Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Manuscript
  • Published:

Sensitivity and Resistance to Therapy

Cellular pharmacology of mitoxantrone in p-glycoprotein-positive and -negative human myeloid leukemic cell lines

Abstract

Previous reports suggest that resistance to mitoxantrone in different tumor cell lines is unrelated to the overexpression of p-glycoprotein. In order to determine the role of p-glycoprotein in the cellular pharmacology of mitoxantrone flow cytometry and confocal microscopy were used to study two human myeloid leukemia cell lines selected for resistance to mitoxantrone (HL-60MX2) and doxorubicin (HL-60DOX). To optimize the detection of intracellular mitoxantrone, we determined the maximum excitation (607 nm) and emission (684 nm) wavelength by fluorescence spectroscopy. The modified flow cytometric conditions using 568.2 nm laser emission for excitation and a 620 nm long pass filter for fluorescence collection resulted in a 1-log increase in sensitivity, compared with standard 488-nm laser excitation. Uptake and retention of mitoxantrone in the presence of verapamil, a calcium channel blocker known to inhibit p-glycoprotein, were analyzed. Our results showed no change in uptake and retention of the drug in p-glycoprotein-negative mitoxantrone-resistant HL-60MX2 cells and in its sensitive parental line, HL-60s. In contrast, 3.1- and 2.4-fold increases were found in uptake and retention of mitoxantrone in p-glycoprotein-positive cells (HL-60DOX) incubated with verapamil. Confocal microscopy of intracellular drug distribution demonstrated reduced nuclear uptake, which could be reversed by verapamil, in HL-60DOX. A characteristic punctate pattern was observed for the intracytoplasmic drug distribution in HL-60DOX and HL-60MX2 cells and was partially modified by the presence of verapamil in HL-60DOX cells. Verapamil increased cytotoxicity of mitoxantrone two-fold in HL-60DOX cells, 1.4-fold in HL-60MX2, and had no effect in HL-60s. Our study demonstrates that the cellular pharmacology of mitoxantrone is affected by p-glycoprotein and can be reversed at least in part by verapamil. Other mechanisms of resistance however, seem to play a determinant role in the modulation of mitoxantrone cytotoxicity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Consoli, U., Van, N., Neamati, N. et al. Cellular pharmacology of mitoxantrone in p-glycoprotein-positive and -negative human myeloid leukemic cell lines. Leukemia 11, 2066–2074 (1997). https://doi.org/10.1038/sj.leu.2400511

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2400511

Keywords

This article is cited by

Search

Quick links