Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Akt inhibitor A-443654 induces rapid Akt Ser-473 phosphorylation independent of mTORC1 inhibition

Abstract

Rapamycin, a natural product inhibitor of the Raptor-mammalian target of rapamycin complex (mTORC1), is known to induce Protein kinase B (Akt/PKB) Ser-473 phosphorylation in a subset of human cancer cell lines through inactivation of S6K1, stabilization of insulin receptor substrate (IRS)-1, and increased signaling through the insulin/insulin-like growth factor-I/phosphatidylinositol 3-kinase (PI3K) axis. We report that A-443654, a potent small-molecule inhibitor of Akt serine/threonine kinases, induces Akt Ser-473 phosphorylation in all human cancer cell lines tested, including PTEN- and TSC2-deficient lines. This phenomenon is dose-dependent, manifests coincident with Akt inhibition and likely represents an alternative, rapid-feedback pathway that can be functionally dissociated from mTORC1 inhibition. Experiments performed in TSC2−/− cells indicate that TSC2 and IRS-1 cooperate with, but are dispensable for, A-443654-mediated Akt phosphorylation. This feedback event does require PI3K activity, however, as it can be inhibited by LY294002 or wortmannin. Small interfering RNA-mediated knockdown of mTOR or Rictor, components of the rapamycin-insensitive mTORC2 complex, but not the mTORC1 component Raptor, also inhibited Akt Ser-473 phosphorylation induced by A-443654. Our data thus indicate that Akt phosphorylation and activity are coupled in a manner not previously appreciated and provide a novel mode of Akt regulation that is distinct from the previously described rapamycin-induced IRS-1 stabilization mechanism.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  • Alessi DR, James SR, Downes CP, Holmes AB, Gaffney PR, Reese CB et al. (1997). Characterization of a 3-phosphoinositide-dependent protein kinase which phosphorylates and activates protein kinase Balpha. Curr Biol 7: 261–269.

    Article  CAS  PubMed  Google Scholar 

  • Altomare DA, Testa JR . (2005). Perturbations of the AKT signaling pathway in human cancer. Oncogene 24: 7455–7464.

    CAS  PubMed  Google Scholar 

  • Balendran A, Casamayor A, Deak M, Paterson A, Gaffney P, Currie R et al. (1999). PDK1 acquires PDK2 activity in the presence of a synthetic peptide derived from the carboxyl terminus of PRK2. Curr Biol 9: 393–404.

    Article  CAS  PubMed  Google Scholar 

  • Barnett SF, Bilodeau MT, Lindsley CW . (2005). The Akt/PKB family of protein kinases: a review of small molecule inhibitors and progress towards target validation. Curr Top Med Chem 5: 109–125.

    Article  CAS  PubMed  Google Scholar 

  • Brunn GJ, Williams J, Sabers C, Wiederrecht G, Lawrence Jr JC, Abraham Jr RT . (1996). Direct inhibition of the signaling functions of the mammalian target of rapamycin by the phosphoinositide 3-kinase inhibitors, wortmannin and LY294002. EMBO J 15: 5256–5267.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng JQ, Lindsley CW, Cheng GZ, Yang H, Nicosia SV . (2005). The Akt/PKB pathway: molecular target for cancer drug discovery. Oncogene 24: 7482–7492.

    Article  CAS  PubMed  Google Scholar 

  • Cheung PC, Campbell DG, Nebreda AR, Cohen P . (2003). Feedback control of the protein kinase TAK1 by SAPK2a/p38alpha. EMBO J 22: 5793–5805.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Datta SR, Brunet A, Greenberg ME . (1999). Cellular survival: a play in three Akts. Genes Dev 13: 2905–2927.

    Article  CAS  PubMed  Google Scholar 

  • Davies SP, Reddy H, Caivano M, Cohen P . (2000). Specificity and mechanism of action of some commonly used protein kinase inhibitors. Biochem J 351: 95–105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feng J, Park J, Cron P, Hess D, Hemmings BA . (2004). Identification of a PKB/Akt hydrophobic motif Ser-473 kinase as DNA-dependent protein kinase. J Biol Chem 279: 41189–41196.

    Article  CAS  PubMed  Google Scholar 

  • Granville CA, Memmott RM, Gills JJ, Dennis PA . (2006). Handicapping the race to develop inhibitors of the phosphoinositide 3-kinase/Akt/mammalian target of rapamycin pathway. Clin Cancer Res 12: 679–689.

    Article  CAS  PubMed  Google Scholar 

  • Hall-Jackson CA, Eyers PA, Cohen P, Goedert M, Boyle FT, Hewitt N et al. (1999). Paradoxical activation of Raf by a novel Raf inhibitor. Chem Biol 6: 559–568.

    Article  CAS  PubMed  Google Scholar 

  • Harrington LS, Findlay GM, Gray A, Tolkacheva T, Wigfield S, Rebholz H et al. (2004). The TSC1-2 tumor suppressor controls insulin-PI3K signaling via regulation of IRS proteins. J Cell Biol 166: 213–223.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hay N . (2005). The Akt-mTOR tango and its relevance to cancer. Cancer Cell 8: 179–183.

    Article  CAS  PubMed  Google Scholar 

  • Li J, DeFea K, Roth RA . (1999). Modulation of insulin receptor substrate-1 tyrosine phosphorylation by an Akt/phosphatidylinositol 3-kinase pathway. J Biol Chem 274: 9351–9356.

    Article  CAS  PubMed  Google Scholar 

  • Luo Y, Shoemaker AR, Liu X, Woods KW, Thomas SA, de Jong R et al. (2005). Potent and selective inhibitors of Akt kinases slow the progress of tumors in vivo. Mol Cancer Ther 4: 977–986.

    Article  CAS  PubMed  Google Scholar 

  • O’Reilly KE, Rojo F, She QB, Solit D, Mills GB, Smith D et al. (2006). mTOR inhibition induces upstream receptor tyrosine kinase signaling and activates Akt. Cancer Res 66: 1500–1508.

    Article  PubMed  PubMed Central  Google Scholar 

  • Persad S, Attwell S, Gray V, Mawji N, Deng JT, Leung D et al. (2001). Regulation of protein kinase B/Akt-serine 473 phosphorylation by integrin-linked kinase: critical roles for kinase activity and amino acids arginine 211 and serine 343. J Biol Chem 276: 27462–27469.

    Article  CAS  PubMed  Google Scholar 

  • Sarbassov DD, Guertin DA, Ali SM, Sabatini DM . (2005). Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science 307: 1098–1101.

    Article  CAS  PubMed  Google Scholar 

  • Shah OJ, Wang Z, Hunter T . (2004). Inappropriate activation of the TSC/Rheb/mTOR/S6 K cassette induces IRS1/2 depletion, insulin resistance, and cell survival deficiencies. Curr Biol 14: 1650–1656.

    Article  CAS  PubMed  Google Scholar 

  • Sun SY, Rosenberg LM, Wang X, Zhou Z, Yue P, Fu H et al. (2005). Activation of Akt and eIF4E survival pathways by rapamycin-mediated mammalian target of rapamycin inhibition. Cancer Res 65: 7052–7058.

    Article  CAS  PubMed  Google Scholar 

  • Testa JR, Tsichlis PN . (2005). AKT signaling in normal and malignant cells. Oncogene 24: 7391–7393.

    Article  CAS  PubMed  Google Scholar 

  • Thompson JE, Thompson CB . (2004). Putting the Rap on Akt. J Clin Oncol 22: 4217–4226.

    Article  CAS  PubMed  Google Scholar 

  • Toker A, Newton AC . (2000). Akt/protein kinase B is regulated by autophosphorylation at the hypothetical PDK-2 site. J Biol Chem 275: 8271–8274.

    Article  CAS  PubMed  Google Scholar 

  • Um SH, Frigerio F, Watanabe M, Picard F, Joaquin M, Sticker M et al. (2004). Absence of S6K1 protects against age- and diet-induced obesity while enhancing insulin sensitivity. Nature 431: 200–205.

    Article  CAS  PubMed  Google Scholar 

  • Xu B, Wilsbacher JL, Collisson T, Cobb MH . (1999). The N-terminal ERK-binding site of MEK1 is required for efficient feedback phosphorylation by ERK2 in vitro and ERK activation in vivo. J Biol Chem 274: 34029–34035.

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Cicchetti G, Onda H, Koon HB, Asrican K, Bajraszewski N et al. (2003). Loss of Tsc1/Tsc2 activates mTOR and disrupts PI3K-Akt signaling through downregulation of PDGFR. J Clin Invest 112: 1223–1233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

TH is a Frank and Else Schilling American Cancer Society Research Professor.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E K-H Han.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Han, EH., Leverson, J., McGonigal, T. et al. Akt inhibitor A-443654 induces rapid Akt Ser-473 phosphorylation independent of mTORC1 inhibition. Oncogene 26, 5655–5661 (2007). https://doi.org/10.1038/sj.onc.1210343

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210343

Keywords

This article is cited by

Search

Quick links