induced neuropathy. J. Pharmacol. Exp. Ther. 326, 623–632 (2008).

    Article  CAS  PubMed  Google Scholar 

  122. Giatti, S. et al. Neuroprotective effects of a ligand of translocator protein-18 kDa (Ro5-4864) in experimental diabetic neuropathy. Neuroscience 164, 520–529 (2009).

    Article  CAS  PubMed  Google Scholar 

  123. Aouad, M., Charlet, A., Rodeau, J. L. & Poisbeau, P. Reduction and prevention of vincristine-induced neuropathic pain symptoms by the non-benzodiazepine anxiolytic etifoxine are mediated by 3alpha-reduced neurosteroids. Pain 147, 54–59 (2009).

    Article  CAS  PubMed  Google Scholar 

  124. Bordet, T. et al. Identification and characterization of cholest-4-en-3-one, oxime (TRO19622), a novel drug candidate for amyotrophic lateral sclerosis. J. Pharmacol. Exp. Ther. 322, 709–720 (2007).

    Article  CAS  PubMed  Google Scholar 

  125. Veiga, S, Azcoitia, I. & Garcia-Segura, L. M. Ro5-4864, a peripheral benzodiazepine receptor ligand, reduces reactive gliosis and protects hippocampal hilar neurons from kainic acid excitotoxicity. J. Neurosci. Res. 80, 129–137 (2005).

    Article  CAS  PubMed  Google Scholar 

  126. Soustiel, J. F. et al. Neuroprotective effect of Ro5-4864 following brain injury. Exp. Neurol. 214, 201–208 (2008).

    Article  CAS  PubMed  Google Scholar 

  127. James, M. L., Selleri, S. & Kassiou, M. Development of ligands for the peripheral benzodiazepine receptor. Curr. Med. Chem. 13, 1991–2001 (2006).

    Article  CAS  PubMed  Google Scholar 

  128. Sarnowska, A., Beresewicz, M., Zablocka, B. & Domanska-Janik, K. Diazepam neuroprotection in excitotoxic and oxidative stress involves a mitochondrial mechanism additional to the GABAAR and hypothermic effects. Neurochem. Int. 55, 164–173 (2009).

    Article  CAS  PubMed  Google Scholar 

  129. Kunduzova, O. R. et al. Involvement of peripheral benzodiazepine receptor in the oxidative stress, death-signaling pathways, and renal injury induced by ischemia-reperfusion. J. Am. Soc. Nephrol. 15, 2152–2160 (2004).

    Article  CAS  PubMed  Google Scholar 

  130. Veenman, L. & Gavish, M. The peripheral-type benzodiazepine receptor and the cardiovascular system. Implications for drug development. Pharmacol. Ther. 110, 503–524 (2006).

    Article  CAS  PubMed  Google Scholar 

  131. Totis, M. et al. Induction of liver microsomal cytochrome P-450 isozymes by 1-(2-chlorophenyl)-N-methyl-N-(1-methylpropyl)-3-isoquinoline carboxamide. Xenobiotica 19, 857–866 (1989).

    Article  CAS  PubMed  Google Scholar 

  132. Chen, Z. L., Yu, W. M. & Strickland, S. Peripheral regeneration. Annu. Rev. Neurosci. 30, 209–233 (2007).

    Article  CAS  PubMed  Google Scholar 

  133. Torres, S. R. et al. Anti-inflammatory effects of peripheral benzodiazepine receptor ligands in two mouse models of inflammation. Eur. J. Pharmacol. 408, 199–211 (2000).

    Article  CAS  PubMed  Google Scholar 

  134. Benavides, J., Dubois, A. & Scatton, B. Peripheral type benzodiazepine binding sites as a tool for the detection and quantification of CNS injury. Curr. Protoc. Neurosci. 1 May 2001 (doi: 10.1002/0471142301.ns0716s09).

  135. Hanisch, U. K. & Kettenmann, H. Microglia: active sensor and versatile effector cells in the normal and pathologic brain. Nature Neurosci. 10, 1387–1394 (2007).

    Article  CAS  PubMed  Google Scholar 

  136. Ekdahl, C. T., Kokaia, Z. & Lindvall, O. Brain inflammation and adult neurogenesis: the dual role of microglia. Neuroscience 158, 1021–1029 (2009).

    Article  CAS  PubMed  Google Scholar 

  137. Franklin, R. J. Why does remyelination fail in multiple sclerosis? Nature Rev. Neurosci. 3, 705–714 (2002).

    Article  CAS  Google Scholar 

  138. Neumann, H., Kotter, M. R. & Franklin, R. J. Debris clearance by microglia: an essential link between degeneration and regeneration. Brain 132, 288–295 (2009).

    Article  CAS  PubMed  Google Scholar 

  139. Block, M. L., Zecca, L. & Hong, J. S. Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nature Rev. Neurosci. 8, 57–69 (2007).

    Article  CAS  Google Scholar 

  140. Ryu, J. K., Choi, H. B. & McLarnon, J. G. Peripheral benzodiazepine receptor ligand PK11195 reduces microglial activation and neuronal death in quinolinic acid-injected rat striatum. Neurobiol. Dis. 20, 550–561 (2005).

    Article  CAS  PubMed  Google Scholar 

  141. Veiga, S, Carrero, P., Pernia, O., Azcoitia, I. & Garcia-Segura, L. M. Translocator protein 18 kDa is involved in the regulation of reactive gliosis. Glia 55, 1426–1436 (2007).

    Article  PubMed  Google Scholar 

  142. Rechichi, M. et al. TSPO over-expression increases motility, transmigration and proliferation properties of C6 rat glioma cells. Biochim. Biophys. Acta 1782, 118–125 (2008).

    Article  CAS  PubMed  Google Scholar 

  143. Gonzalez-Polo, R. A. et al. PK11195 potently sensitizes to apoptosis induction independently from the peripheral benzodiazepin receptor. Oncogene 24, 7503–7513 (2005).

    Article  CAS  PubMed  Google Scholar 

  144. Hans, G. et al. Peripheral benzodiazepine receptor (PBR) ligand cytotoxicity unrelated to PBR expression. Biochem. Pharmacol. 69, 819–830 (2005).

    Article  CAS  PubMed  Google Scholar 

  145. Kugler, W. et al. Ligands of the mitochondrial 18 kDa translocator protein attenuate apoptosis of human glioblastoma cells exposed to erucylphosphohomocholine. Cell. Oncol. 30, 435–450 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Strohmeier, R., Roller, M., Sanger, N., Knecht, R. & Kuhl, H. Modulation of tamoxifen-induced apoptosis by peripheral benzodiazepine receptor ligands in breast cancer cells. Biochem. Pharmacol. 64, 99–107 (2002).

    Article  CAS  PubMed  Google Scholar 

  147. Kita, A. et al. Antianxiety and antidepressant-like effects of AC-5216, a novel mitochondrial benzodiazepine receptor ligand. Br. J. Pharmacol. 142, 1059–1072 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Okuyama, S. et al. Neuropharmacological profile of peripheral benzodiazepine receptor agonists, DAA 1091 and DAA 1106. Life Sci. 64, 1455–1464 (1999).

    Article  CAS  PubMed  Google Scholar 

  149. Serra, M. et al. 2-Phenyl-imidazo[1,2-a]pyridine derivatives as ligands for peripheral benzodiazepine receptors: stimulation of neurosteroid synthesis and anticonflict action in rats. Br. J. Pharmacol. 127, 177–187 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Costa, B. et al. Anxiolytic properties of a 2-phenylindolglyoxylamide TSPO ligand: stimulation of in vitro neurosteroid production affecting GABAA receptor activity. Psychoneuroendocrinology 19 Aug 2010 (doi: 10.1016/j.psyneuen.2010.07.021).

  151. Kita, A., Kinoshita, T., Kohayakawa, H., Furukawa, K. & Akaike, A. Lack of tolerance to anxiolysis and withdrawal symptoms in mice repeatedly treated with AC-5216, a selective TSPO ligand. Prog. Neuropsychopharmacol. Biol. Psychiatry 33, 1040–1045 (2009).

    Article  CAS  PubMed  Google Scholar 

  152. Costa, B. et al. Peripheral benzodiazepine receptor: characterization in human T-lymphoma Jurkat cells. Mol. Pharmacol. 69, 37–44 (2006).

    CAS  PubMed  Google Scholar 

  153. Chen, M. K. & Guilarte, T. R. Imaging the peripheral benzodiazepine receptor response in central nervous system demyelination and remyelination. Toxicol. Sci. 91, 532–539 (2006).

    Article  CAS  PubMed  Google Scholar 

  154. Rojas, S. et al. Imaging brain inflammation with [11C]PK11195 by PET and induction of the peripheral-type benzodiazepine receptor after transient focal ischemia in rats. J. Cereb. Blood Flow Metab. 27, 1975–1986 (2007).

    Article  CAS  PubMed  Google Scholar 

  155. Le Goascogne, C. et al. Neurosteroid progesterone is up-regulated in the brain of jimpy and shiverer mice. Glia 29, 14–24 (2000).

    Article  CAS  PubMed  Google Scholar 

  156. Azarashvili, T. et al. The peripheral-type benzodiazepine receptor is involved in control of Ca2+-induced permeability transition pore opening in rat brain mitochondria. Cell. Calcium 42, 27–39 (2007).

    Article  CAS  PubMed  Google Scholar 

  157. Parker, M. A., Bazan, H. E., Marcheselli, V., Rodriguez de Turco, E. B. & Bazan, N. G., Platelet-activating factor induces permeability transition and cytochrome c release in isolated brain mitochondria. J. Neurosci. Res. 69, 39–50 (2002).

    Article  CAS  PubMed  Google Scholar 

  158. Obame, F. N., Zini, R., Souktani, R., Berdeaux, A. & Morin, D. Peripheral benzodiazepine receptor-induced myocardial protection is mediated by inhibition of mitochondrial membrane permeabilization. J. Pharmacol. Exp. Ther. 323, 336–345 (2007).

    Article  CAS  PubMed  Google Scholar 

  159. Besman, M. J. et al. Identification of des-(Gly-Ile)-endozepine as an effector of corticotropin-dependent adrenal steroidogenesis: stimulation of cholesterol delivery is mediated by the peripheral benzodiazepine receptor. Proc. Natl Acad. Sci. USA 86, 4897–4901 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Rupprecht, R. & Holsboer, F. Neuroactive steroids: mechanisms of action and neuropsychopharmacological perspectives. Trends Neurosci. 22, 410–416 (1999).

    Article  CAS  PubMed  Google Scholar 

  161. Stoffel-Wagner, B., Neurosteroid metabolism in the human brain. Eur. J. Endocrinol. 145, 669–679 (2001).

    Article  CAS  PubMed  Google Scholar 

  162. Papadopoulos, V., Guarneri, P., Kreuger, K. E., Guidotti, A. & Costa, E. Pregnenolone biosynthesis in C6–2B glioma cell mitochondria: regulation by a mitochondrial diazepam binding inhibitor receptor. Proc. Natl Acad. Sci. USA 89, 5113–5117 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Bitran, D., Foley, M., Audette, D., Leslie, N. & Frye, C. A. Activation of peripheral mitochondrial benzodiazepine receptors in the hippocampus stimulates allopregnanolone synthesis and produces anxiolytic-like effects in the rat. Psychopharmacology 151, 64–71 (2000).

    Article  CAS  PubMed  Google Scholar 

  164. Korneyev, A. et al. Stimulation of brain pregnenolone synthesis by mitochondrial diazepam binding inhibitor receptor ligands in vivo. J. Neurochem. 61, 1515–1524 (1993).

    Article  CAS  PubMed  Google Scholar 

  165. Romeo, E. et al., Stimulation of brain steroidogenesis by 2-aryl-indole-3-acetamide derivatives acting at the mitochondrial diazepam-binding inhibitor receptor complex. J. Pharmacol. Exp. Ther. 267, 462–471 (1993).

    CAS  PubMed  Google Scholar 

  166. Poisbeau, P. et al. Inflammatory pain upregulates spinal inhibition via endogenous neurosteroid production. J. Neurosci. 25, 11768–11776 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Inquimbert, P., Rodeau, J. L. & Schlichter, R. Regional differences in the decay kinetics of GABAA receptor-mediated miniature IPSCs in the dorsal horn of the rat spinal cord are determined by mitochondrial transport of cholesterol. J. Neurosci. 28, 3427–3437 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Zheng, P. Neuroactive steroid regulation of neurotransmitter release in the CNS: action, mechanism and possible significance. Prog. Neurobiol. 89, 134–152 (2009).

    Article  CAS  PubMed  Google Scholar 

  169. Lambert, J. J., Cooper, M. A., Simmons, R. D., Weir, C. J. & Belelli, D. Neurosteroids: Endogenous allosteric modulators of GABAA receptors. Psychoneuroendocrinology 34, S48–S58 (2009).

    Article  CAS  PubMed  Google Scholar 

  170. Melcangi, R. C., Celotti, F. & Martini, L. Progesterone 5-alpha-reduction in neuronal and in different types of glial cell cultures: type 1 and 2 astrocytes and oligodendrocytes. Brain Res. 639, 202–206 (1994).

    Article  CAS  PubMed  Google Scholar 

  171. Melcangi, R. C. et al. The 5alpha-reductase in the central nervous system: expression and modes of control. J. Steroid. Biochem. Mol. Biol. 65, 295–299 (1998).

    Article  CAS  PubMed  Google Scholar 

  172. Tsuruo, Y., Topography and function of androgen-metabolizing enzymes in the central nervous system. Anat. Sci. Int. 80, 1–11 (2005).

    Article  CAS  PubMed  Google Scholar 

  173. Agis-Balboa, R. C. et al. Characterization of brain neurons that express enzymes mediating neurosteroid biosynthesis. Proc. Natl Acad. Sci. USA 103, 14602–14607 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Venneti, S., Lopresti, B. J. & Wiley, C. A. The peripheral benzodiazepine receptor (translocator protein 18kDa) in microglia: from pathology to imaging. Prog. Neurobiol. 80, 308–322 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Belelli, D., Peden, D. R., Rosahl, T. W., Wafford, K. A. & Lambert, J. J. Extrasynaptic GABAA receptors of thalamocortical neurons: a molecular target for hypnotics. J. Neurosci. 25, 11513–11520 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Brickley, S. G., Cull-Candy, S. G. & Farrant, M. Development of a tonic form of synaptic inhibition in rat cerebellar granule cells resulting from persistent activation of GABAA receptors. J. Physiol. 497, 753–759 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Chandra, D. et al. GABAA receptor alpha 4 subunits mediate extrasynaptic inhibition in thalamus and dentate gyrus and the action of gaboxadol. Proc. Natl Acad. Sci. 103, 15230–15235 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Fritschy, J. M. & Brunig, I. Formation and plasticity of GABAergic synapses: physiological mechanisms and pathophysiological implications. Pharmacol. Ther. 98, 299–323 (2003).

    Article  CAS  PubMed  Google Scholar 

  179. Glykys, J., Mann, E. O. & Mody, I. Which GABAA receptor subunits are necessary for tonic inhibition in the hippocampus? J. Neurosci. 28, 1421–1426 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Herd, M. B. et al. The expression of GABAA beta subunit isoforms in synaptic and extrasynaptic receptor populations of mouse dentate gyrus granule cells. J. Physiol. 586, 989–1004 (2008).

    Article  CAS  PubMed  Google Scholar 

  181. Mortensen, M. & Smart, T. G. Extrasynaptic alphabeta subunit GABAA receptors on rat hippocampal pyramidal neurons. J. Physiol. 577, 841–856 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Peden, D. R. et al. Developmental maturation of synaptic and extrasynaptic GABAA receptors in mouse thalamic ventrobasal neurones. J. Physiol. 586, 965–987 (2008).

    Article  CAS  PubMed  Google Scholar 

  183. Porcello, D. M., Huntsman, M. M., Mihalek, R. M., Homanics, G. E. & Huguenard, J. R. Intact synaptic GABAergic inhibition and altered neurosteroid modulation of thalamic relay neurons in mice lacking delta subunit. J. Neurophysiol. 89, 1378–1386 (2003).

    Article  CAS  PubMed  Google Scholar 

  184. Wafford, K. A. et al. Novel compounds selectively enhance delta subunit containing GABAA receptors and increase tonic currents in thalamus. Neuropharmacology 56, 182–189 (2009).

    Article  CAS  PubMed  Google Scholar 

  185. Nyiri, G, Freund, T. F. & Somogyi, P. Input-dependent synaptic targeting of alpha(2)-subunit-containing GABAA receptors in synapses of hippocampal pyramidal cells of the rat. Eur. J. Neurosci. 13, 428–442 (2001).

    Article  CAS  PubMed  Google Scholar 

  186. Farrant, M. & Nusser, Z. Variations on an inhibitory theme: phasic and tonic activation of GABAA receptors. Nature Rev. Neurosci. 6, 215–229 (2005).

    Article  CAS  Google Scholar 

  187. Mitchell, E. A., Gentet, L. J., Dempster, J. & Belelli, D. GABAA and glycine receptor-mediated transmission in rat lamina II neurones: relevance to the analgesic actions of neuroactive steroids. J. Physiol. 583, 1021–1040 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Sanna, E. et al. Brain steroidogenesis mediates ethanol modulation of GABAA receptor activity in rat hippocampus. J. Neurosci. 24, 6521–6530 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Ritchie, D. W. Evaluation of protein docking predictions using Hex 3.1 in CAPRI rounds 1 and 2. Proteins 52, 98–106 (2003).

    Article  CAS  PubMed  Google Scholar 

  190. Tsujishita, Y. & Hurley, J. H. Structure and lipid transport mechanism of a StAR-related domain. Nature Struct. Biol. 7, 408–414 (2000).

    Article  CAS  PubMed  Google Scholar 

  191. Arnold, K., Bordoli, L., Kopp, J. & Schwede, T. The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics 22, 195–201 (2006).

    Article  CAS  PubMed  Google Scholar 

  192. Schmidt, O. et al. Mode of action of antimicrobial proteins, pore-forming toxins and biologically active peptides (Hypothesis). Invertebrate Surv. J. 2, 82–90 (2005).

    Google Scholar 

  193. Wang, J., Sykes, B. D. & Ryan, R. O. Structural basis for the conformational adaptability of apolipophorin III, a helix-bundle exchangeable apolipoprotein. Proc. Natl Acad. Sci. USA 99, 1188–1193 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Cappelli, A. et al. Synthesis, labeling, and biological evaluation of halogenated 2-quinolinecarboxamides as potential radioligands for the visualization of peripheral benzodiazepine receptors. Bioorg. Med. Chem. 14, 4055–4066 (2006).

    Article  CAS  PubMed  Google Scholar 

  195. Primofiore, G. et al. N., N-dialkyl-2-phenylindol-3-ylglyoxylamides. A new class of potent and selective ligands at the peripheral benzodiazepine receptor. J. Med. Chem. 47, 1852–1855 (2004).

    Article  CAS  PubMed  Google Scholar 

  196. Romeo, E. et al. 2-Aryl-3-indoleacetamides (FGIN-1): a new class of potent and specific ligands for the mitochondrial DBI receptor (MDR). J. Pharmacol. Exp. Ther. 262, 971–978 (1992).

    CAS  PubMed  Google Scholar 

  197. Tarnok, K. et al. Effects of vinpocetine on mitochondrial function and neuroprotection in primary cortical neurons. Neurochem. Int. 53, 289–295 (2008).

    Article  CAS  PubMed  Google Scholar 

  198. Gulyas, B. et al. [11C]vinpocetine: a prospective peripheral benzodiazepine receptor ligand for primate PET studies. J. Neurol. Sci. 229–230, 219–223 (2005).

    Article  CAS  Google Scholar 

  199. Taketani, S., Kohno, H., Furukawa, T. & Tokunaga, R. Involvement of peripheral-type benzodiazepine receptors in the intracellular transport of heme and porphyrins. J. Biochem. 117, 875–880 (1995).

    Article  CAS  PubMed  Google Scholar 

  200. Wendler, G., Lindemann, P., Lacapere, J. J. & Papadopoulos, V. Protoporphyrin IX binding and transport by recombinant mouse PBR. Biochem. Biophys. Res. Commun. 311, 847–852 (2003).

    Article  CAS  PubMed  Google Scholar 

  201. Penning, T. M., Jin, Y., Steckelbroeck, S., Lanisnik, R. T. & Lewis, M. Structure-function of human 3 alpha-hydroxysteroid dehydrogenases: genes and proteins. Mol. Cell. Endocrinol. 215, 63–72 (2004).

    Article  CAS  PubMed  Google Scholar 

  202. Belelli, D. & Lambert, J. J. Neurosteroids: endogenous regulators of the GABAA receptor. Nature Rev. Neurosci. 6, 565–575 (2005).

    Article  CAS  Google Scholar 

  203. Hosie, A. M., Wilkins, M. E., da Silva, H. M. & Smart, T. G. Endogenous neurosteroids regulate GABAA receptors through two discrete transmembrane sites. Nature 444, 486–489 (2006).

    Article  CAS  PubMed  Google Scholar 

  204. Park-Chung, M., Malayev, A., Purdy, R. H., Gibbs, T. T. & Farb, D. H. Sulfated and unsulfated steroids modulate gamma-aminobutyric acidA receptor function through distinct sites. Brain Res. 830, 72–87 (1999).

    Article  CAS  PubMed  Google Scholar 

  205. Bianchi, M. T. & Macdonald, R. L. Neurosteroids shift partial agonist activation of GABAA receptor channels from low- to high-efficacy gating patterns. J. Neurosci. 23, 10934–10943 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Maitra, R. & Reynolds, J. N. Subunit dependent modulation of GABAA receptor function by neuroactive steroids. Brain Res. 819, 75–82 (1999).

    Article  CAS  PubMed  Google Scholar 

  207. Belelli, D., Casula, A., Ling, A. & Lambert, J. J. The influence of subunit composition on the interaction of neurosteroids with GABAA receptors. Neuropharmacology 43, 651–661 (2002).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank H. Mohler and F. Holsboer for their insightful comments on the work. We acknowledge funding support from a Max Planck Fellow grant to R.R. V.P. was supported by grants from the US National Institutes of Health (ES07747), the Canadian Institutes of Health Research (211,033), and a Canada Research Chair. G.G. was supported by a grant from the Association Française contre les Myopathies (AFM) and by Biocodex, France. D.A. was supported by a Plan Pluriformation (“Peripheral and spinal axonal regeneration”) from the University Paris-Sud 11, France. M.S. is the beneficiary of an Interface Program of the Institut National de la Santé et de la Recherche Médicale and the Assistance Publique-Hôpitaux de Paris, France.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

Rainer Rupprecht has been on the Novartis advisory boards and served as a consultant for Novartis for the development of XBD173. The study on XBD173 (see Rupprecht et al. Science 325, 490–493; 2009) has been sponsored by Novartis. Vassilios Papadopoulos is a named inventor on several international patents that pertain to the use of TSPO as well as to the synthesis and use of TSPO drug ligands. These patents have been licensed by Samaritan Pharmaceuticals. V.P. has also served as a consultant for Samaritan Pharmaceuticals, and has received research funding by Beaufour-IPSEN and Samaritan Pharmaceuticals for work pertaining to TSPO. Michael Schumacher has received research funding from Biocodex relating to his work with etifoxine (see Girard et al. Proc. Natl Acad. Sci. USA 105, 20505–20510; 2008).

Supplementary information

Supplementary information S1 (table)

Classes, names, and structures of TSPO ligands. (PDF 646 kb)

Related links

Related links

FURTHER INFORMATION

ClinicalTrials.gov

International Union of Pure and Applied Chemistry (IUPAC)

RCSB Protein Data Bank

SWISS-MODEL

Glossary

Cholesterol

A 27-carbon steroid present in cells and bodily fluids. It is a basic component of membranes and a precursor of steroid hormones, bile acids and vitamins.

Microglia

A type of glial cell that is the resident macrophage in the brain and spinal cord, and the primary mediator of the immune system of the central nervous system.

Reactive astrocytes

In response to injury and degenerative conditions, astrocytes become hypertrophic and extend processes, accompanied by increased expression of surface molecules, neurotrophic factors, hormones and cytokines. They can exert both beneficial and detrimental effects on neuronal survival and axon regeneration.

Mitochondrial permeability transition

(MPT). The increase in the permeability of the mitochondrial membrane to solutes with molecular mass ≤1,500 daltons. It is caused by the opening of the high-conductance permeability transition pore, inducing mitochondrial depolarization, uncoupling of oxidative phosphorylation and swelling, leading to ATP depletion and cell death.

Shape fitting

Shape fitting used in protein docking methods is based on the concept that if a ligand molecule has a similar shape or volume to the binding pocket in a protein, it should overlay well, and any volume mismatch would be a measure of dissimilarity. The fit between the ligand and the binding pocket is based on the matching of both three-dimensional shape and chemical functionalities.

Porphyrins

Heterocyclic compounds formed of four pyrrole rings linked by unsaturated carbons to form a large ring. They can chelate metals such as iron and magnesium, and are crucial constituents of haemoglobin, chlorophyll and cytochromes.

Acyl coenzyme A

(Acyl-CoA). A temporary product formed when coenzyme A attaches to the end of a long-chain fatty acid, which is a step in fatty acid oxidation.

Autocrine and paracrine signalling

During autocrine signalling, a cell secretes a protein and/or a chemical messenger that binds to receptors on the same cell. This differs from paracrine signalling, which targets adjacent cells.

Astrogliosis

The presence of reactive astrocytes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rupprecht, R., Papadopoulos, V., Rammes, G. et al. Translocator protein (18 kDa) (TSPO) as a therapeutic target for neurological and psychiatric disorders. Nat Rev Drug Discov 9, 971–988 (2010). https://doi.org/10.1038/nrd3295

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd3295

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research