Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Pharmacogenomics of phase II metabolizing enzymes and drug transporters: clinical implications

Subjects

Abstract

The clinical impact of pharmacogenomics remains a hot topic of current research efforts. Although pharmacogenomics of phase I metabolizing enzymes seems to have been well studied, knowledge on the clinical impact of genetic variability of phase II metabolizing enzymes and drug transporters is more limited. This paper reviews data on the pharmacogenomics of phase II metabolizing enzymes as well as of ATP binding cassette transporters and of solute carrier transporters focusing on clinical implications for drug efficacy and drug toxicity. The clinical impact of some of these polymorphisms has been well defined i.e. the association between polymorphisms of organic anion transporter polypeptides and statin induced myopathy. However, as the same drug may be substrate for different enzymes and different transporters, it is difficult to elucidate the impact of each polymorphism. Investigating the impact of multiple polymorphisms might be more clinically meaningful, although methodologically challenging.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Evans W . Translating functional genomics into rational therapeutics. Science 1999; 286: 487–491.

    Article  CAS  PubMed  Google Scholar 

  2. Srinivasan B, Chen J, Cheng Ch, Conti D, Duan S, Fridley BL et al. Methods for analysis in pharmacogenomics: lessons from the Pharmacogenetics Research Network Analysis Group. Pharmacogenomics 2009; 10: 243–251.

    Article  PubMed  Google Scholar 

  3. Offit K, Mark E. . New pharmacogenomic paradigm in breast cancer treatment. Journal of Clinical Oncology 2010; 28: 4665–4673.

    Article  PubMed  Google Scholar 

  4. Cheng Q, Evans W . Cancer pharmacogernomics may require both qualitative and quantitative approaches. Cell Cycle 2005; 4: 1506–1509.

    Article  CAS  PubMed  Google Scholar 

  5. Kager L, Evans W . Pharmacogenomics of acute lymphoblastic leucemia. Current Opinion in Hematology 2006; 13: 260–265.

    Article  CAS  PubMed  Google Scholar 

  6. Huang S, Ratain M . Pharmacogenetics and pharmacogenomics of anticancer agents. a cancer journal for clinicians: CA, 2009; 59: 42–55.

    Google Scholar 

  7. Ezzeldin H, Diasio R . Genetic testing in cancer therapeutics. Clinical Cancer Research 2006; 12: 4137–4141.

    Article  CAS  PubMed  Google Scholar 

  8. Lee W, Lockhart C, Kim R, Rothenberg M . Cancer pharmacogenomics: powerful tools in cancer chemotherapy and drug development. The Oncologist 2005; 10: 104–111.

    Article  CAS  PubMed  Google Scholar 

  9. Bandrés E, Zarate R, Martinez N, Abajo A, Bitarte N, Garíia-Foncillas J . Pharmacogenomics in colorectal cancer: the first step for individualized therapy. World Journal of Gastroenterology 2007; 13: 5888–5901.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Palomaki G, Bradley L, Douglas M, Kolor K, Dotson WD . Can UGT1A1 genotyping reduce morbidity and mortality in patients with colorectal cancer treated with irinotecan? An evidence-based review. Medical Genetics 2009; 11: 21–34.

    Article  CAS  Google Scholar 

  11. Daly AK, Aithal GP, Leathart JB, Swainsbury RA, Dang TS, Day CP. . Genetic susceptibility to diclofenac-induced hepatotoxicity: contribution of UGT2B7, CYP2C8, and ABCC2 genotypes. Gastroenterology 2007; 132: 272–281.

    Article  CAS  PubMed  Google Scholar 

  12. Sun D, Chena G, Dellingera RW, Sharmab AK . Lazarusa Ph Characterization of 17-dihydroexemestane glucuronidation: potential role of the UGT2B17 deletion in exemestane pharmacogenetics. Pharmacogenet Genomics 2010; 20: 575–585.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Klaassen CD, Aleksunes LM . Xenobiotic bile acid, and cholesterol transporters: function and regulation. Pharmacol Rev 2010; 62: 1–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kalliokoski A, Niemi M . Impact of OATP transporters on pharmacokinetics. Br J Pharmacol 2009; 158: 693–705.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. DeGorter M, Kim R . Hepatic drug transporters, old and new: pharmacogenomics, drug response and clinical relevance. Hepatology 2009; 50: 1014–1916.

    Article  CAS  PubMed  Google Scholar 

  16. Giacomini KM, Sugiyama Y . Membrane transporters and drug response. In: Brunton LL, Lazo JS, Parker KL, (eds) Goodman & Gilman’s the Pharmacological Basis Of Therapeutics. McGraw-Hill: New York, pp 41–70 2006.

    Google Scholar 

  17. Ho RH, Kim RB . Transporters and drug therapy: implications for drug disposition and disease. Clin Pharmacol Ther 2005; 78: 260–277.

    Article  CAS  PubMed  Google Scholar 

  18. Niemi M, Pasanen M, Neuvonen P . Organic Anion Transporting Polypeptide 1B1:a Genetically Polymorphic Transporter of Major Importance for Hepatic Drug Uptake. Pharmacol Rev 2011; 63: 157–181.

    Article  CAS  PubMed  Google Scholar 

  19. Haufroid V . Genetic polymorphisms of ATP-binding cassette transporters ABCB1 and ABCC2 and their impact on drug disposition. Curr Drug Targets 2011; 12: 631–636.

    Article  CAS  PubMed  Google Scholar 

  20. Yee SW, Chen L, Giacomini KM . Pharmacogenomics of membrane transporters: past, present and future. Pharmacogenomics 2010; 11: 475–479.

    Article  CAS  PubMed  Google Scholar 

  21. Deenen MJ, Cats A, Beijnen JH, Schellens JH . Part 2: pharmacogenetic variability in drug transport and phase I anticancer drug metabolism. Oncologist 2011; 16: 820–834.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Gottesman MM, Fojo T, Bates SE . Multidrug resistance in cancer: role of ATP-dependent transporters. Nature Rev Cancer 2002; 2: 48–58.

    Article  CAS  Google Scholar 

  23. Cascorbi I . Role of pharmacogenetics of ATP-binding cassette transporters in the pharmacokinetics of drugs. Pharmacol Ther 2006; 112: 457–73.

    Article  CAS  PubMed  Google Scholar 

  24. Sakaeda T, Nakamura T, Okumura K . Pharmacogenetics of drug transporters and its impact on the pharmacotherapy. Curr Top Med Chem 2004; 4: 1385–1398.

    Article  CAS  PubMed  Google Scholar 

  25. Simon T, Verstuyft C, Mary-Krause M, Quteineh L, Drouet E, Meneveau N et al. Genetic determinants of response to clopidogrel and cardiovascular events. N Engl J Med 2009; 360: 363–375.

    Article  CAS  PubMed  Google Scholar 

  26. Mega JL, Close SL, Wiviott SD, Shen L, Walker JR, Simon T et al. Genetic variants in ABCB1 and CYP2C19 and cardiovascular outcomes after treatment with clopidogrel and prasugrel in the TRITON-TIMI 38 trial: a pharmacogenetic analysis. Lancet 2010; 376: 1312–1319.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Mega JL, Close SL, Wiviott SD, Shen L, Hockett RD, Brandt JT et al. Cytochrome P-450 polymorphisms and response to clopidogrel. N Engl J Med 2009; 360: 354–362.

    Article  CAS  PubMed  Google Scholar 

  28. Momary KM, Dorsch MP, Bates ER . Genetic causes of clopidogrel nonresponsiveness: which ones really count? Pharmacotherapy 2010; 30: 265–274.

    Article  CAS  PubMed  Google Scholar 

  29. Sissung TM, Baum CE, Kirkland CT, Gao R, Gardner ER, Figg WD . Pharmacogenetics of membrane transporters: an update on current approaches. Mol Biotechnol 2010; 44: 152–167.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Mielke S . Individualized pharmacotherapy with paclitaxel. Curr Opin Oncol 2007; 19: 586–589.

    Article  CAS  PubMed  Google Scholar 

  31. Velamakanni S, Wei SL, Janvilisri T, van Veen HW . ABCG transporters: structure, substrate specificities and physiological roles: a brief overview. J Bioenerg Biomembr 2007; 39: 465–471.

    Article  CAS  PubMed  Google Scholar 

  32. Ni Z, Bikadi Z, Rosenberg MF, Mao Q . Structure and function of the human breast cancer resistance protein (BCRP/ABCG2). Curr Drug Metab 2010; 11: 603–617.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Cusatis G, Gregorc V, Li J, Ingersoll RG, Verweij J, Ludovini V et al. Pharmacokinetics of ABCG2 and adverse reactions to gefitinib. J Natl Cancer Inst 2006; 98: 1739–1742.

    Article  CAS  PubMed  Google Scholar 

  34. Zhou SF, Wang LL, Di YM, Xue CC, Duan W, Li CG et al. Substrates and inhibitors of human multidrug resistance associated proteins and the implications in drug development. Curr Med Chem 2008; 15: 1981–2039.

    Article  CAS  PubMed  Google Scholar 

  35. Toyoda Y, Ishikawa T . Pharmacogenomics of human ABC transporter ABCC11 (MRP8): potential risk of breast cancer and chemotherapy failure. Anticancer Agents Med Chem 2010; 10: 617–624.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Innocenti F, Kroetz DL, Schuetz E, Dolan ME, Ramírez J, Relling M et al. Comprehensive pharmacogenetic analysis of irinotecan neutropenia and pharmacokinetics. J Clin Oncol 2009; 27: 2604–2624.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Conrad S, Kauffmann HM, Ito K, Deeley RG, Cole SP, Schrenk D . Identification of human multidrug resistance protein 1 (MRP1) mutations and characterization of a G671V substitution. J Hum Genet 2001; 46: 656–663.

    Article  CAS  PubMed  Google Scholar 

  38. Conrad S, Kauffmann HM, Ito K, Leslie EM, Deeley RG, Schrenk D et al. A naturally occurring mutation in MRP1 results in a selective decrease in organic anion transport and in increased doxorubicin resistance. Pharmacogenetics 2002; 12: 321–330.

    Article  CAS  PubMed  Google Scholar 

  39. Leslie EM, Létourneau IJ, Deeley RG, Cole SP . Functional and structural consequences of cysteine substitutions in the NH2 proximal region of the human multidrug resistance protein 1 (MRP1/ABCC1). Biochemistry 2003; 42: 5214–5224.

    Article  CAS  PubMed  Google Scholar 

  40. Létourneau IJ, Deeley RG, Cole SP . Functional characterization of non-synonymous single nucleotide polymorphisms in the gene encoding human multidrug resistance protein 1 (MRP1/ABCC1). Pharmacogenet Genomics 2005; 15: 647–657.

    Article  PubMed  Google Scholar 

  41. Marsh S, Hoskins JM . Irinotecan pharmacogenomics. Pharmacogenomics 2010; 11: 1003–1010.

    Article  CAS  PubMed  Google Scholar 

  42. Di Martino M, Arbitrio M, Leone E, Guzzi P, Rotundo M, Domenico Ciliberto D et al. Single nucleotide polymorphisms of ABCC5 and ABCG1 transporter genes correlate to irinotecan-associated gastrointestinal toxicity in colorectal cancer patients. Cancer Biology and Therapy 2011; 12: 780–787.

    Article  CAS  PubMed  Google Scholar 

  43. Roth M, Obaidat A, Hagenbuch B . OATPs, OATs and OCTs: the organic anion and cation transporters of the SLCO and SLC22A gene superfamilies. Br J Pharamcol 2012; 165: 1260–1287.

    Article  CAS  Google Scholar 

  44. Fenner KS, Jones HM, Ullah M, Kempshall S, Dickins M, Lai Y et al. The evolution of the OATP hepatic uptake transport protein family in DMPK sciences: from obscure liver transporters to key determinants of hepatobiliary clearance. Xenobiotica 2012; 42: 28–45.

    Article  CAS  PubMed  Google Scholar 

  45. Yamakawa Y, Hamada A, Shuto T, Yuki M, Uchida T, Kai H et al. Pharmacokinetic impact of SLCO1A2 polymorphisms on imatinib disposition in patients with chronic myeloid leucemia. Clin Pharmacol Ther 2011; 90: 157–163.

    Article  CAS  PubMed  Google Scholar 

  46. Akamine Y, Miura M, Sunagawa S, Kagaya H, Yasui- Furukori N, Uno T . Influence of drug transporter polymorphisms on the pharmacokinetics of fexofenadine enantiomers. Xenobiotica 2010; 40: 782–789.

    Article  CAS  PubMed  Google Scholar 

  47. Holmes M, Shah T, Vickery C, Smeeth L, Hingorani AD, Casas JP . Fulfilling the promise of personalized medicine? Systematic review and field synopsis of pharmacogenetic studies. Plos One 2009; 4: e7960.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Burckhardt G, Burckhardt BC . In vitro and in vivo evidence of the importance of organic anion transporters (OATs) in drug therapy. Handb Exp Pharmacol 2011; 201: 29–104.

    Article  CAS  Google Scholar 

  49. Srimaroeng C, Perry JL, Physiology Pritchard JB . structure, and regulation of the cloned organic anion transporters. Xenobiotica 2008; 38: 889–935.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Choi MK., Song IS . Organic cation transporters and their pharmacokinetic and pharmacodynamic consequences. Drug Metab Pharmacokinet 2008; 23: 243–253.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E Ch Yiannakopoulou.

Ethics declarations

Competing interests

The author declares no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yiannakopoulou, E. Pharmacogenomics of phase II metabolizing enzymes and drug transporters: clinical implications. Pharmacogenomics J 13, 105–109 (2013). https://doi.org/10.1038/tpj.2012.42

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/tpj.2012.42

Keywords

This article is cited by

Search

Quick links