Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

miR-508-5p regulates multidrug resistance of gastric cancer by targeting ABCB1 and ZNRD1

Abstract

Multidrug resistance (MDR) is usually correlated with the poor prognosis of gastric cancer. In this study, we revealed a total of 11 microRNAs (miRNA) that regulated MDR of gastric cancer via high-throughput functional screening, and miR-508-5p reversed MDR most efficiently among these candidate miRNAs. The overexpression of miR-508-5p was sufficient to reverse cancer cell resistance to multiple chemotherapeutics in vitro and sensitize tumours to chemotherapy in vivo. Further studies showed that miR-508-5p could directly target the 3′-untranslated regions of ABCB1 and Zinc ribbon domain-containing 1 (ZNRD1), and suppress their expression at the mRNA and protein levels. Meanwhile, the suppression of ZNRD1 led to a decrease in ABCB1. These findings suggest that a miR-508-5p/ZNRD1/ABCB1 regulatory loop has a critical role in MDR in gastric cancer. In addition, miR-508-5p could be used as a prognostic factor for overall survival in gastric cancer. These data reveal an important role for miR-508-5p in the regulation of MDR in gastric cancer, and suggest the potential application of miR-508-5p in drug resistance prediction and treatment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Jemal A, Siegel R, Xu J, Ward E . Cancer statistics, 2010. CA Cancer J Clin 2010; 60: 277–300.

    Article  Google Scholar 

  2. Fodale V, Pierobon M, Liotta L, Petricoin E . Mechanism of cell adaptation: when and how do cancer cells develop chemoresistance? Cancer J 2011; 17: 89–95.

    Article  CAS  Google Scholar 

  3. Galluzzi L, Senovilla L, Vitale I, Michels J, Martins I, Kepp O et al. Molecular mechanisms of cisplatin resistance. Oncogene 2012; 31: 1869–1883.

    Article  CAS  Google Scholar 

  4. Hendrikx JJ, Lagas JS, Rosing H, Schellens JH, Beijnen JH, Schinkel AH . P-glycoprotein and cytochrome P450 3A act together in restricting the oral bioavailability of paclitaxel. Int J Cancer 2012; 132: 2439–2447.

    Article  Google Scholar 

  5. Zhu H, Liu Z, Tang L, Liu J, Zhou M, Xie F et al. Reversal of P-gp and MRP1-mediated multidrug resistance by H6, a gypenoside aglycon from Gynostemma pentaphyllum, in vincristine-resistant human oral cancer (KB/VCR) cells. Eur J Pharmacol 2012; 696: 43–53.

    Article  CAS  Google Scholar 

  6. Tsuji K, Wang YH, Takanashi M, Odajima T, Lee GA, Sugimori H et al. Overexpression of lung resistance-related protein and P-glycoprotein and response to induction chemotherapy in acute myelogenous leukemia. Hematol Rep 2012; 4: e18.

    Article  Google Scholar 

  7. Han JY, Hong EK, Choi BG, Park JN, Kim KW, Kang JH et al. Death receptor 5 and Bcl-2 protein expression as predictors of tumor response to gemcitabine and cisplatin in patients with advanced non-small-cell lung cancer. Med Oncol 2003; 20: 355–362.

    Article  CAS  Google Scholar 

  8. Michaud WA, Nichols AC, Mroz EA, Faquin WC, Clark JR, Begum S et al. Bcl-2 blocks cisplatin-induced apoptosis and predicts poor outcome following chemoradiation treatment in advanced oropharyngeal squamous cell carcinoma. Clin Cancer Res 2009; 15: 1645–1654.

    Article  CAS  Google Scholar 

  9. Williams J, Lucas PC, Griffith KA, Choi M, Fogoros S, Hu YY et al. Expression of Bcl-xL in ovarian carcinoma is associated with chemoresistance and recurrent disease. Gynecol Oncol 2005; 96: 287–295.

    Article  CAS  Google Scholar 

  10. Vousden KH, Lane DP . p53 in health and disease. Nat Rev Mol Cell Biol 2007; 8: 275–283.

    Article  CAS  Google Scholar 

  11. Plenchette S, Cheung HH, Fong WG, LaCasse EC, Korneluk RG . The role of XAF1 in cancer. Curr Opin Investig Drugs 2007; 8: 469–476.

    CAS  Google Scholar 

  12. Guo W, Zhao YP, Jiang YG, Wang RW, Hong L, Fan DM . Upregulation of ZNRD1 enhances cisplatin resistance in human esophageal cancer cells by regulation of ERCC1 and Bcl-2. Tumour Biol 2008; 29: 188–194.

    Article  CAS  Google Scholar 

  13. Hong L, Qiao T, Han Y, Han S, Zhang X, Lin T et al. ZNRD1 mediates resistance of gastric cancer cells to methotrexate by regulation of IMPDH2 and Bcl-2. Biochem Cell Biol 2006; 84: 199–206.

    Article  CAS  Google Scholar 

  14. Zhao L, Pan Y, Gang Y, Wang H, Jin H, Tie J et al. Identification of GAS1 as an epirubicin resistance-related gene in human gastric cancer cells with a partially randomized small interfering RNA library. J Biol Chem 2009; 284: 26273–26285.

    Article  CAS  Google Scholar 

  15. Shi Y, Zhai H, Wang X, Han Z, Liu C, Lan M et al. Ribosomal proteins S13 and L23 promote multidrug resistance in gastric cancer cells by suppressing drug-induced apoptosis. Exp Cell Res 2004; 296: 337–346.

    Article  CAS  Google Scholar 

  16. Chen C.Z . MicroRNAs as oncogenes and tumor suppressors. N Engl J Med 2005; 353: 1768–1771.

    Article  CAS  Google Scholar 

  17. Bartel D.P . MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 2004; 116: 281–297.

    Article  CAS  Google Scholar 

  18. Catuogno S, Cerchia L, Romano G, Pognonec P, Condorelli G, de Franciscis V . miR-34c may protect lung cancer cells from paclitaxel-induced apoptosis. Oncogene 2012; 27: 1–11.

    Google Scholar 

  19. Zhu Y, Yu F, Jiao Y, Feng J, Tang W, Yao H et al. Reduced miR-128 in breast tumor-initiating cells induces chemotherapeutic resistance via Bmi-1 and ABCC5. Clin Cancer Res 2011; 17: 7105–7115.

    Article  CAS  Google Scholar 

  20. Sun L, Yao Y, Liu B, Lin Z, Lin L, Yang M et al. MiR-200b and miR-15b regulate chemotherapy-induced epithelial-mesenchymal transition in human tongue cancer cells by targeting BMI1. Oncogene 2012; 31: 432–445.

    Article  CAS  Google Scholar 

  21. Rao X, Di Leva G, Li M, Fang F, Devlin C, Hartman-Frey C et al. MicroRNA-221/222 confers breast cancer fulvestrant resistance by regulating multiple signaling pathways. Oncogene 2011; 30: 1082–1097.

    Article  CAS  Google Scholar 

  22. Ma K, He Y, Zhang H, Fei Q, Niu D, Wang D et al. DNA methylation-regulated miR-193a-3p dictates resistance of hepatocellular carcinoma to 5-fluorouracil via repression of SRSF2 expression. J Biol Chem 2012; 287: 5639–5649.

    Article  CAS  Google Scholar 

  23. Song B, Wang Y, Xi Y, Kudo K, Bruheim S, Botchkina GI et al. Mechanism of chemoresistance mediated by miR-140 in human osteosarcoma and colon cancer cells. Oncogene 2009; 28: 4065–4074.

    Article  CAS  Google Scholar 

  24. Zhao X, Yang L, Hu J . Down-regulation of miR-27a might inhibit proliferation and drug resistance of gastric cancer cells. J Exp Clin Cancer Res 2011; 30: 55.

    Article  CAS  Google Scholar 

  25. Zhu W, Zhu D, Lu S, Wang T, Wang J, Jiang B et al. miR-497 modulates multidrug resistance of human cancer cell lines by targeting BCL2. Med Oncol 2012; 29: 384–391.

    Article  CAS  Google Scholar 

  26. Zhu W, Xu H, Zhu D, Zhi H, Wang T, Wang J et al. miR-200bc/429 cluster modulates multidrug resistance of human cancer cell lines by targeting BCL2 and XIAP. Cancer Chemother Pharmacol 2012; 69: 723–731.

    Article  CAS  Google Scholar 

  27. Zhu W, Shan X, Wang T, Shu Y, Liu P . miR-181b modulates multidrug resistance by targeting BCL2 in human cancer cell lines. Int J Cancer 2010; 127: 2520–2529.

    Article  CAS  Google Scholar 

  28. Zhu W, Shan X, Wang T, Shu Y, Liu P . miR-15b and miR-16 modulate multidrug resistance by targeting BCL2 in human gastric cancer cells. Int J Cancer 2008; 123: 372–379.

    Article  Google Scholar 

  29. Kovalchuk O, Filkowski J, Meservy J, Ilnytskyy Y, Tryndyak VP, Chekhun VF et al. Involvement of microRNA-451 in resistance of the MCF-7 breast cancer cells to chemotherapeutic drug doxorubicin. Mol Cancer Ther 2008; 7: 2152–2159.

    Article  CAS  Google Scholar 

  30. Feng DD, Zhang H, Zhang P, Zheng YS, Zhang XJ, Han BW et al. Down-regulated miR-331-5p and miR-27a are associated with chemotherapy resistance and relapse in leukaemia. J Cell Mol Med 2011; 15: 2164–2175.

    Article  CAS  Google Scholar 

  31. Zhu H, Wu H, Liu X, Evans BR, Medina DJ, Liu CG et al. Role of MicroRNA miR-27a and miR-451 in the regulation of MDR1/P-glycoprotein expression in human cancer cells. Biochem Pharmacol 2008; 76: 582–588.

    Article  CAS  Google Scholar 

  32. Feng DD, Zhang H, Zhang P, Zheng YS, Zhang XJ, Han BW et al. Down-regulated miR-331-5p and miR-27a are associated with chemotherapy resistance and relapse in leukemia. J Cell Mol Med 2011; 15: 2164–2175.

    Article  CAS  Google Scholar 

  33. Zhang H, Li M, Han Y, Hong L, Gong T, Sun L et al. Down-regulation of miR-27a might reverse multidrug resistance of esophageal squamous cell carcinoma. Dig Dis Sci 2010; 55: 2545–2551.

    Article  CAS  Google Scholar 

  34. Sereš M, Cholujová D, Bubenčíkova T, Breier A, Sulová Z . Tunicamycin depresses p-glycoprotein glycosylation without an effect on its membrane localization and drug efflux activity in l1210 cells. Int J Mol Sci 2011; 12: 7772–7784.

    Article  Google Scholar 

  35. Gribar JJ, Ramachandra M, Hrycyna CA, Dey S, Ambudkar SV . Functional characterization of glycosylation-deficient human P-glycoprotein using a vaccinia virus expression system. J Mem Biol 2000; 173: 203–214.

    Article  CAS  Google Scholar 

  36. Kramer R, Weber TK, Arceci R, Ramchurren N, Kastrinakis WV, Steele G Jr et al. Inhibition of N-linked glycosylation of P-glycoprotein by tunicamycin results in a reduced multidrug resistance phenotype. Br J Cancer 1995; 71: 670–675.

    Article  CAS  Google Scholar 

  37. Hong L, Ning X, Shi Y, Shen H, Zhang Y, Lan M et al. Reversal of multidrug resistance of gastric cancer cells by down-regulation of ZNRD1 with ZNRD1 siRNA. Br J Biomed Sci 2004; 61: 206–210.

    Article  CAS  Google Scholar 

  38. Hong L, Ning X, Shi Y, Shen H, Zhang Y, Lan M et al. Overexpression of ZNRD1 promotes multidrug-resistant phenotype of gastric cancer cells through upregulation of P-glycoprotein. Cancer Biol Ther 2004; 3: 377–381.

    Article  Google Scholar 

  39. Hwang JH, Voortman J, Giovannetti E, Steinberg SM, Leon LG, Kim YT et al. Identification of microRNA-21as a biomarker for chemoresistance and clinical outcome following adjuvant therapy in resectable pancreatic cancer. PLoS One 2010; 5: e10630.

    Article  Google Scholar 

  40. Nishida N, Yamashita S, Mimori K, Sudo T, Tanaka F, Shibata K et al. MicroRNA-10b is a prognostic indicator in colorectal cancer and confers resistance to the chemotherapeutic agent 5-fluorouracil in colorectal cancer cells. Ann Surg Oncol 2012; 19: 3065–3071.

    Article  Google Scholar 

  41. Eitan R, Kushnir M, Lithwick-Yanai G, David MB, Hoshen M, Glezerman M et al. Tumor microRNA expression patterns associated with resistance to platinum based chemotherapy and survival in ovarian cancer patients. Gynecol Oncol 2009; 114: 253–259.

    Article  CAS  Google Scholar 

  42. Kim CH, Kim HK, Rettig RL, Kim J, Lee ET, Aprelikova O et al. miRNA signature associated with outcome of gastric cancer patients following chemotherapy. BMC Med Genomics 2011; 4: 79.

    Article  CAS  Google Scholar 

  43. Hermeking H . MicroRNAs in the p53 network: micromanagement of tumour suppression. Nat Rev Cancer 2012; 12: 613–626.

    Article  CAS  Google Scholar 

  44. Hou J, Lin L, Zhou W, Wang Z, Ding G, Dong Q et al. Identification of miRNomes in human liver and hepatocellular carcinoma reveals miR-199a/b-3p as therapeutic target for hepatocellular carcinoma. Cancer Cell 2011; 19: 232–243.

    Article  CAS  Google Scholar 

  45. Wang Y, Baskerville S, Shenoy A, Babiarz JE, Baehner L, Blelloch R . Embryonic stem cell-specific microRNAs regulate the G1-S transition and promote rapid proliferation. Nat Genet 2008; 40: 1478–1483.

    Article  CAS  Google Scholar 

  46. Huang DY, Mock M, Hagenbuch B, Chan S, Dmitrovic J, Gabos S et al. Dynamic cytotoxic response to microcystins using microelectronic sensor arrays. Environ Sci Technol 2009; 43: 7803–7809.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants 81030044, 2010CB529300, 2010CB529305, 06, 02, NSFC-81120108005, 81172096 and 863-2012AA02A203. We would like to thank Zheng Chen and Jianhua Dou from the Fourth Military Medical University for providing excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Y Nie or D Fan.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shang, Y., Zhang, Z., Liu, Z. et al. miR-508-5p regulates multidrug resistance of gastric cancer by targeting ABCB1 and ZNRD1. Oncogene 33, 3267–3276 (2014). https://doi.org/10.1038/onc.2013.297

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2013.297

Keywords

This article is cited by

Search

Quick links