Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Functional characterization of 32 CYP2C9 allelic variants

Abstract

Genetic variations in cytochrome P450 2C9 (CYP2C9) contribute to interindividual variability in the metabolism of clinically used drugs such as warfarin and tolbutamide. We functionally characterized 32 types of allelic variant CYP2C9 proteins. Recombinant CYP2C9 proteins generated using a heterologous expression system are useful for comparing functional changes in CYP2C9 variant proteins expressed from low-frequency alleles. Wild-type CYP2C9 and its 31 variants were found to be transiently expressed in COS-7 cells, and the enzymatic activity of the CYP2C9 variants was characterized using S-warfarin as a representative substrate. Among the 32 types of CYP2C9 allelic variants tested, CYP2C9.18, CYP2C9.21, CYP2C9.24, CYP2C9.26, CYP2C9.33 and CYP2C9.35 exhibited no enzyme activity, and 12 types showed significantly decreased enzyme activity. In vitro analysis of CYP2C9 variant proteins should be useful for predicting CYP2C9 phenotypes and for application to personalized drug therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Goldstein JA, de Morais SM . Biochemistry and molecular biology of the human CYP2C subfamily. Pharmacogenetics 1994; 4: 285–299.

    Article  CAS  PubMed  Google Scholar 

  2. Schwarz UI . Clinical relevance of genetic polymorphisms in the human CYP2C9 gene. Eur J Clin Invest 2003; 33 (Suppl 2): 23–30.

    Article  CAS  PubMed  Google Scholar 

  3. Johnson JA, Gong L, Whirl-Carrillo M, Gage BF, Scott SA, Stein CM et al. Clinical Pharmacogenetics Implementation Consortium Guidelines for CYP2C9 and VKORC1 genotypes and warfarin dosing. Clin Pharmacol Ther 2011; 90: 625–629.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Wang B, Wang J, Huang SQ, Su HH, Zhou SF . Genetic polymorphism of the human cytochrome P450 2C9 gene and its clinical significance. Curr Drug Metab 2009; 10: 781–834.

    Article  CAS  PubMed  Google Scholar 

  5. Rettie AE, Tai G . The pharmocogenomics of warfarin: closing in on personalized medicine. Mol Interv 2006; 6: 223–227.

    Article  CAS  PubMed  Google Scholar 

  6. O'Reilly RA . Studies on the optical enantiomorphs of warfarin in man. Clin Pharmacol Ther 1974; 16: 348–354.

    Article  CAS  PubMed  Google Scholar 

  7. Rettie AE, Korzekwa KR, Kunze KL, Lawrence RF, Eddy AC, Aoyama T et al. Hydroxylation of warfarin by human cDNA-expressed cytochrome P-450: a role for P-4502C9 in the etiology of (S)-warfarin-drug interactions. Chem Res Toxicol 1992; 5: 54–59.

    Article  CAS  PubMed  Google Scholar 

  8. Lindh JD, Holm L, Andersson ML, Rane A . Influence of CYP2C9 genotype on warfarin dose requirements—a systematic review and meta-analysis. Eur J Clin Pharmacol 2009; 65: 365–375.

    Article  CAS  PubMed  Google Scholar 

  9. Takahashi H, Kashima T, Nomoto S, Iwade K, Tainaka H, Shimizu T et al. Comparisons between in-vitro and in-vivo metabolism of (S)-warfarin: catalytic activities of cDNA-expressed CYP2C9, its Leu359 variant and their mixture versus unbound clearance in patients with the corresponding CYP2C9 genotypes. Pharmacogenetics 1998; 8: 365–373.

    Article  CAS  PubMed  Google Scholar 

  10. Hiratsuka M . In vitro assessment of the allelic variants of cytochrome P450. Drug Metab Pharmacokinet 2012; 27: 68–84.

    Article  CAS  PubMed  Google Scholar 

  11. Lang D, Bocker R . Highly sensitive and specific high-performance liquid chromatographic analysis of 7-hydroxywarfarin, a marker for human cytochrome P-4502C9 activity. J Chromatography B 1995; 672: 305–309.

    Article  CAS  Google Scholar 

  12. Leung YK, Ho JW . Inhibitory effect of nicotine and its metabolites on tolbutamide hydroxylation in rat liver microsomes. J Biochem Biophys Methods 1998; 36: 87–94.

    Article  CAS  PubMed  Google Scholar 

  13. Takanashi K, Tainaka H, Kobayashi K, Yasumori T, Hosakawa M, Chiba K . CYP2C9 Ile359 and Leu359 variants: enzyme kinetic study with seven substrates. Pharmacogenetics 2000; 10: 95–104.

    Article  CAS  PubMed  Google Scholar 

  14. Blaisdell J, Jorge-Nebert LF, Coulter S, Ferguson SS, Lee SJ, Chanas B et al. Discovery of new potentially defective alleles of human CYP2C9. Pharmacogenetics 2004; 14: 527–537.

    Article  CAS  PubMed  Google Scholar 

  15. Guo Y, Wang Y, Si D, Fawcett PJ, Zhong D, Zhou H . Catalytic activities of human cytochrome P450 2C9*1, 2C9*3 and 2C9*13. Xenobiotica 2005; 35: 853–861.

    Article  CAS  PubMed  Google Scholar 

  16. Zhao F, Loke C, Rankin SC, Guo JY, Lee HS, Wu TS et al. Novel CYP2C9 genetic variants in Asian subjects and their influence on maintenance warfarin dose. Clin Pharmacol Ther 2004; 76: 210–219.

    Article  CAS  PubMed  Google Scholar 

  17. Gotoh O . Substrate recognition sites in cytochrome P450 family 2 (CYP2) proteins inferred from comparative analyses of amino acid and coding nucleotide sequences. J Biol Chem 1992; 267: 83–90.

    CAS  PubMed  Google Scholar 

  18. Maekawa K, Fukushima-Uesaka H, Tohkin M, Hasegawa R, Kajio H, Kuzuya N et al. Four novel defective alleles and comprehensive haplotype analysis of CYP2C9 in Japanese. Pharmacogenet Genomics 2006; 16: 497–514.

    Article  CAS  PubMed  Google Scholar 

  19. Lewis DF . The CYP2 family: models, mutants and interactions. Xenobiotica 1998; 28: 617–661.

    Article  CAS  PubMed  Google Scholar 

  20. Williams PA, Cosme J, Ward A, Angove HC, Matak Vinkovic D, Jhoti H . Crystal structure of human cytochrome P450 2C9 with bound warfarin. Nature 2003; 424: 464–468.

    Article  CAS  PubMed  Google Scholar 

  21. Ciccacci C, Falconi M, Paolillo N, Oteri F, Forte V, Novelli G et al. Characterization of a novel CYP2C9 gene mutation and structural bioinformatic protein analysis in a warfarin hypersensitive patient. Pharmacogenet Genomics 2011; 21: 344–346.

    Article  CAS  PubMed  Google Scholar 

  22. Maekawa K, Harakawa N, Sugiyama E, Tohkin M, Kim SR, Kaniwa N et al. Substrate-dependent functional alterations of seven CYP2C9 variants found in Japanese subjects. Drug Metab Dispos 2009; 37: 1895–1903.

    Article  CAS  PubMed  Google Scholar 

  23. Kaminsky LS, de Morais SM, Faletto MB, Dunbar DA, Goldstein JA . Correlation of human cytochrome P4502C substrate specificities with primary structure: warfarin as a probe. Mol Pharmacol 1993; 43: 234–239.

    CAS  PubMed  Google Scholar 

  24. Veronese ME, Doecke CJ, Mackenzie PI, McManus ME, Miners JO, Rees DL et al. Site-directed mutation studies of human liver cytochrome P-450 isoenzymes in the CYP2C subfamily. Biochem J 1993; 289 (Pt 2): 533–538.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Rettie AE, Wienkers LC, Gonzalez FJ, Trager WF, Korzekwa KR . Impaired (S)-warfarin metabolism catalysed by the R144C allelic variant of CYP2C9. Pharmacogenetics 1994; 4: 39–42.

    Article  CAS  PubMed  Google Scholar 

  26. Sullivan-Klose TH, Ghanayem BI, Bell DA, Zhang ZY, Kaminsky LS, Shenfield GM et al. The role of the CYP2C9-Leu359 allelic variant in the tolbutamide polymorphism. Pharmacogenetics 1996; 6: 341–349.

    Article  CAS  Google Scholar 

  27. Yamazaki H, Inoue K, Chiba K, Ozawa N, Kawai T, Suzuki Y et al. Comparative studies on the catalytic roles of cytochrome P450 2C9 and its Cys- and Leu-variants in the oxidation of warfarin, flurbiprofen, and diclofenac by human liver microsomes. Biochem Pharmacol 1998; 56: 243–251.

    Article  CAS  PubMed  Google Scholar 

  28. Rettie AE, Haining RL, Bajpai M, Levy RH . A common genetic basis for idiosyncratic toxicity of warfarin and phenytoin. Epilepsy Res 1999; 35: 253–255.

    Article  CAS  PubMed  Google Scholar 

  29. Hanatani T, Fukuda T, Ikeda M, Imaoka S, Hiroi T, Funae Y et al. CYP2C9*3 influences the metabolism and the drug-interaction of candesartan in vitro. Pharmacogenomics J 2001; 1: 288–292.

    Article  CAS  PubMed  Google Scholar 

  30. Dickmann LJ, Rettie AE, Kneller MB, Kim RB, Wood AJ, Stein CM et al. Identification and functional characterization of a new CYP2C9 variant (CYP2C9*5) expressed among African Americans. Mol Pharmacol 2001; 60: 382–387.

    Article  CAS  PubMed  Google Scholar 

  31. Hanatani T, Fukuda T, Onishi S, Funae Y, Azuma J . No major difference in inhibitory susceptibility between CYP2C9.1 and CYP2C9.3. Eur J Clin Pharmacol 2003; 59: 233–235.

    Article  CAS  PubMed  Google Scholar 

  32. DeLozier TC, Lee SC, Coulter SJ, Goh BC, Goldstein JA . Functional characterization of novel allelic variants of CYP2C9 recently discovered in southeast Asians. J Pharmacol Exp Ther 2005; 315: 1085–1090.

    Article  CAS  PubMed  Google Scholar 

  33. Herman D, Dolzan V, Ingelman-Sundberg M . Characterization of the novel defective CYP2C9*24 allele. Drug Metab Dispos 2007; 35: 831–834.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Japan Society for the Promotion of Science (KAKENHI 23659070), in part by a grant from the Smoking Research Foundation, Takeda Science Foundation and Japan Research Foundation for Clinical Pharmacology. We thank the Biomedical Research Core of Tohoku University Graduate School of Medicine for technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Hiratsuka.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Niinuma, Y., Saito, T., Takahashi, M. et al. Functional characterization of 32 CYP2C9 allelic variants. Pharmacogenomics J 14, 107–114 (2014). https://doi.org/10.1038/tpj.2013.22

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/tpj.2013.22

Keywords

This article is cited by

Search

Quick links