Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Insights into antifolate resistance from malarial DHFR-TS structures

Abstract

Plasmodium falciparum dihydrofolate reductase–thymidylate synthase (PfDHFR-TS) is an important target of antimalarial drugs. The efficacy of this class of DHFR-inhibitor drugs is now compromised because of mutations that prevent drug binding yet retain enzyme activity. The crystal structures of PfDHFR-TS from the wild type (TM4/8.2) and the quadruple drug-resistant mutant (V1/S) strains, in complex with a potent inhibitor WR99210, as well as the resistant double mutant (K1 CB1) with the antimalarial pyrimethamine, reveal features for overcoming resistance. In contrast to pyrimethamine, the flexible side chain of WR99210 can adopt a conformation that fits well in the active site, thereby contributing to binding. The single-chain bifunctional PfDHFR-TS has a helical insert between the DHFR and TS domains that is involved in dimerization and domain organization. Moreover, positively charged grooves on the surface of the dimer suggest a function in channeling of substrate from TS to DHFR active sites. These features provide possible approaches for the design of new drugs to overcome antifolate resistance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Homology and structure-based alignment of DHFR and junction region from various organisms.
Figure 2: Overview of the wild type PfDHFR-TS structure.
Figure 3: Inhibitors WR99210 and pyrimethamine bound at the DHFR active site.
Figure 4: Enzyme–inhibitor interactions at the active site.
Figure 5: Surface electrostatic potential on the wild type PfDHFR-TS dimer.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Breman, J.G. The ears of the hippopotamus: manifestations, determinants, and estimates of the malaria burden. Am. J. Trop. Med. Hyg. 64, 1–11 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. Ferone, R. Folate metabolism in malaria. Bull. World Health Organ. 55, 291–298 (1977).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Cowman, A.F., Morry, M.J., Biggs, B.A., Cross, G.A.M. & Foote, S.J. Amino acid changes linked to pyrimethamine resistance in the dihydrofolate reductase–thymidylate synthase gene of Plasmodium falciparum. Proc. Natl. Acad. Sci. USA 85, 9109–9113 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Peterson, D.S., Walliker, D. & Wellems, T.E. Evidence that a point mutation in dihydrofolate reductase-thymidylate synthase confers resistance to pyrimethamine in falciparum malaria. Proc. Natl. Acad. Sci. USA 85, 9114–9118 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Foote, S.J., Galatis, D. & Cowman, A.F. Amino acids in the dihydrofolate reductase–thymidylate synthase gene of Plasmodium falciparum involved in cycloguanil resistance differ from those involved in pyrimethamine resistance. Proc. Natl. Acad. Sci. USA 87, 3014–3017 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Peterson, D.S., Milhous, W.K. & Wellems, T.E. Molecular basis of differential resistance to cycloguanil and pyrimethamine in Plasmodium falciparum malaria. Proc. Natl. Acad. Sci. USA 87, 3018–3022 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Sirawaraporn, W., Sathitkul, T., Sirawaraporn, R., Yuthavong, Y. & Santi, D.V. Antifolate-resistant mutants of Plasmodium falciparum dihydrofolate reductase. Proc. Natl. Acad. Sci. USA 94, 1124–1129 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Childs, G.E. & Lambros, C. Analogues of N-benzyloxydihydrotriazines: in vitro antimalarial activity against Plasmodium falciparum. Ann. Trop. Med. Parasitol. 80, 177–181 (1986).

    Article  CAS  PubMed  Google Scholar 

  9. Canfield, C.J. et al. PS-15: a potent, orally active antimalarial from a new class of folic acid antagonists. Am. J. Trop. Med. Hyg. 49, 121–126 (1993).

    Article  CAS  PubMed  Google Scholar 

  10. Ferone, R. & Roland, S. Dihydrofolate reductase: thymidylate synthase, a bifunctional polypeptide from Crithidia fasciculata. Proc. Natl. Acad. Sci. USA 77, 5802–5806 (1980).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ivanetich, K.M. & Santi, D.V. Bifunctional thymidylate synthase–dihydrofolate reductase in protozoa. FASEB J. 4, 1591–1597 (1990).

    Article  CAS  PubMed  Google Scholar 

  12. Bzik, D.J., Li, W.-B., Horii, T. & Inselburg, J. Molecular cloning and sequence analysis of the Plasmodium falciparum dihydrofolate reductase–thymidylate synthase gene. Proc. Natl. Acad. Sci. USA 84, 8360–8364 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hyde, J.E. The dihydrofolate reductase–thymidylate synthase gene in the drug resistance of malaria parasites. Pharmacol. Ther. 48, 45–59 (1990).

    Article  PubMed  Google Scholar 

  14. Knighton, D.R. et al. Structure of and kinetic channelling in bifunctional dihydrofolate reductase–thymidylate synthase. Nat. Struct. Biol. 1, 186–194 (1994).

    Article  CAS  PubMed  Google Scholar 

  15. Lemcke, T., Christensen, I.T. & Jorgensen, F.S. Towards an understanding of drug resistance in malaria: three-dimensional structure of Plasmodium falciparum dihydrofolate reductase by homology building. Bioorg. Med. Chem. 7, 1003–1011 (1999).

    Article  CAS  PubMed  Google Scholar 

  16. Rastelli, G. et al. Interactions of pyrimethamine, cycloguanil, WR99210 and their analogues with Plasmodium falciparum dihydrofolate reductase: structural basis of antifolate resistance. Bioorg. Med. Chem. 8, 1117–1128 (2000).

    Article  CAS  PubMed  Google Scholar 

  17. Warhurst, D.C. Antimalarial drug discovery: development of inhibitors of dihydrofolate reductase active in drug resistance. Drug Discovery Today 3, 538–546 (1998).

    Article  CAS  Google Scholar 

  18. McKie, J.H. et al. Rational drug design approach for overcoming drug resistance: application to pyrimethamine resistance in malaria. J. Med. Chem. 41, 1367–1370 (1998).

    Article  CAS  PubMed  Google Scholar 

  19. Zhang, K. & Rathod, P.K. Divergent regulation of dihydrofolate reductase between malaria parasite and human host. Science 296, 545–547 (2002).

    Article  CAS  PubMed  Google Scholar 

  20. Hardy, L.W. et al. Atomic structure of thymidylate synthase: target for rational drug design. Science 235, 448–455 (1987).

    Article  CAS  PubMed  Google Scholar 

  21. Carreras, C.W. & Santi, D.V. The catalytic mechanism and structure of thymidylate synthase. Annu. Rev. Biochem. 64, 721–762 (1995).

    Article  CAS  PubMed  Google Scholar 

  22. Shallom, S., Zhang, K., Jiang, L. & Rathod, P.K. Essential protein–protein interactions between Plasmodium falciparum thymidylate synthase and dihydrofolate reductase domains. J. Biol. Chem. 274, 37781–37786 (1999).

    Article  CAS  PubMed  Google Scholar 

  23. Garrett, C.E. et al. A bifunctional thymidylate synthetase–dihydrofolate reductase in protozoa. Mol. Biochem. Parasitol. 11, 257–265 (1984).

    Article  CAS  PubMed  Google Scholar 

  24. Cella, R., Carbonera, D., Orsi, R., Ferri, G. & Iadarola, P. Proteolytic and partial sequencing studies of the bifunctional dihydrofolate reductase–thymidylate synthase from Daucus carota. Plant Mol. Biol. 16, 975–982 (1991).

    Article  CAS  PubMed  Google Scholar 

  25. Lazar, G., Zhang, H. & Goodman, H.M. The origin of the bifunctional dihydrofolate reductase-thymidylate synthase isogenes of Arabidopsis thaliana. Plant J. 3, 657–668 (1993).

    Article  CAS  PubMed  Google Scholar 

  26. Meek, T.D., Garvey, E.P. & Santi, D.V. Purification and characterization of the bifunctional thymidylate synthetase–dihydrofolate reductase from methotrexate-resistant Leishmania tropica. Biochemistry 24, 678–686 (1985).

    Article  CAS  PubMed  Google Scholar 

  27. Elcock, A.H., Potter, M.J., Matthews, D.A., Knighton, D.R. & McCammon, J.A. Electrostatic channeling in the bifunctional enzyme dihydrofolate reductase–thymidylate synthase. J. Mol. Biol. 262, 370–374 (1996).

    Article  CAS  PubMed  Google Scholar 

  28. Chayen, N.E., Shaw Stewart, P.D., Maeder, D.L. & Blow, D.M. An automated system for micro-batch protein crystallization and screening. J. Appl. Crystallogr. 23, 297–302 (1990).

    Article  CAS  Google Scholar 

  29. D'Arcy, A., Elmore, C., Stihle, M. & Johnston, J.E. A novel approach to crystallizing proteins under oil. J. Cryst. Growth 168, 175–180 (1996).

    Article  CAS  Google Scholar 

  30. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  PubMed  Google Scholar 

  31. Pflugrath, J.W. The finer things in X-ray diffraction data collection. Acta Crystallogr. D 55, 1718–1725 (1999).

    Article  CAS  PubMed  Google Scholar 

  32. Collaborative Computational Project, Number 4. The CCP4 Suite: Programs for Protein Crystallography. Acta Crystallogr. D 50, 760–763 (1994).

  33. Navaza, J. AMoRe: an automated package for molecular replacement. Acta Crystallogr. A 50, 157–163 (1994).

    Article  Google Scholar 

  34. Sotelo-Mundo, R.R. et al. Crystal structures of rat thymidylate synthase inhibited by tomudex, a potent anticancer drug. Biochemistry 38, 1087–1094 (1999).

    Article  CAS  PubMed  Google Scholar 

  35. Whitlow, M. et al. X-ray crystallographic studies of Candida albicans dihydrofolate reductase high-resolution structures of the holoenzyme and an inhibited ternary complex. J. Biol. Chem. 272, 30289–30298 (1997).

    Article  CAS  PubMed  Google Scholar 

  36. Sawaya, M.R. & Kraut, J. Loop and subdomain movements in the mechanism of Escherichia coli dihydrofolate reductase: crystallographic evidence. Biochemistry 36, 586–603 (1997).

    Article  CAS  PubMed  Google Scholar 

  37. McTigue, M.A., Davies, J.F. II, Kaufman, B.T. & Kraut, J. Crystal structure of chicken liver dihydrofolate reductase complexed with NADP+ and biopterin. Biochemistry 31, 7264–7273 (1992).

    Article  CAS  PubMed  Google Scholar 

  38. Pieper, U., Kapadia, G., Mevarech, M. & Herzberg, O. Structural features of halophilicity derived from the crystal structure of dihydrofolate reductase from the Dead Sea halophilic archaeon, Haloferax volcanii. Structure 6, 75–88 (1998).

    Article  CAS  PubMed  Google Scholar 

  39. Cody, V. et al. Comparison of ternary crystal complexes of F31 variants of human dihydrofolate reductase with NADPH and a classical antitumor furopyrimidine. Anticancer Drug Des. 13, 307–315 (1998).

    CAS  PubMed  Google Scholar 

  40. Bolin, J.T., Filman, D.J., Matthews, D.A., Hamlin, R.C. & Kraut, J. Crystal structures of Escherichia coli and Lactobacillus casei dihydrofolate reductase refined at 1.7 Å resolution. I. General features and binding of methotrexate. J. Biol. Chem. 257, 13650–13662 (1982).

    CAS  PubMed  Google Scholar 

  41. Li, R. et al. Three-dimensional structure of M. tuberculosis dihydrofolate reductase reveals opportunities for the design of novel tuberculosis drugs. J. Mol. Biol. 295, 307–323 (2000).

    Article  CAS  PubMed  Google Scholar 

  42. Champness, J.N. et al. The structure of Pneumocystis carinii dihydrofolate reductase to 1.9 Å resolution. Structure 2, 915–924 (1994).

    Article  CAS  PubMed  Google Scholar 

  43. Dams, T. et al. The crystal structure of dihydrofolate reductase from Thermotoga maritima: molecular features of thermostability. J. Mol. Biol. 297, 659–672 (2000).

    Article  CAS  PubMed  Google Scholar 

  44. Jones, T.A., Zou, J.Y., Cowan, S.W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991).

    Article  PubMed  Google Scholar 

  45. Brunger, A.T. et al. Crystallography and NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D 54, 905–921 (1998).

    Article  CAS  PubMed  Google Scholar 

  46. Jones, T.A. A set of averaging programs. in Molecular Replacement (eds. Dodson, E.J., Gover, S., and Wolf, W.) 91–105 (SERC Daresbury Laboratory, Warrington, UK; 1992).

    Google Scholar 

  47. Kleywegt, G.J. & Jones, T.A. xdlMAPMAN and xdlDATAMAN-programs for reformatting, analysis and manipulation of biomacromolecular electron-density maps and reflection data sets. Acta Crystallogr. D 52, 826–828 (1996).

    Article  CAS  PubMed  Google Scholar 

  48. Kleywegt, G.J. & Jones, T.A. Template convolution to enhance or detect structural features in macromolecular electron-density maps. Acta Crystallogr. D 53, 179–185 (1997).

    Article  CAS  PubMed  Google Scholar 

  49. Perrakis, A., Sixma, T.K., Wilson, K.S. & Lamzin, V.S. wARP: improvement and extension of crystallographic phases by weighted averaging of multiple refined dummy atomic models. Acta Crystallogr. D 53, 448–455 (1997).

    Article  CAS  PubMed  Google Scholar 

  50. Guex, N. & Peitsch, M.C. SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis 18, 2714–2723 (1997).

    Article  CAS  PubMed  Google Scholar 

  51. Beverley, S.M., Ellenberger, T.E. & Cordingley, J.S. Primary structure of the gene encoding the bifunctional dihydrofolate reductase-thymidylate synthase of Leishmania major. Proc. Natl. Acad. Sci. USA 83, 2584–2588 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Eldin de Pecoulas, P., Basco, L.K., Tahar, R., Ouatas, T. & Mazabraud, A. Analysis of the Plasmodium vivax dihydrofolate reductase–thymidylate synthase gene sequence. Gene 211, 177–185 (1998).

    Article  CAS  PubMed  Google Scholar 

  53. Cowman, A.F. & Lew, A.M. Antifolate drug selection results in duplication and rearrangement of chromosome 7 in Plasmodium chabaudi. Mol. Cell. Biol. 9, 5182–1588 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. van Dijk, M.R., McConkey, G.A., Vinkenoog, R., Waters, A.P. & Janse, C.J. Mechanisms of pyrimethamine resistance in two different strains of Plasmodium berghei. Mol. Biochem. Parasitol. 68, 167–171 (1994).

    Article  CAS  PubMed  Google Scholar 

  55. Cheng, Q. & Saul, A. The dihydrofolate reductase domain of rodent malarias: point mutations and pyrimethamine resistance. Mol. Biochem. Parasitol. 65, 361–363 (1994).

    Article  CAS  PubMed  Google Scholar 

  56. Higgins, D. et al. CLUSTALW: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673–4680 (1994).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Koradi, R., Billeter, M. & Wüthrich, K. MOLMOL: a program for display and analysis of macromolecular structures. J. Mol. Graphics 14, 51–55 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the Wellcome Trust for the Collaborative Research Grant to Y.Y. and M.W. The present work was also partly supported by grants from the EU, Medicines for Malaria Venture (MMV), the Special Programme for Research and Training in Tropical Diseases (TDR)/United Nations Development Programme/the World Bank/the World Health Organization and Thailand Tropical Diseases Research (T2) Programmes to Y.Y. and S.K. and from the TDR to W.S. We are grateful to CCLRC, ESRF, EMBL and NSLS for use of synchrotron facilities and to W.N. Lipscomb for his suggestions and comments on the manuscript. We also thank S. Thaithong, Department of Biology, Faculty of Science, Chulalongkorn University (TM4/8.2 and K1 CB1), and D. Kyle through MR4 (V1/S) for sources of the parasite strains.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongyuth Yuthavong.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yuvaniyama, J., Chitnumsub, P., Kamchonwongpaisan, S. et al. Insights into antifolate resistance from malarial DHFR-TS structures. Nat Struct Mol Biol 10, 357–365 (2003). https://doi.org/10.1038/nsb921

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb921

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing