Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Pharmacogenetic analysis of paclitaxel transport and metabolism genes in breast cancer

Abstract

Paclitaxel is commonly used in the treatment of breast cancer. Variability in paclitaxel clearance may contribute to the unpredictability of clinical outcomes. We assessed genomic DNA from the plasma of 93 patients with high-risk primary or stage IV breast cancer, who received dose-intense paclitaxel, doxorubicin and cyclophosphamide. Eight polymorphisms in six genes associated with metabolism and transport of paclitaxel were analyzed using Pyrosequencing. We found no association between ABCB1, ABCG2, CYP1B1, CYP3A4, CYP3A5 and CYP2C8 genotypes and paclitaxel clearance. However, patients homozygous for the CYP1B1*3 allele had a significantly longer progression-free survival than patients with at least one Valine allele (P=0.037). This finding could reflect altered paclitaxel metabolism, however, the finding was independent of paclitaxel clearance. Alternatively, the role of CYP1B1 in estrogen metabolism may influence the risk of invasive or paclitaxel resistant breast cancer in patients carrying the CYP1B1*3 allele.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Crown J, O'Leary M, Ooi WS . Docetaxel and paclitaxel in the treatment of breast cancer: a review of clinical experience. Oncologist 2004; 9: 24–32.

    Article  CAS  PubMed  Google Scholar 

  2. Somlo G, Doroshow JH, Synold T, Longmate J, Reardon D, Chow W et al. High-dose paclitaxel in combination with doxorubicin, cyclophosphamide and peripheral blood progenitor cell rescue in patients with high-risk primary and responding metastatic breast carcinoma: toxicity profile, relationship to paclitaxel pharmacokinetics and short-term outcome. Br J Cancer 2001; 84: 1591–1598.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Marsh S . Taxane pharmacogenetics. Personalized Med 2006; 3: 33–43.

    Article  CAS  Google Scholar 

  4. Bahadur N, Leathart JB, Mutch E, Steimel-Crespi D, Dunn SA, Gilissen R et al. CYP2C8 polymorphisms in Caucasians and their relationship with paclitaxel 6alpha-hydroxylase activity in human liver microsomes. Biochem Pharmacol 2002; 64: 1579–1589.

    Article  CAS  PubMed  Google Scholar 

  5. Taniguchi R, Kumai T, Matsumoto N, Watanabe M, Kamio K, Suzuki S et al. Utilization of human liver microsomes to explain individual differences in paclitaxel metabolism by CYP2C8 and CYP3A4. J Pharmacol Sci 2005; 97: 83–90.

    Article  CAS  PubMed  Google Scholar 

  6. Soyama A, Saito Y, Hanioka N, Murayama N, Nakajima O, Katori N et al. Non-synonymous single nucleotide alterations found in the CYP2C8 gene result in reduced in vitro paclitaxel metabolism. Biol Pharm Bull 2001; 24: 1427–1430.

    Article  CAS  PubMed  Google Scholar 

  7. Amirimani B, Ning B, Deitz AC, Weber BL, Kadlubar FF, Rebbeck TR . Increased transcriptional activity of the CYP3A4*1B promoter variant. Environ Mol Mutagen 2003; 42: 299–305.

    Article  CAS  PubMed  Google Scholar 

  8. Hustert E, Haberl M, Burk O, Wolbold R, He YQ, Klein K et al. The genetic determinants of the CYP3A5 polymorphism. Pharmacogenetics 2001; 11: 773–779.

    Article  CAS  PubMed  Google Scholar 

  9. Iscan M, Klaavuniemi T, Coban T, Kapucuoglu N, Pelkonen O, Raunio H . The expression of cytochrome P450 enzymes in human breast tumours and normal breast tissue. Breast Cancer Res Treat 2001; 70: 47–54.

    Article  CAS  PubMed  Google Scholar 

  10. McFadyen MC, Cruickshank ME, Miller ID, McLeod HL, Melvin WT, Haites NE et al. Cytochrome P450 CYP1B1 over-expression in primary and metastatic ovarian cancer. Br J Cancer 2001; 85: 242–246.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. McKay JA, Melvin WT, Ah-See AK, Ewen SW, Greenlee WF, Marcus CB et al. Expression of cytochrome P450 CYP1B1 in breast cancer. FEBS Lett 1995; 374: 270–272.

    Article  CAS  PubMed  Google Scholar 

  12. Murray GI, Taylor MC, McFadyen MC, McKay JA, Greenlee WF, Burke MD et al. Tumor-specific expression of cytochrome P450 CYP1B1. Cancer Res 1997; 57: 3026–3031.

    CAS  PubMed  Google Scholar 

  13. Rochat B, Morsman JM, Murray GI, Figg WD, McLeod HL . Human CYP1B1 and anticancer agent metabolism: mechanism for tumor-specific drug inactivation? J Pharmacol Exp Ther 2001; 296: 537–541.

    CAS  PubMed  Google Scholar 

  14. Bournique B, Lemarie A . Docetaxel (Taxotere) is not metabolized by recombinant human CYP1B1 in vitro, but acts as an effector of this isozyme. Drug Metab Dispos 2002; 30: 1149–1152.

    Article  CAS  PubMed  Google Scholar 

  15. Landi MT, Bergen AW, Baccarelli A, Patterson Jr DG, Grassman J, Ter-Minassian M et al. CYP1A1 and CYP1B1 genotypes, haplotypes, and TCDD-induced gene expression in subjects from Seveso, Italy. Toxicology 2005; 207: 191–202.

    Article  CAS  PubMed  Google Scholar 

  16. Shimada T, Watanabe J, Kawajiri K, Sutter TR, Guengerich FP, Gillam EM et al. Catalytic properties of polymorphic human cytochrome P450 1B1 variants. Carcinogenesis 1999; 20: 1607–1613.

    Article  CAS  PubMed  Google Scholar 

  17. Hanna IH, Dawling S, Roodi N, Guengerich FP, Parl FF . Cytochrome P450 1B1 (CYP1B1) pharmacogenetics: association of polymorphisms with functional differences in estrogen hydroxylation activity. Cancer Res 2000; 60: 3440–3444.

    CAS  PubMed  Google Scholar 

  18. Li DN, Seidel A, Pritchard MP, Wolf CR, Friedberg T . Polymorphisms in P450 CYP1B1 affect the conversion of estradiol to the potentially carcinogenic metabolite 4-hydroxyestradiol. Pharmacogenetics 2000; 10: 343–353.

    Article  CAS  PubMed  Google Scholar 

  19. Aklillu E, Oscarson M, Hidestrand M, Leidvik B, Otter C, Ingelman-Sundberg M . Functional analysis of six different polymorphic CYP1B1 enzyme variants found in an Ethiopian population. Mol Pharmacol 2002; 61: 586–594.

    Article  CAS  PubMed  Google Scholar 

  20. Tang YM, Green BL, Chen GF, Thompson PA, Lang NP, Shinde A et al. Human CYP1B1 Leu432Val gene polymorphism: ethnic distribution in African-Americans, Caucasians and Chinese; oestradiol hydroxylase activity; and distribution in prostate cancer cases and controls. Pharmacogenetics 2000; 10: 761–766.

    Article  CAS  PubMed  Google Scholar 

  21. Sissung TM, Price DK, Sparreboom A, Figg WD . Pharmacogenetics and regulation of human cytochrome P450 1B1: implications in hormone-mediated tumor metabolism and a novel target for therapeutic intervention. Mol Cancer Res 2006; 4: 135–150.

    Article  CAS  PubMed  Google Scholar 

  22. Brooks TA, Minderman H, O'Loughlin KL, Pera P, Ojima I, Baer MR et al. Taxane-based reversal agents modulate drug resistance mediated by P-glycoprotein, multidrug resistance protein, and breast cancer resistance protein. Mol Cancer Ther 2003; 2: 1195–1205.

    CAS  PubMed  Google Scholar 

  23. Litman T, Brangi M, Hudson E, Fetsch P, Abati A, Ross DD et al. The multidrug-resistant phenotype associated with overexpression of the new ABC half-transporter, MXR (ABCG2). J Cell Sci 2000; 113: 2011–2021.

    CAS  PubMed  Google Scholar 

  24. Brooks TA, Kennedy DR, Gruol DJ, Ojima I, Baer MR, Bernacki RJ . Structure-activity analysis of taxane-based broad-spectrum multidrug resistance modulators. Anticancer Res 2004; 24: 409–415.

    CAS  PubMed  Google Scholar 

  25. Hoffmeyer S, Burk O, von Richter O, Arnold HP, Brockmoller J, Johne A et al. Functional polymorphisms of the human multidrug-resistance gene: multiple sequence variations and correlation of one allele with P-glycoprotein expression and activity in vivo. Proc Natl Acad Sci USA 2000; 97: 3473–3478.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kim RB, Leake BF, Choo EF, Dresser GK, Kubba SV, Schwarz UI et al. Identification of functionally variant MDR1 alleles among European Americans and African Americans. Clin Pharmacol Ther 2001; 70: 189–199.

    Article  CAS  PubMed  Google Scholar 

  27. de Jong FA, Marsh S, Mathijssen RH, King C, Verweij J, Sparreboom A et al. ABCG2 pharmacogenetics: ethnic differences in allele frequency and assessment of influence on irinotecan disposition. Clin Cancer Res 2004; 10: 5889–5894.

    Article  CAS  PubMed  Google Scholar 

  28. Sparreboom A, Gelderblom H, Marsh S, Ahluwalia R, Obach R, Principe P et al. Diflomotecan pharmacokinetics in relation to ABCG2 421C>A genotype. Clin Pharmacol Ther 2004; 76: 38–44.

    Article  CAS  PubMed  Google Scholar 

  29. Bates SE, Medina-Perez WY, Kohlhagen G, Antony S, Nadjem T, Robey RW et al. ABCG2 mediates differential resistance to SN-38 (7-ethyl-10-hydroxycamptothecin) and homocamptothecins. J Pharmacol Exp Ther 2004; 310: 836–842.

    Article  CAS  PubMed  Google Scholar 

  30. Hahn NM, Marsh S, Fisher W, Langdon R, Zon R, Browning M et al. Hoosier Oncology Group Randomized Phase II Study of Docetaxel, Vinorelbine, and Estramustine in Combination in Hormone-Refractory Prostate Cancer with Pharmacogenetic Survival Analysis. Clin Cancer Res 2006; 12: 6094–6099.

    Article  CAS  PubMed  Google Scholar 

  31. Ameyaw MM, Regateiro F, Li T, Liu X, Tariq M, Mobarek A et al. MDR1 pharmacogenetics: frequency of the C3435T mutation in exon 26 is significantly influenced by ethnicity. Pharmacogenetics 2001; 11: 217–221.

    Article  CAS  PubMed  Google Scholar 

  32. Tayeb MT, Clark C, Ameyaw MM, Haites NE, Evans DA, Tariq M et al. CYP3A4 promoter variant in Saudi, Ghanaian and Scottish Caucasian populations. Pharmacogenetics 2000; 10: 753–756.

    Article  CAS  PubMed  Google Scholar 

  33. Mathijssen RH, Marsh S, Karlsson MO, Xie R, Baker SD, Verweij J et al. Irinotecan pathway genotype analysis to predict pharmacokinetics. Clin Cancer Res 2003; 9: 3246–3253.

    CAS  PubMed  Google Scholar 

  34. Henningsson A, Marsh S, Loos WJ, Karlsson MO, Garsa A, Mross K et al. Association of CYP2C8, CYP3A4, CYP3A5, and ABCB1 polymorphisms with the pharmacokinetics of paclitaxel. Clin Cancer Res 2005; 11: 8097–8104.

    Article  CAS  PubMed  Google Scholar 

  35. Green H, Soderkvist P, Rosenberg P, Horvath G, Peterson C . mdr-1 single nucleotide polymorphisms in ovarian cancer tissue: G2677T/A correlates with response to paclitaxel chemotherapy. Clin Cancer Res 2006; 12: 854–859.

    Article  CAS  PubMed  Google Scholar 

  36. Marsh S, King CR, McLeod HL, Paul J, Gifford G, Brown R . ABCB1 2677G>T/A genotype and paclitaxel pharmacogenetics in ovarian cancer. Clin Cancer Res 2006 (letter): 12: 4127.

    Article  CAS  PubMed  Google Scholar 

  37. Synold TW, Dussault I, Forman BM . The orphan nuclear receptor SXR coordinately regulates drug metabolism and efflux. Nat Med 2001; 7: 584–590.

    Article  CAS  PubMed  Google Scholar 

  38. Teodoridis JM, Hall J, Marsh S, Kannall HD, Smyth C, Curto J et al. CpG island methylation of DNA damage response genes in advanced ovarian cancer. Cancer Res 2005; 65: 8961–8967.

    Article  CAS  PubMed  Google Scholar 

  39. McLeod HL . Drug pathways: moving beyond single gene pharmacogenetics. Pharmacogenomics 2004; 5: 139–141.

    Article  CAS  PubMed  Google Scholar 

  40. Chang TK, Weber GF, Crespi CL, Waxman DJ . Differential activation of cyclophosphamide and ifosphamide by cytochromes P-450 2B and 3A in human liver microsomes. Cancer Res 1993; 53: 5629–5637.

    CAS  PubMed  Google Scholar 

  41. Ren S, Yang JS, Kalhorn TF, Slattery JT . Oxidation of cyclophosphamide to 4-hydroxycyclophosphamide and deschloroethylcyclophosphamide in human liver microsomes. Cancer Res 1997; 57: 4229–4235.

    CAS  PubMed  Google Scholar 

  42. Lewis AD, Lau DH, Duran GE, Wolf CR, Sikic BI . Role of cytochrome P-450 from the human CYP3A gene family in the potentiation of morpholino doxorubicin by human liver microsomes. Cancer Res 1992; 52: 4379–4384.

    CAS  PubMed  Google Scholar 

  43. Doherty JA, Weiss NS, Freeman RJ, Dightman DA, Thornton PJ, Houck JR et al. Genetic factors in catechol estrogen metabolism in relation to the risk of endometrial cancer. Cancer Epidemiol Biomarkers Prev 2005; 14: 357–366.

    Article  CAS  PubMed  Google Scholar 

  44. Marsh S, King CR, Garsa AA, McLeod HL . Pyrosequencing of clinically relevant polymorphisms. Methods Mol Biol 2005; 311: 97–114.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank A Garsa for technical assistance with this project. This work was supported by CA 33572, CA 62505 (Duarte) and the Pharmacogenetics Research Network U01 GM63340 (St Louis).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S Marsh.

Additional information

Duality of interest

None declared.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marsh, S., Somlo, G., Li, X. et al. Pharmacogenetic analysis of paclitaxel transport and metabolism genes in breast cancer. Pharmacogenomics J 7, 362–365 (2007). https://doi.org/10.1038/sj.tpj.6500434

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.tpj.6500434

Keywords

This article is cited by

Search

Quick links