Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Only low levels of exogenous N-acetyltransferase can be achieved in transgenic mice

Abstract

Therapeutic and environmental aromatic amines and hydrazines are substrates for the arylamine N-acetyltransferases (NAT). In all, 10 transgenic lines containing either the human NAT1 or NAT2 transgene were developed using multiple promoters. The presence of the transgene was confirmed by determining copy number, mRNA and enzyme activity. Despite some lines having high copy numbers of the transgene, only modest or no increases in enzymatic activity could be found in a variety of tissues. The NAT1 transgene could not be bred to homozygosity. The cytomegalovirus (CMV)-promoted NAT1 transgene increased endogenous Nat1 mRNA levels in liver and had little effect on endogenous Nat2 mRNA levels. The presence of the CMV-promoted NAT2 transgene appeared to suppress endogenous hepatic Nat2 mRNA, but did not alter Nat1 mRNA levels. The failure to achieve high expression of any of the transgenes suggests that overexpression of NAT genes may have harmful effects during development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Hein DW . Molecular genetics and function of NAT1 and NAT2: role in aromatic amine metabolism and carcinogenesis. Mutat Res 2002; 506/507: 65–77.

    Article  Google Scholar 

  2. Glowinski IB, Weber WW, Fysh JM, Vaught JB, King CM . Evidence that arylhydroxamic acid N, O-acetyltransferase and the genetic polymorphic N-acetyltransferase are properties of the same enzyme in rabbit liver. J Biol Chem 1980; 255: 7883–7890.

    CAS  PubMed  Google Scholar 

  3. Flammang TJ, Kadlubar FF . Acetyl coenzyme A-dependent metabolic activation of N-hydroxy-3,2′-dimethyl-4-aminobiphenyl and several carcinogenic N-hydroxy arylamines in relation to tissues and species differences, other acyl donors and arylhydroxamic acid-dependent acetyltransferases. Carcinogenesis 1986; 7: 926–929.

    Article  Google Scholar 

  4. Fretland AJ, Doll MA, Gray K, Feng Y, Hein DW . Cloning, sequencing and recombinant expression of NAT1, NAT2 and NAT3 derived from the C3H/HeJ (rapid) and A/HeJ (slow) acetylator inbred mouse: functional characterization of the activation and detoxification of aromatic amine carcinogens. Toxicol Appl Pharmacol 1997; 1432: 360–366.

    Article  Google Scholar 

  5. Mattano SS, Land S, King CM, Weber WW . Purification and biochemical characterization of hepatic N-acetyltransferase from rapid and slow acetylator mice: identity with arylhydroxamic acid N,O-acetyltransferase and N-hydroxylamine O-acetyltransferase. Mol Pharmacol 1989; 35: 599–609.

    CAS  PubMed  Google Scholar 

  6. Ward A, Summers M, Sim E . Purification of recombinant human NAT1 in E. coli. Biochem. Pharmacol 1995; 49: 1759–1767.

    Article  CAS  PubMed  Google Scholar 

  7. Smelt VA, Upton A, Adjaye J, Payton MA, Boulouvala S, Johnson N et al. Expression of arylamine N-acetyltransferases in pre-term placenta and in human pre-implantation embryos. Hum Mol Genet 2000; 9: 1101–1107.

    Article  CAS  PubMed  Google Scholar 

  8. Glowinski IB, Weber WW . Genetic regulation of aromatic amine N-acetylation in inbred mice. J Biol Chem 1982; 257: 1424–1430.

    CAS  PubMed  Google Scholar 

  9. Mattano SS, Erickson RP, Nesbitt MN, Weber WW . Linkage of Nat and Es-1 in the mouse and development of strains congenic for N-acetyltransferase. J Heredity 1988; 79: 430–433.

    Article  CAS  Google Scholar 

  10. Ohsako S, Ohtomi M, Sakamoto Y, Uyemara K, Deguchi T . Arylamine N-acetyltransferase from chicken liver II. Cloning of cDNA and expression in Chinese hamster ovary cells. J Biol Chem 1988; 263: 7534–7538.

    CAS  PubMed  Google Scholar 

  11. Martell KJ, Vatsis KP, Weber WW . Molecular genetic basis of rapid and slow acetylation in mice. Mol Pharmacol 1991; 40: 218–227.

    CAS  PubMed  Google Scholar 

  12. Martell KJ, Levy GN, Weber WW . Cloned mouse N-acetyltransferases: enzymatic properties of expressed Nat-1 and Nat-2 gene products. Mol Pharmacol 1992; 42: 265–272.

    CAS  PubMed  Google Scholar 

  13. Hein DW, Trinidad A, Yerokun T, Ferguson RJ, Kirlin WG, Weber WW . Genetic control of acetyl coenzyme A-dependent arylamine N-acetyltransferase, hydrazine N-acetyltransferase, and N-hydroxy-arylamine O-acetyltransferase enzymes in C57Bl/6, A/J. AC57F1 and the rapid and slow acetylator A.B6 and B6. A congenic inbred mouse. Drug Metab Dispos 1988; 16: 341–347.

    CAS  PubMed  Google Scholar 

  14. Hein DW, Doll MA, Fretland AJ, Leff MA, Webb SJ, Xio GH et al. Molecular genetics and epidemiology of the NAT1 and NAT2 acetylation polymorphisms. Cancer Epidemiol Biomarkers Prev 2000; 9: 29–42.

    CAS  PubMed  Google Scholar 

  15. Estrada-Rodgers L, Levy GN, Weber WW . Substrate selectivity of mouse N-acetyltransferases 1, 2 and 3 expressed in COS-1 cell. Drug Metab Dispos 1998; 26: 502–505.

    CAS  PubMed  Google Scholar 

  16. Payton M, Smelt V, Upton A, Sim E . A method for genotyping murine arylamine N-acetyltransferase type2 (NAT2): a gene expressed in preimplantation embryonic stem cells encoding an enzyme acetylating the folate catabolite p-aminobenzoylglutamate. Biochem Pharmacol 1999; 58: 779–785.

    Article  CAS  PubMed  Google Scholar 

  17. Fakis G, Boukouvala S, Buckle V, Payton M, Denning C, Sim E . Chromosome mapping of the genes for murine arylamine N-acetyltransferases (NATs), enzymes involved in the metabolism of carcinogens: identification of a novel upstream noncoding exon for murine Nat2. Cytogenet Cell Genet 2000; 90: 134–138.

    Article  CAS  PubMed  Google Scholar 

  18. Hein DW, Doll MA, Fretland AJ, Leff MA, Webb SJ, Xio GH et al. Molecular genetics and epidemiology of the NAT1 and NAT2 acetylation polymorphisms. Cancer Epidemiol Biomarkers Prev 2000; 9: 29–42.

    CAS  PubMed  Google Scholar 

  19. Cornish VA, Pinter K, Boukouvala S, Johnson N, Labrousse C, Payton M et al. Generation and analysis of mice with a targeted disruption of the arylamine N-acetyltransferase type 2 gene. Pharmacogenomics 2003; 3: 169–177.

    Article  CAS  Google Scholar 

  20. Sugamori KS, Wong S, Gaedigk A, Yu V, Abramovici H, Rozmahel R et al. Generation and functional characterization of arylamine N-acetyltransferase Nat1/Nat2 double-knockout mice. Mol Pharmacol 2003; 64: 170–179.

    Article  CAS  PubMed  Google Scholar 

  21. Leff MA, Epstein PN, Doll MA, Fretland A-J, Udaya-Sankar D, Rustan TD et al. Prostate-specific human N-acetyltransferase 2 (NAT2) expression in the mouse. J Pharmacol Exp Ther 1999; 290: 182–187.

    CAS  PubMed  Google Scholar 

  22. Sim E, Pinter K, Mushtaq A, Upton A, Sandy J, Bhakta S et al. Arylamine N-acetyltransferases: a pharmacogenomics approach to drug metabolism and endogenous function. Biochem Soc Trans 2003; 31: 615–619.

    Article  CAS  PubMed  Google Scholar 

  23. Tannen RH, Weber WW . Rodent models of the human isoniazid acetylator polymorphism. Drug Metab Dispos 1979; 7: 274–279.

    CAS  PubMed  Google Scholar 

  24. Palmiter RD, Brinster RL . Germ-line transformation of mice. Annu Rev Genet 1986; 20: 465–499.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Minchin RF . Acetylation of p-aminobenzoylglutamate, a folic acid catabolite, by recombinant human arylamine N-acetyltransferase and U937 cells. Biochemistry 1995; 307: 1–3.

    Article  CAS  Google Scholar 

  26. Sim E, Payton M, Noble M, Minchin R . An update on genetic, structural and functional studies of arylamine N-acetyltransferases in eucaryotes and procaryotes. Hum Mol Genet 2000; 9: 2435–2441.

    Article  CAS  PubMed  Google Scholar 

  27. Gregory III JF, Williamson J, Liao JF, Bailey LB, Toth JP . Kinetic model of folate metabolism in nonpregnant women consuming 2H2 folic acid: isotopic labeling of urinary folate and the catabolite para-acetamidobenzoylglutamate indicates slow, intake-dependent, turnover of folate pools. J Nutr 1998; 128: 1896–1906.

    Article  CAS  PubMed  Google Scholar 

  28. McPartlin J, Courtney G, McNulty H, Weir D, Scott J . The quantitative analysis of endogenous folate catabolites in human urine. Anal Biochem 1992; 206: 256–261.

    Article  CAS  PubMed  Google Scholar 

  29. Schirch V, Strong W . Interaction of folypolyglutamates with enzymes in one-carbon metabolism. Arch Biochem Biophys 1989; 269: 371–380.

    Article  CAS  PubMed  Google Scholar 

  30. Strong WB, Schirch V . In vitro conversion of formate to serine. Effect of tetrahydropteroylpolyglutamates and serine hydroxymethyltransferase on the rate of 10-fomyltetrahydrofolate synthetase. Biochemistry 1989; 28: 9430–9439.

    Article  CAS  PubMed  Google Scholar 

  31. Chu E, Allegra CJ . The role of thymidylate synthase as an RNA binding protein. BioEssays 1996; 18: 191–198.

    Article  CAS  PubMed  Google Scholar 

  32. Kitchens ME, Forsthoefel AM, Rafique Z, Spencer HT, Berger FG . Ligand-mediated induction of thymidylate synthase occurs by enzyme stabilization. J Biol Chem 1999; 274: 12544–12547.

    Article  CAS  PubMed  Google Scholar 

  33. McGuire JJ, Coward JK . Pteroyl-polyglutamates: biosynthesis, degradation and function. In: Blakley RL, Benkovic SJ (eds). Folates and Pterins. Wiley: New York, 1984, pp 135–190.

    Google Scholar 

  34. Blakley RL, Benkovic SJ . Folates and Pterins. Wiley: New York, 1984.

    Google Scholar 

  35. Ebisawa T, Deguchi T . Structure and restriction fragment length polymorphism of genes for human liver N-acetyltransferases. Biochem Biophys Res Commun 1991; 279: 1252–1257.

    Article  Google Scholar 

  36. Butcher N, Arulpragasam A, Pope C, Minchin RF . Identification of a minimal promoter sequence for the human n-acetyltransferase type 1 gene that binds to AP-1 (activator protein 1) and YY-1 (Yin and Yang). Biochem J 2003; 376: 441–448.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Husain A, Barker DF, States JC, Doll MA, Hein DJ . Identification of the major promoter and non-coding exons of the human arylamine N-acetyltransferase 1 gene (NAT1). Pharmacogenetics 2004; 14: 397–406.

    Article  CAS  PubMed  Google Scholar 

  38. Kent KR, Warshawsky D . Xenobiotic inducible regions of the human arylamine N-acetyltransferase 1 and 2 genes. Toxicol Lett 2003; 139: 11–23.

    Article  Google Scholar 

  39. Boukoulava S, Price N, Plant KE, Sim E . Structure and transcriptional regulation of the Nat2 gene encoding for the drug metabolizing enzyme arylamine N-acetyltransferase type 2 in mice. Biochem J 2003; 375: 593–602.

    Article  Google Scholar 

  40. Liu Y, Levy GN . Activation of heterocyclic amines by combinations of prostaglandin H synthase-1 and -2 with N-acetyltransferase 1 and 2. Cancer Lett 1998; 133: 115–123.

    Article  CAS  PubMed  Google Scholar 

  41. Schmidt EV, Christoph G, Zeller R, Leder P . The cytomegalovirus enhancer: a pan-active control element in transgenic mice. Mol Cell Biol 1990; 10: 4406–4411.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Furth PA, Hennighausen L, Baker C, Beatty B, Woychick R . The variability in activity of the universally expressed human cytomegalovirus immediate early gene 1 enhancer/promoter in transgenic mice. Nucleic Acids Res 1991; 19: 6205–6208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Yull FE, Wallace RM, Clark AJ . Restricted tissue-specific but correct developmental expression mediated by a short human α1AT promoter fragment in transgenic mice. Transgenic Res 1995; 4: 70–74.

    Article  CAS  PubMed  Google Scholar 

  44. Mattano SS, Weber WW . Kinetics of arylamine N-acetyltransferase in tissues from rapid and slow acetylator mice. Carcinogenesis 1987; 8: 133–137.

    Article  CAS  PubMed  Google Scholar 

  45. McQueen CA . Arylamine N-acetyltransferases. In: Costa LG, Maines MD, Reed DJ, Sasa S, Sipes IG (eds). Current Protocols in Toxicology. John Wiley and Sons: New York, 2001, pp 4.6.1–4.6.1.13.

    Google Scholar 

  46. McQueen CA, Chau B, Erickson RP, Tjalkens RB, Philbert MA . The effects of genetic variation in N-acetyltransferases on 4-aminobiphenyl genotoxicity in mouse liver. Chem Biol Interact 2003; 146: 51–60.

    Article  CAS  PubMed  Google Scholar 

  47. Hein DW, Hirata M, Glowinski IB, Weber WW . Biochemical evidence for the coexistence of monomorphic and polymorphic N-acetyltransferase activities on a common protein in rabbit liver. J Pharmacol Exp Ther 1982; 220: 1–7.

    CAS  PubMed  Google Scholar 

  48. Karsai A, Miller S, Platz S, Hauser MT . Evaluation of a home-made SYBR Green I reaction mixture for real-time PCR quantification of gene expression. Biotechniques 2002; 32: 790–796.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Drs Gerald Levy and Wendell Weber of the Department of Pharmacology and Dr Kotoku Kurachi, Department of Human Genetics, of the University of Michigan, for constructs and Ms Donelle Myers for secretarial help. This work was supported by ES10047 to CAM and the Genetically Modified Mouse Service, funded by CA23074 and ES06694.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R P Erickson.

Additional information

DUALITY OF INTEREST

None declared.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cao, W., Chau, B., Hunter, R. et al. Only low levels of exogenous N-acetyltransferase can be achieved in transgenic mice. Pharmacogenomics J 5, 255–261 (2005). https://doi.org/10.1038/sj.tpj.6500319

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.tpj.6500319

Keywords

Search

Quick links