Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

CYP2C9 polymorphism analysis in Han Chinese populations: building the largest allele frequency database

Abstract

Genetic polymorphisms of CYP2C9 significantly influence the pharmacokinetics and pharmacodynamics of some drugs, which might result in adverse drug effects and therapeutic failure. Several studies have been performed on CYP2C9 genetic polymorphisms in Han Chinese populations. However, these studies only focused on two commonly investigated alleles, *2 and *3, in relatively small sample sizes. To scale up the gene-scanning region and determine relatively precise data on the genetic distribution pattern in Chinese populations, unrelated healthy Han Chinese volunteers from Zhejiang Province (n=1127) and Hebei (n=1000) Province were recruited as subjects for the direct sequencing of all exons of CYP2C9. As a result, 14 previously reported alleles were detected in this work, and 8 of these alleles (*14, *16, *19, *23, *27, *29, *33 and *34) were described for the first time in Chinese populations. In addition, 37 novel mutations were also detected, of which 22 variants were non-synonymous, and 21 new alleles, *36-*56, were designated by the Human CYP Allele Nomenclature Committee. In vitro functional analysis of these 22 novel CYP2C9 variants revealed that 17 mutations had a significant influence on the protein’s catalytic activity. Our study provides the most accurate data on CYP2C9 polymorphisms in Han Chinese populations and detects the largest number of novel allelic variants existing to date. These new alleles will greatly enrich the current knowledge of naturally occurring CYP2C9 variants in Chinese populations.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Rendic S . Summary of information on human CYP enzymes: human P450 metabolism data. Drug Metab Rev 2002; 34: 83–448.

    Article  CAS  PubMed  Google Scholar 

  2. Zhou SF, Zhou ZW, Yang LP, Cai JP . Substrates, inducers, inhibitors and structure-activity relationships of human Cytochrome P450 2C9 and implications in drug development. Curr Med Chem 2009; 16: 3480–3675.

    Article  CAS  PubMed  Google Scholar 

  3. Van Booven D, Marsh S, McLeod H, Carrillo MW, Sangkuhl K, Klein TE et al. Cytochrome P450 2C9-CYP2C9. Pharmacogenet Genomics 2010; 20: 277–281.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Kurose K, Sugiyama E, Saito Y . Population differences in major functional polymorphisms of pharmacokinetics/pharmacodynamics-related genes in Eastern Asians and Europeans: implications in the clinical trials for novel drug development. Drug Metab Pharmacokinet 2012; 27: 9–54.

    Article  CAS  PubMed  Google Scholar 

  5. Zhou SF, Liu JP, Chowbay B . Polymorphism of human cytochrome P450 enzymes and its clinical impact. Drug Metab Rev 2009; 41: 89–295.

    Article  CAS  PubMed  Google Scholar 

  6. Wang B, Wang J, Huang SQ, Su HH, Zhou SF . Genetic polymorphism of the human cytochrome P450 2C9 gene and its clinical significance. Curr Drug Metab 2009; 10: 781–834.

    Article  CAS  PubMed  Google Scholar 

  7. Zuo J, Xia D, Jia L, Guo T . Genetic polymorphisms of drug-metabolizing phase I enzymes CYP3A4, CYP2C9, CYP2C19 and CYP2D6 in Han, Uighur, Hui and Mongolian Chinese populations. Pharmazie 2012; 67: 639–644.

    CAS  PubMed  Google Scholar 

  8. Zuo LJ, Guo T, Xia DY, Jia LH . Allele and genotype frequencies of CYP3A4, CYP2C19, and CYP2D6 in Han, Uighur, Hui, and Mongolian Chinese populations. Genet Test Mol Biomarkers 2012; 16: 102–108.

    Article  CAS  PubMed  Google Scholar 

  9. Zhang W, Zhang WJ, Zhu J, Kong FC, Li YY, Wang HY et al. Genetic polymorphisms are associated with variations in warfarin maintenance dose in Han Chinese patients with venous thromboembolism. Pharmacogenomics 2012; 13: 309–321.

    Article  CAS  PubMed  Google Scholar 

  10. Zhong SL, Yu XY, Liu Y, Xu D, Mai LP, Tan HH et al. Integrating interacting drugs and genetic variations to improve the predictability of warfarin maintenance dose in Chinese patients. Pharmacogenet Genomics 2012; 22: 176–182.

    Article  CAS  PubMed  Google Scholar 

  11. Xiong Y, Wang M, Fang K, Xing Q, Feng G, Shen L et al. A systematic genetic polymorphism analysis of the CYP2C9 gene in four different geographical Han populations in mainland China. Genomics 2011; 97: 277–281.

    Article  CAS  PubMed  Google Scholar 

  12. Shi Y, Xiang P, Li L, Shen M . Analysis of 50 SNPs in CYP2D6, CYP2C19, CYP2C9, CYP3A4 and CYP1A2 by MALDI-TOF mass spectrometry in Chinese Han population. Forensic Sci Int 2011; 207: 183–187.

    Article  CAS  PubMed  Google Scholar 

  13. Zhu J, Zhang W, Li Y, Wang H, Zheng W, Wang C . ARMS test for diagnosis of CYP2C9 and VKORC1 mutation in patients with pulmonary embolism in Han Chinese. Pharmacogenomics 2010; 11: 113–119.

    Article  CAS  PubMed  Google Scholar 

  14. Li Z, Wang G, Wang LS, Zhang W, Tan ZR, Fan L et al. Effects of the CYP2C9*13 allele on the pharmacokinetics of losartan in healthy male subjects. Xenobiotica 2009; 39: 788–793.

    Article  CAS  PubMed  Google Scholar 

  15. Yu BN, Luo CH, Wang D, Wang A, Li Z, Zhang W et al. CYP2C9 allele variants in Chinese hypertension patients and healthy controls. Clin Chim Acta 2004; 348: 57–61.

    Article  CAS  PubMed  Google Scholar 

  16. Yang JQ, Morin S, Verstuyft C, Fan LA, Zhang Y, Xu CD et al. Frequency of cytochrome P450 2C9 allelic variants in the Chinese and French populations. Fundam Clin Pharmacol 2003; 17: 373–376.

    Article  CAS  PubMed  Google Scholar 

  17. Wang SL, Huang J, Lai MD, Tsai JJ . Detection of CYP2C9 polymorphism based on the polymerase chain reaction in Chinese. Pharmacogenetics 1995; 5: 37–42.

    Article  CAS  PubMed  Google Scholar 

  18. Si D, Guo Y, Zhang Y, Yang L, Zhou H, Zhong D . Identification of a novel variant CYP2C9 allele in Chinese. Pharmacogenetics 2004; 14: 465–469.

    Article  CAS  PubMed  Google Scholar 

  19. Zhang YN, Cui W, Han M, Zheng B, Liu F, Xie RQ et al. [Gene polymorphism of CYP450 2C9 and VKORC1 in Chinese population and their relationships to the maintaining dosage of warfarin]. Zhonghua Liu Xing Bing Xue Za Zhi 2010; 31: 218–222.

    PubMed  Google Scholar 

  20. Guo Y, Wang Y, Si D, Fawcett PJ, Zhong D, Zhou H . Catalytic activities of human cytochrome P450 2C9*1, 2C9*3 and 2C9*13. Xenobiotica 2005; 35: 853–861.

    Article  CAS  PubMed  Google Scholar 

  21. Allabi AC, Gala JL, Horsmans Y . CYP2C9 CYP2C19, ABCB1 (MDR1) genetic polymorphisms and phenytoin metabolism in a Black Beninese population. Pharmacogenet Genomics 2005; 15: 779–786.

    Article  CAS  PubMed  Google Scholar 

  22. Allabi AC, Gala JL, Horsmans Y, Babaoglu MO, Bozkurt A, Heusterspreute M et al. Functional impact of CYP2C95, CYP2C96, CYP2C98, and CYP2C911 in vivo among black Africans. Clin Pharmacol Ther 2004; 76: 113–118.

    Article  CAS  PubMed  Google Scholar 

  23. Blaisdell J, Jorge-Nebert LF, Coulter S, Ferguson SS, Lee SJ, Chanas B et al. Discovery of new potentially defective alleles of human CYP2C9. Pharmacogenetics 2004; 14: 527–537.

    Article  CAS  PubMed  Google Scholar 

  24. DeLozier TC, Lee SC, Coulter SJ, Goh BC, Goldstein JA . Functional characterization of novel allelic variants of CYP2C9 recently discovered in southeast Asians. J Pharmacol Exp Ther 2005; 315: 1085–1090.

    Article  CAS  PubMed  Google Scholar 

  25. Veenstra DL, Blough DK, Higashi MK, Farin FM, Srinouanprachan S, Rieder MJ et al. CYP2C9 haplotype structure in European American warfarin patients and association with clinical outcomes. Clin Pharmacol Ther 2005; 77: 353–364.

    Article  CAS  PubMed  Google Scholar 

  26. Maekawa K, Fukushima-Uesaka H, Tohkin M, Hasegawa R, Kajio H, Kuzuya N et al. Four novel defective alleles and comprehensive haplotype analysis of CYP2C9 in Japanese. Pharmacogenet Genomics 2006; 16: 497–514.

    Article  CAS  PubMed  Google Scholar 

  27. Matimba A, Del-Favero J, Van Broeckhoven C, Masimirembwa C . Novel variants of major drug-metabolising enzyme genes in diverse African populations and their predicted functional effects. Hum Genomics 2009; 3: 169–190.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Yin T, Maekawa K, Kamide K, Saito Y, Hanada H, Miyashita K et al. Genetic variations of CYP2C9 in 724 Japanese individuals and their impact on the antihypertensive effects of losartan. Hypertens Res 2008; 31: 1549–1557.

    Article  CAS  PubMed  Google Scholar 

  29. Schelleman H, Brensinger CM, Chen J, Finkelman BS, Rieder MJ, Kimmel SE . New genetic variant that might improve warfarin dose prediction in African Americans. Br J Clin Pharmacol 2010; 70: 393–399.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wang HH, Liao YW, Chiang HL, Wu JY, Chen YT . Novel DNA sequence variations of cytochrome P450 genes in the Han Chinese population. Pharmacogenomics 2009; 10: 359–374.

    Article  CAS  PubMed  Google Scholar 

  31. Si D, Wang J, Zhang Y, Zhong D, Zhou H . Distribution of CYP2C9*13 allele in the Chinese Han and the long-range haplotype containing CYP2C9*13 and CYP2C19*2. Biopharm Drug Dispos 2012; 33: 342–345.

    Article  CAS  PubMed  Google Scholar 

  32. Wurdinger T, Badr C, Pike L, de Kleine R, Weissleder R, Breakefield XO et al. A secreted luciferase for ex vivo monitoring of in vivo processes. Nat Methods 2008; 5: 171–173.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Takanashi K, Tainaka H, Kobayashi K, Yasumori T, Hosakawa M, Chiba K . CYP2C9 Ile359 and Leu359 variants: enzyme kinetic study with seven substrates. Pharmacogenetics 2000; 10: 95–104.

    Article  CAS  PubMed  Google Scholar 

  34. Hiratsuka M . In vitro assessment of the allelic variants of cytochrome P450. Drug Metab Pharmacokinet 2012; 27: 68–84.

    Article  CAS  PubMed  Google Scholar 

  35. Zhao F, Loke C, Rankin SC, Guo JY, Lee HS, Wu TS et al. Novel CYP2C9 genetic variants in Asian subjects and their influence on maintenance warfarin dose. Clin Pharmacol Ther 2004; 76: 210–219.

    Article  CAS  PubMed  Google Scholar 

  36. Adithan C, Gerard N, Vasu S, Balakrishnan R, Shashindran CH, Krishnamoorthy R . Allele and genotype frequency of CYP2C9 in Tamilnadu population. Eur J Clin Pharmacol 2003; 59: 707–709.

    Article  CAS  PubMed  Google Scholar 

  37. Lee HW, Lim MS, Lee J, Jegal MY, Kim DW, Lee WK et al. Frequency of CYP2C9 variant alleles, including CYP2C9*13 in a Korean population and effect on glimepiride pharmacokinetics. J Clin Pharm Ther 2011; 37: 105–111.

    Article  PubMed  Google Scholar 

  38. Ngow HA, Wan Khairina WM, Teh LK, Lee WL, Harun R, Ismail R et al. CYP2C9 polymorphism: prevalence in healthy and warfarin-treated Malay and Chinese in Malaysia. Singapore Med J 2009; 50: 490–493.

    CAS  PubMed  Google Scholar 

  39. Jose R, Chandrasekaran A, Sam SS, Gerard N, Chanolean S, Abraham BK et al. CYP2C9 and CYP2C19 genetic polymorphisms: frequencies in the south Indian population. Fundam Clin Pharmacol 2005; 19: 101–105.

    Article  CAS  PubMed  Google Scholar 

  40. Rathore SS, Agarwal SK, Pande S, Mittal T, Mittal B . Frequencies of VKORC1 -1639 G>A, CYP2C9*2 and CYP2C9*3 genetic variants in the Northern Indian population. Biosci Trends 2010; 4: 333–337.

    CAS  PubMed  Google Scholar 

  41. Siddiqi A, Khan DA, Khan FA, Naveed AK . Impact of CYP2C9 genetic polymorphism on warfarin dose requirements in Pakistani population. Pak J Pharm Sci 2010; 23: 417–422.

    CAS  PubMed  Google Scholar 

  42. Kuanprasert S, Dettrairat S, Palacajornsuk P, Kunachiwa W, Phrommintikul A . Prevalence of CYP2C9 and VKORC1 mutation in patients with valvular heart disease in northern Thailand. J Med Assoc Thai 2009; 92: 1597–1601.

    PubMed  Google Scholar 

  43. Scott SA, Khasawneh R, Peter I, Kornreich R, Desnick RJ . Combined CYP2C9, VKORC1 and CYP4F2 frequencies among racial and ethnic groups. Pharmacogenomics 2010; 11: 781–791.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Scordo MG, Aklillu E, Yasar U, Dahl ML, Spina E, Ingelman-Sundberg M . Genetic polymorphism of cytochrome P450 2C9 in a Caucasian and a black African population. Br J Clin Pharmacol 2001; 52: 447–450.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Gaedigk A, Casley WL, Tyndale RF, Sellers EM, Jurima-Romet M, Leeder JS . Cytochrome P4502C9 (CYP2C9) allele frequencies in Canadian Native Indian and Inuit populations. Can J Physiol Pharmacol 2001; 79: 841–847.

    Article  CAS  PubMed  Google Scholar 

  46. Dickmann LJ, Rettie AE, Kneller MB, Kim RB, Wood AJ, Stein CM et al. Identification and functional characterization of a new CYP2C9 variant (CYP2C9*5) expressed among African Americans. Mol Pharmacol 2001; 60: 382–387.

    Article  CAS  PubMed  Google Scholar 

  47. Sava V, Mosquera D, Song S, Cardozo-Pelaez F, Sanchez-Ramos JR . Effects of melanin and manganese on DNA damage and repair in PC12-derived neurons. Free Radic Biol Med 2004; 36: 1144–1154.

    Article  CAS  PubMed  Google Scholar 

  48. Halling J, Petersen MS, Damkier P, Nielsen F, Grandjean P, Weihe P et al. Polymorphism of CYP2D6, CYP2C19, CYP2C9 and CYP2C8 in the Faroese population. Eur J Clin Pharmacol 2005; 61: 491–497.

    Article  CAS  PubMed  Google Scholar 

  49. Arvanitidis K, Ragia G, Iordanidou M, Kyriaki S, Xanthi A, Tavridou A et al. Genetic polymorphisms of drug-metabolizing enzymes CYP2D6, CYP2C9, CYP2C19 and CYP3A5 in the Greek population. Fundam Clin Pharmacol 2007; 21: 419–426.

    Article  CAS  PubMed  Google Scholar 

  50. Sipeky C, Lakner L, Szabo M, Takacs I, Tamasi V, Polgar N et al. Interethnic differences of CYP2C9 alleles in healthy Hungarian and Roma population samples: relationship to worldwide allelic frequencies. Blood Cells Mol Dis 2009; 43: 239–242.

    Article  CAS  PubMed  Google Scholar 

  51. Scordo MG, Caputi AP, D'Arrigo C, Fava G, Spina E . Allele and genotype frequencies of CYP2C9, CYP2C19 and CYP2D6 in an Italian population. Pharmacol Res 2004; 50: 195–200.

    Article  CAS  PubMed  Google Scholar 

  52. Gra O, Mityaeva O, Berdichevets I, Kozhekbaeva Z, Fesenko D, Kurbatova O et al. Microarray-based detection of CYP1A1, CYP2C9, CYP2C19, CYP2D6, GSTT1, GSTM1, MTHFR, MTRR, NQO1, NAT2, HLA-DQA1, and AB0 allele frequencies in native Russians. Genet Test Mol Biomarkers 2010; 14: 329–342.

    Article  CAS  PubMed  Google Scholar 

  53. Sanchez-Diz P, Estany-Gestal A, Aguirre C, Blanco A, Carracedo A, Ibanez L et al. Prevalence of CYP2C9 polymorphisms in the south of Europe. Pharmacogenomics J 2009; 9: 306–310.

    Article  CAS  PubMed  Google Scholar 

  54. Yasar U, Eliasson E, Dahl ML, Johansson I, Ingelman-Sundberg M, Sjoqvist F . Validation of methods for CYP2C9 genotyping: frequencies of mutant alleles in a Swedish population. Biochem Biophys Res Commun 1999; 254: 628–631.

    Article  CAS  PubMed  Google Scholar 

  55. Aynacioglu AS, Brockmoller J, Bauer S, Sachse C, Guzelbey P, Ongen Z et al. Frequency of cytochrome P450 CYP2C9 variants in a Turkish population and functional relevance for phenytoin. Br J Clin Pharmacol 1999; 48: 409–415.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank all the individuals who generously participated in this study. We are grateful to the members of the Institute of Geriatrics of the Ministry of Health for advice and assistance. This work was supported by one grant funded by the Ministry of Health of the People's Republic of China (201302008) and two grants from National Key Project for Investigational New Drugs (2008ZX09312-005 and 2012ZX09303008), funded by the Ministry of Science and Technology of the People's Republic of China. The funders had no role in the study design, data collection and analysis, decision to publish or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to G-X Hu or J-P Cai.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the The Pharmacogenomics Journal website

Supplementary information

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dai, DP., Xu, RA., Hu, LM. et al. CYP2C9 polymorphism analysis in Han Chinese populations: building the largest allele frequency database. Pharmacogenomics J 14, 85–92 (2014). https://doi.org/10.1038/tpj.2013.2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/tpj.2013.2

Keywords

This article is cited by

Search

Quick links