Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Interethnic variation of CYP2C19 alleles, ‘predicted’ phenotypes and ‘measured’ metabolic phenotypes across world populations

Abstract

The present study evaluates the worldwide frequency distribution of CYP2C19 alleles and CYP2C19 metabolic phenotypes (‘predicted’ from genotypes and ‘measured’ with a probe drug) among healthy volunteers from different ethnic groups and geographic regions, as well as the relationship between the ‘predicted’ and ‘measured’ CYP2C19 metabolic phenotypes. A total of 52 181 healthy volunteers were studied within 138 selected original research papers. CYP2C19*17 was 42- and 24-fold more frequent in Mediterranean-South Europeans and Middle Easterns than in East Asians (P<0.001, in both cases). Contrarily, CYP2C19*2 and CYP2C19*3 alleles were more frequent in East Asians (30.26% and 6.89%, respectively), and even a twofold higher frequency of these alleles was found in Native populations from Oceania (61.30% and 14.42%, respectively; P<0.001, in all cases), which may be a consequence of genetic drift process in the Pacific Islands. Regarding CYP2C19 metabolic phenotype, poor metabolizers (PMs) were more frequent among Asians than in Europeans, contrarily to the phenomenon reported for CYP2D6. A correlation has been found between the frequencies of CYP2C19 poor metabolism ‘predicted’ from CYP2C19 genotypes (gPMs) and the poor metabolic phenotype ‘measured’ with a probe drug (mPMs) when subjects are either classified by ethnicity (r=0.94, P<0.001) or geographic region (r=0.99, P=0.002). Nevertheless, further research is needed in African and Asian populations, which are under-represented, and additional CYP2C19 variants and the ‘measured’ phenotype should be studied.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Sistonen J, Fuselli S, Palo JU, Chauhan N, Padh H, Sajantila A . Pharmacogenetic variation at CYP2C9, CYP2C19, and CYP2D6 at global and microgeographic scales. Pharmacogenet Genomics 2009; 19: 170–179.

    CAS  PubMed  Google Scholar 

  2. Clinical Pharmacogenetics Implementation Consortium (CPIC). CYP2C19. Pharmacogenomics Knowledge Database. Available at: https://www.pharmgkb.org/cpic/alleles (accessed 20 March 2014).

  3. De Andrés F, Sosa-Macías M, Llerena A . A rapid and simple LC-MS/MS method for the simultaneous evaluation of CYP1A2, CYP2C9, CYP2C19, CYP2D6 and CYP3A4 hydroxylation capacity. Bioanalysis 2014; 6: 683–696.

    PubMed  Google Scholar 

  4. Llerena A, Valdivielso MJ, Benítez J, Bertilsson L . Reproducibility over time of mephenytoin and debrisoquine hydroxylation phenotypes. Pharmacol Toxicol 1993; 73: 46–48.

    CAS  PubMed  Google Scholar 

  5. CYP2C19 allele nomenclature. Hum. Cytochrome P450 Allele Nomencl. Database. Available at: http://www.cypalleles.ki.se/cyp2c19.htm (accessed 15 May 2014).

  6. Steimer W, Zöpf K, von Amelunxen S, Pfeiffer H, Bachofer J, Popp J et al. Amitriptyline or not, that is the question: pharmacogenetic testing of CYP2D6 and CYP2C19 identifies patients with low or high risk for side effects in amitriptyline therapy. Clin Chem 2005; 51: 376–385.

    CAS  PubMed  Google Scholar 

  7. Dorado P, López-Torres E, Peñas-Lledó EM, Martínez-Antón J, Llerena A . Neurological toxicity after phenytoin infusion in a pediatric patient with epilepsy: influence of CYP2C9, CYP2C19 and ABCB1 genetic polymorphisms. Pharmacogenomics J 2013; 13: 359–361.

    CAS  PubMed  Google Scholar 

  8. LLerena A, Herraíz AG, Cobaleda J, Johansson I, Dahl ML . Debrisoquin and mephenytoin hydroxylation phenotypes and CYP2D6 genotype in patients treated with neuroleptic and antidepressant agents. Clin Pharmacol Ther 1993; 54: 606–611.

    CAS  PubMed  Google Scholar 

  9. Dahl ML, Llerena A, Bondesson U, Lindström L, Bertilsson L . Disposition of clozapine in man: lack of association with debrisoquine and S-mephenytoin hydroxylation polymorphisms. Br J Clin Pharmacol 1994; 37: 71–74.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Chang M, Söderberg MM, Scordo MG, Tybring G, Dahl M-L . CYP2C19*17 affects R-warfarin plasma clearance and warfarin INR/dose ratio in patients on stable warfarin maintenance therapy. Eur J Clin Pharmacol 2015; 71: 433–439.

    CAS  PubMed  Google Scholar 

  11. Larsen P, Johnston L, Holley A, La Flamme A, Smyth L, Chua E et al. Prevalence and significance of CYP2C19*2 and CYP2C19*17 alleles in a New Zealand acute coronary syndrome population. Intern Med J 2015; 45: 537–545.

    CAS  PubMed  Google Scholar 

  12. Román M, Ochoa D, Sánchez-Rojas SD, Talegón M, Prieto-Pérez R, Rivas  et al. Evaluation of the relationship between polymorphisms in CYP2C19 and the pharmacokinetics of omeprazole, pantoprazole and rabeprazole. Pharmacogenomics 2014; 15: 1893–1901.

    PubMed  Google Scholar 

  13. FDA. Genomics - Table of Pharmacogenomic Biomarkers in Drug Labeling. Available at: http://www.fda.gov/drugs/scienceresearch/researchareas/pharmacogenetics/ucm083378.htm (accessed 16 June 2015).

  14. Heads of Medicines Agencies: CMDh. Available at: http://www.hma.eu/cmdh.html (accessed 15 May 2015).

  15. Klotz U . Clinical impact of CYP2C19 polymorphism on the action of proton pump inhibitors: a review of a special problem. Int J Clin Pharmacol Ther 2006; 44: 297–302.

    CAS  PubMed  Google Scholar 

  16. Stathopoulou MG, Monteiro P, Shahabi P, Peñas-Lledó E, El Shamieh S, Silva Santos L et al. Newly identified synergy between clopidogrel and calcium-channel blockers for blood pressure regulation possibly involves CYP2C19 rs4244285. Int J Cardiol 2013; 168: 3057–3058.

    PubMed  Google Scholar 

  17. Sim SC, Kacevska M, Ingelman-Sundberg M . Pharmacogenomics of drug-metabolizing enzymes: a recent update on clinical implications and endogenous effects. Pharmacogenomics J 2013; 13: 1–11.

    CAS  PubMed  Google Scholar 

  18. Sim SC, Nordin L, Andersson TM-L, Virding S, Olsson M, Pedersen NL et al. Association between CYP2C19 polymorphism and depressive symptoms. Am J Med Genet B Neuropsychiatr Genet 2010; 153B: 1160–1166.

    CAS  PubMed  Google Scholar 

  19. Persson A, Sim SC, Virding S, Onishchenko N, Schulte G, Ingelman-Sundberg M . Decreased hippocampal volume and increased anxiety in a transgenic mouse model expressing the human CYP2C19 gene. Mol Psychiatry 2014; 19: 733–741.

    CAS  PubMed  Google Scholar 

  20. Peñas-Lledó E, Guillaume S, Naranjo MEG, Delgado A, Jaussent I, Blasco-Fontecilla H et al. A combined high CYP2D6-CYP2C19 metabolic capacity is associated with the severity of suicide attempt as measured by objective circumstances. Pharmacogenomics J 2015; 15: 172–176.

    PubMed  Google Scholar 

  21. Xie HG, Kim RB, Wood AJ, Stein CM . Molecular basis of ethnic differences in drug disposition and response. Annu Rev Pharmacol Toxicol 2001; 41: 815–850.

    CAS  PubMed  Google Scholar 

  22. Kurose K, Sugiyama E, Saito Y . Population differences in major functional polymorphisms of pharmacokinetics/pharmacodynamics-related genes in Eastern Asians and Europeans: implications in the clinical trials for novel drug development. Drug Metab Pharmacokinet 2012; 27: 9–54.

    CAS  PubMed  Google Scholar 

  23. Reviriego J, Bertilsson L, Carrillo JA, Llerena A, Valdivielso MJ, Benítez J . Frequency of S-mephenytoin hydroxylation deficiency in 373 Spanish subjects compared to other Caucasian populations. Eur J Clin Pharmacol 1993; 44: 593–595.

    CAS  PubMed  Google Scholar 

  24. Drøhse A, Bathum L, Brøsen K, Gram LF . Mephenytoin and sparteine oxidation: genetic polymorphisms in Denmark. Br J Clin Pharmacol 1989; 27: 620–625.

    PubMed  PubMed Central  Google Scholar 

  25. Guttendorf RJ, Britto M, Blouin RA, Foster TS, John W, Pittman KA et al. Rapid screening for polymorphisms in dextromethorphan and mephenytoin metabolism. Br J Clin Pharmacol 1990; 29: 373–380.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Jacqz E, Dulac H, Mathieu H . Phenotyping polymorphic drug metabolism in the French Caucasian population. Eur J Clin Pharmacol 1988; 35: 167–171.

    CAS  PubMed  Google Scholar 

  27. Sanz EJ, Villén T, Alm C, Bertilsson L . S-mephenytoin hydroxylation phenotypes in a Swedish population determined after coadministration with debrisoquin. Clin Pharmacol Ther 1989; 45: 495–499.

    CAS  PubMed  Google Scholar 

  28. Bertilsson L, Lou YQ, Du YL, Liu Y, Kuang TY, Liao XM et al. Pronounced differences between native Chinese and Swedish populations in the polymorphic hydroxylations of debrisoquin and S-mephenytoin. Clin Pharmacol Ther 1992; 51: 388–397.

    CAS  PubMed  Google Scholar 

  29. Jurima M, Inaba T, Kadar D, Kalow W . Genetic polymorphism of mephenytoin p(4’)-hydroxylation: difference between Orientals and Caucasians. Br J Clin Pharmacol 1985; 19: 483–487.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Nakamura K, Goto F, Ray WA, McAllister CB, Jacqz E, Wilkinson GR et al. Interethnic differences in genetic polymorphism of debrisoquin and mephenytoin hydroxylation between Japanese and Caucasian populations. Clin Pharmacol Ther 1985; 38: 402–408.

    CAS  PubMed  Google Scholar 

  31. LLerena A, Naranjo MEG, Rodrigues-Soares F, Penas-LLedó EM, Fariñas H, Tarazona-Santos E . Interethnic variability of CYP2D6 alleles and of predicted and measured metabolic phenotypes across world populations. Expert Opin Drug Metab Toxicol 2014; 10: 1569–1583.

    CAS  PubMed  Google Scholar 

  32. Crews KR, Gaedigk A, Dunnenberger HM, Leeder JS, Klein TE, Caudle KE et al. Clinical Pharmacogenetics Implementation Consortium guidelines for cytochrome P450 2D6 genotype and codeine therapy: 2014 update. Clin Pharmacol Ther 2014; 95: 376–382.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Graphpad Software. Available at: http://www.graphpad.com/quickcalcs/contingency1/ (accessed 1 April 2015).

  34. World population statistics. Available at: www.worldpopulationstatistics.com (accessed 1 May 2014).

  35. Henn BM, Feldman MW . The great human expansion. Proc Natl Acad Sci USA 2012; 109: 17758–17764.

    CAS  PubMed  Google Scholar 

  36. Hsu H-L, Woad KJ, Woodfield DG, Helsby NA . A high incidence of polymorphic CYP2C19 variants in archival blood samples from Papua New Guinea. Hum Genomics 2008; 3: 17–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Yusuf IRAWAN, Djojosubroto MW, RIKA Wan, Lum K, Kaneko A, Marzukt S . Ethnic and geographical distributions of CYP2C19 alleles in the populations of Southeast Asia. In: Marzuki S, Verhoef J, Snippe H (eds). Tropical Diseases. Springer: New York, USA, 2003, pp 37–46.

    Google Scholar 

  38. Kaneko A, Kaneko O, Taleo G, Björkman A, Kobayakawa T . High frequencies of CYP2C19 mutations and poor metabolism of proguanil in Vanuatu. Lancet 1997; 349: 921–922.

    CAS  PubMed  Google Scholar 

  39. Kaneko A, Lum JK, Yaviong L, Takahashi N, Ishizaki T, Bertilsson L et al. High and variable frequencies of CYP2C19 mutations: medical consequences of poor drug metabolism in Vanuatu and other Pacific islands. Pharmacogenetics 1999; 9: 581–590.

    CAS  PubMed  Google Scholar 

  40. Griese EU, Ilett KF, Kitteringham NR, Eichelbaum M, Powell H, Spargo RM et al. Allele and genotype frequencies of polymorphic cytochromes P4502D6, 2C19 and 2E1 in aborigines from western Australia. Pharmacogenetics 2001; 11: 69–76.

    CAS  PubMed  Google Scholar 

  41. Masta A, Lum JK, Tsukahara T, Hwaihwanje I, Kaneko A, Paniu MM et al. Analysis of Sepik populations of Papua New Guinea suggests an increase of CYP2C19 null allele frequencies during the colonization of Melanesia. Pharmacogenetics 2003; 13: 697–700.

    PubMed  Google Scholar 

  42. Wanwimolruk S, Bhawan S, Coville PF, Chalcroft SC . Genetic polymorphism of debrisoquine (CYP2D6) and proguanil (CYP2C19) in South Pacific Polynesian populations. Eur J Clin Pharmacol 1998; 54: 431–435.

    CAS  PubMed  Google Scholar 

  43. Wanwimolruk S, Pratt EL, Denton JR, Chalcroft SC, Barron PA, Broughton JR . Evidence for the polymorphic oxidation of debrisoquine and proguanil in a New Zealand Maori population. Pharmacogenetics 1995; 5: 193–198.

    CAS  PubMed  Google Scholar 

  44. Wanwimolruk S, Thou MR, Woods DJ . Evidence for the polymorphic oxidation of debrisoquine and proguanil in a Khmer (Cambodian) population. Br J Clin Pharmacol 1995; 40: 166–169.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Rudberg I, Mohebi B, Hermann M, Refsum H, Molden E . Impact of the ultrarapid CYP2C19*17 allele on serum concentration of escitalopram in psychiatric patients. Clin Pharmacol Ther 2008; 83: 322–327.

    CAS  PubMed  Google Scholar 

  46. Bauer T, Bouman HJ, van Werkum JW, Ford NF, ten Berg JM, Taubert D . Impact of CYP2C19 variant genotypes on clinical efficacy of antiplatelet treatment with clopidogrel: systematic review and meta-analysis. BMJ 2011; 343: d4588.

    PubMed  PubMed Central  Google Scholar 

  47. Sugimoto K, Uno T, Yamazaki H, Tateishi T . Limited frequency of the CYP2C19*17 allele and its minor role in a Japanese population. Br J Clin Pharmacol 2008; 65: 437–439.

    CAS  PubMed  Google Scholar 

  48. Payan M, Rouini MR, Tajik N, Ghahremani MH, Tahvilian R . Hydroxylation index of omeprazole in relation to CYP2C19 polymorphism and sex in a healthy Iranian population. Daru 2014; 22: 81.

    PubMed  PubMed Central  Google Scholar 

  49. Kaneko A, Bergqvist Y, Taleo G, Kobayakawa T, Ishizaki T, Björkman A . Proguanil disposition and toxicity in malaria patients from Vanuatu with high frequencies of CYP2C19 mutations. Pharmacogenetics 1999; 9: 317–326.

    CAS  PubMed  Google Scholar 

  50. Wu AH, WhiteSam MJ, Burchard E . The Hawaii clopidogrel lawsuit: the possible effect on clinical laboratory testing. Per Med 2015; 12: 179–181.

    CAS  PubMed  Google Scholar 

  51. Masimirembwa C, Bertilsson L, Johansson I, Hasler JA, Ingelman-Sundberg M . Phenotyping and genotyping of S-mephenytoin hydroxylase (cytochrome P450 2C19) in a Shona population of Zimbabwe. Clin Pharmacol Ther 1995; 57: 656–661.

    CAS  PubMed  Google Scholar 

  52. Persson I, Aklillu E, Rodrigues F, Bertilsson L, Ingelman-Sundberg M . S-mephenytoin hydroxylation phenotype and CYP2C19 genotype among Ethiopians. Pharmacogenetics 1996; 6: 521–526.

    CAS  PubMed  Google Scholar 

  53. Herrlin K, Massele AY, Jande M, Alm C, Tybring G, Abdi YA et al. Bantu Tanzanians have a decreased capacity to metabolize omeprazole and mephenytoin in relation to their CYP2C19 genotype. Clin Pharmacol Ther 1998; 64: 391–401.

    CAS  PubMed  Google Scholar 

  54. Bathum L, Skjelbo E, Mutabingwa TK, Madsen H, Hørder M, Brøsen K . Phenotypes and genotypes for CYP2D6 and CYP2C19 in a black Tanzanian population. Br J Clin Pharmacol 1999; 48: 395–401.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Dandara C, Masimirembwa CM, Magimba A, Sayi J, Kaaya S, Sommers DK et al. Genetic polymorphism of CYP2D6 and CYP2C19 in east- and southern African populations including psychiatric patients. Eur J Clin Pharmacol 2001; 57: 11–17.

    CAS  PubMed  Google Scholar 

  56. Dandara C, Lombard Z, Du Plooy I, McLellan T, Norris SA, Ramsay M . Genetic variants in CYP (-1A2, -2C9, -2C19, -3A4 and -3A5), VKORC1 and ABCB1 genes in a black South African population: a window into diversity. Pharmacogenomics 2011; 12: 1663–1670.

    CAS  PubMed  Google Scholar 

  57. Aklillu E, Herrlin K, Gustafsson LL, Bertilsson L, Ingelman-Sundberg M . Evidence for environmental influence on CYP2D6-catalysed debrisoquine hydroxylation as demonstrated by phenotyping and genotyping of Ethiopians living in Ethiopia or in Sweden. Pharmacogenetics 2002; 12: 375–383.

    CAS  PubMed  Google Scholar 

  58. Bolaji OO, Sadare IO, Babalola CP, Ogunbona FA . Polymorphic oxidative metabolism of proguanil in a Nigerian population. Eur J Clin Pharmacol 2002; 58: 543–545.

    CAS  PubMed  Google Scholar 

  59. Allabi AC, Gala J-L, Desager J-P, Heusterspreute M, Horsmans Y . Genetic polymorphisms of CYP2C9 and CYP2C19 in the Beninese and Belgian populations. Br J Clin Pharmacol 2003; 56: 653–657.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Miura J, Obua C, Abbo C, Kaneko S, Tateishi T . Cytochrome P450 2C19 genetic polymorphisms in Ugandans. Eur J Clin Pharmacol 2009; 65: 319–320.

    PubMed  Google Scholar 

  61. Drögemöller BI, Wright GEB, Niehaus DJH, Koen L, Malan S, Da Silva DM et al. Characterization of the genetic profile of CYP2C19 in two South African populations. Pharmacogenomics 2010; 11: 1095–1103.

    PubMed  Google Scholar 

  62. Dodgen TM, Hochfeld WE, Fickl H, Asfaha SM, Durandt C, Rheeder P et al. Introduction of the AmpliChip CYP450 Test to a South African cohort: a platform comparative prospective cohort study. BMC Med Genet 2013; 14: 20.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Janha RE, Worwui A, Linton KJ, Shaheen SO, Sisay-Joof F, Walton RT . Inactive alleles of cytochrome P450 2C19 may be positively selected in human evolution. BMC Evol Biol 2014; 14: 71.

    PubMed  PubMed Central  Google Scholar 

  64. Kudzi W, Dodoo AN, Mills JJ . Characterisation of CYP2C8, CYP2C9 and CYP2C19 polymorphisms in a Ghanaian population. BMC Med Genet 2009; 10: 124.

    PubMed  PubMed Central  Google Scholar 

  65. Hamdy SI, Hiratsuka M, Narahara K, El-Enany M, Moursi N, Ahmed MS-E et al. Allele and genotype frequencies of polymorphic cytochromes P450 (CYP2C9, CYP2C19, CYP2E1) and dihydropyrimidine dehydrogenase (DPYD) in the Egyptian population. Br J Clin Pharmacol 2002; 53: 596–603.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Ellison CA, Abou El-Ella SS, Tawfik M, Lein PJ, Olson JR . Allele and genotype frequencies of CYP2B6 and CYP2C19 polymorphisms in Egyptian agricultural workers. J Toxicol Environ Health A 2012; 75: 232–241.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Marinac JS, Balian JD, Foxworth JW, Willsie SK, Daus JC, Owen R et al. Determination of CYP2C19 phenotype in black Americans with omeprazole: correlation with genotype. Clin Pharmacol Ther 1996; 60: 138–144.

    CAS  PubMed  Google Scholar 

  68. Luo H-R, Poland RE, Lin K-M, Wan Y-JY . Genetic polymorphism of cytochrome P450 2C19 in Mexican Americans: a cross-ethnic comparative study. Clin Pharmacol Ther 2006; 80: 33–40.

    CAS  PubMed  Google Scholar 

  69. Aynacioglu AS, Sachse C, Bozkurt A, Kortunay S, Nacak M, Schröder T et al. Low frequency of defective alleles of cytochrome P450 enzymes 2C19 and 2D6 in the Turkish population. Clin Pharmacol Ther 1999; 66: 185–192.

    CAS  PubMed  Google Scholar 

  70. Sviri S, Shpizen S, Leitersdorf E, Levy M, Caraco Y . Phenotypic-genotypic analysis of CYP2C19 in the Jewish Israeli population. Clin Pharmacol Ther 1999; 65: 275–282.

    CAS  PubMed  Google Scholar 

  71. Luo H-R, Aloumanis V, Lin K-M, Gurwitz D, Wan Y-JY . Polymorphisms of CYP2C19 and CYP2D6 in Israeli ethnic groups. Am J Pharmacogenomics 2004; 4: 395–401.

    CAS  PubMed  Google Scholar 

  72. Scott SA, Edelmann L, Kornreich R, Erazo M, Desnick RJ . CYP2C9, CYP2C19 and CYP2D6 allele frequencies in the Ashkenazi Jewish population. Pharmacogenomics 2007; 8: 721–730.

    CAS  PubMed  Google Scholar 

  73. Zand N, Tajik N, Moghaddam AS, Milanian I . Genetic polymorphisms of cytochrome P450 enzymes 2C9 and 2C19 in a healthy Iranian population. Clin Exp Pharmacol Physiol 2007; 34: 102–105.

    CAS  PubMed  Google Scholar 

  74. Djaffar Jureidini I, Chamseddine N, Keleshian S, Naoufal R, Zahed L, Hakime N . Prevalence of CYP2C19 polymorphisms in the Lebanese population. Mol Biol Rep 2011; 38: 5449–5452.

    CAS  PubMed  Google Scholar 

  75. Yousef A-M, Bulatova NR, Newman W, Hakooz N, Ismail S, Qusa H et al. Allele and genotype frequencies of the polymorphic cytochrome P450 genes (CYP1A1, CYP3A4, CYP3A5, CYP2C9 and CYP2C19) in the Jordanian population. Mol Biol Rep 2012; 39: 9423–9433.

    CAS  PubMed  Google Scholar 

  76. Zalloum I, Hakooz N, Arafat T . Genetic polymorphism of CYP2C19 in a Jordanian population: influence of allele frequencies of CYP2C19*1 and CYP2C19*2 on the pharmacokinetic profile of lansoprazole. Mol Biol Rep 2012; 39: 4195–4200.

    CAS  PubMed  Google Scholar 

  77. Al-Jenoobi FI, Alkharfy KM, Alghamdi AM, Bagulb KM, Al-Mohizea AM, Al-Muhsen S et al. CYP2C19 genetic polymorphism in Saudi Arabians. Basic Clin Pharmacol Toxicol 2013; 112: 50–54.

    CAS  PubMed  Google Scholar 

  78. Tabari RG, Marjani A, Ataby OA, Mansourian AR, Samai NM . Genetic polymorphism of cytochrome p450 (2C19) enzyme in Iranian Turkman Ethnic group. Oman Med J 2013; 28: 237–244.

    PubMed  PubMed Central  Google Scholar 

  79. Saeed LH, Mayet AY . Genotype-phenotype analysis of CYP2C19 in healthy saudi individuals and its potential clinical implication in drug therapy. Int J Med Sci 2013; 10: 1497–1502.

    PubMed  PubMed Central  Google Scholar 

  80. Santos PCJL, Soares RAG, Santos DBG, Nascimento RM, Coelho GLLM, Nicolau JC et al. CYP2C19 and ABCB1 gene polymorphisms are differently distributed according to ethnicity in the Brazilian general population. BMC Med Genet 2011; 12: 13.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Salazar-Flores J, Torres-Reyes LA, Martínez-Cortés G, Rubi-Castellanos R, Sosa-Macías M, Muñoz-Valle JF et al. Distribution of CYP2D6 and CYP2C19 polymorphisms associated with poor metabolizer phenotype in five Amerindian groups and western Mestizos from Mexico. Genet Test Mol Biomarkers 2012; 16: 1098–1104.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Vargens DD, Petzl-Erler M-L, Suarez-Kurtz G . Distribution of CYP2C polymorphisms in an Amerindian population of Brazil. Basic Clin Pharmacol Toxicol 2012; 110: 396–400.

    CAS  PubMed  Google Scholar 

  83. Lea RA, Roberts RL, Green MR, Kennedy MA, Chambers GK . Allele frequency differences of cytochrome P450 polymorphisms in a sample of New Zealand Māori. N Z Med J 2008; 121: 33–37.

    PubMed  Google Scholar 

  84. Jurima-Romet M, Goldstein JA, LeBelle M, Aubin RA, Foster BC, Walop W et al. CYP2C19 genotyping and associated mephenytoin hydroxylation polymorphism in a Canadian Inuit population. Pharmacogenetics 1996; 6: 329–339.

    CAS  PubMed  Google Scholar 

  85. Nowak MP, Sellers EM, Tyndale RF . Canadian Native Indians exhibit unique CYP2A6 and CYP2C19 mutant allele frequencies. Clin Pharmacol Ther 1998; 64: 378–383.

    CAS  PubMed  Google Scholar 

  86. Bravo-Villalta HV, Yamamoto K, Nakamura K, Bayá A, Okada Y, Horiuchi R . Genetic polymorphism of CYP2C9 and CYP2C19 in a Bolivian population: an investigative and comparative study. Eur J Clin Pharmacol 2005; 61: 179–184.

    CAS  PubMed  Google Scholar 

  87. Isaza C, Henao J, Martínez JHI, Sepúlveda Arias JC, Beltrán L . Phenotype-genotype analysis of CYP2C19 in Colombian mestizo individuals. BMC Clin Pharmacol 2007; 7: 6.

    PubMed  PubMed Central  Google Scholar 

  88. Duconge J, Cadilla CL, Renta JY, Silén-Rivera P, Piovanetti P, García-Berdecía R et al. Prevalence of CYP2C19 gene polymorphisms in the Puerto Rican population: a preliminary report. P R Health Sci J 2008; 27: 357–358.

    PubMed  PubMed Central  Google Scholar 

  89. Roco A, Quiñones L, Agúndez JAG, García-Martín E, Squicciarini V, Miranda C et al. Frequencies of 23 functionally significant variant alleles related with metabolism of antineoplastic drugs in the Chilean population: comparison with Caucasian and Asian populations. Front Genet 2012; 3: 229.

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Suarez-Kurtz G, Genro JP, de Moraes MO, Ojopi EB, Pena SDJ, Perini JA et al. Global pharmacogenomics: Impact of population diversity on the distribution of polymorphisms in the CYP2C cluster among Brazilians. Pharmacogenomics J 2012; 12: 267–276.

    CAS  PubMed  Google Scholar 

  91. Castro de Guerra D, Flores S, Izaguirre MH . Distribution of CYP2C19*2 and CYP2C19*3 polymorphisms in Venezuelan populations with different admixture. Ann Hum Biol 2013; 40: 197–200.

    PubMed  Google Scholar 

  92. Orengo-Mercado C, Nieves B, López L, Vallés-Ortiz N, Renta JY, Santiago-Borrero PJ et al. Frequencies of functional polymorphisms in three pharmacokinetic genes of clinical interest within the admixed Puerto Rican population. J Pharmacogenomics Pharmacoproteomics 2013; 4: 113.

    Google Scholar 

  93. Kohlrausch FB, Carracedo Á, Hutz MH . Characterization of CYP1A2, CYP2C19, CYP3A4 and CYP3A5 polymorphisms in South Brazilians. Mol Biol Rep 2014; 41: 1453–1460.

    CAS  PubMed  Google Scholar 

  94. Vicente J, González-Andrade F, Soriano A, Fanlo A, Martínez-Jarreta B, Sinués B . Genetic polymorphisms of CYP2C8, CYP2C9 and CYP2C19 in Ecuadorian Mestizo and Spaniard populations: a comparative study. Mol Biol Rep 2014; 41: 1267–1272.

    CAS  PubMed  Google Scholar 

  95. Vargas-Alarcón G, Ramírez-Bello J, de la Peña A, Calderón-Cruz B, Peña-Duque MA, Martínez-Ríos MA et al. Distribution of ABCB1, CYP3A5, CYP2C19, and P2RY12 gene polymorphisms in a Mexican Mestizos population. Mol Biol Rep 2014; 41: 7023–7029.

    PubMed  Google Scholar 

  96. Myrand SP, Sekiguchi K, Man MZ, Lin X, Tzeng R-Y, Teng C-H et al. Pharmacokinetics/genotype associations for major cytochrome P450 enzymes in native and first- and third-generation Japanese populations: comparison with Korean, Chinese, and Caucasian populations. Clin Pharmacol Ther 2008; 84: 347–361.

    CAS  PubMed  Google Scholar 

  97. Hoskins JM, Shenfield GM, Gross AS . Relationship between proguanil metabolic ratio and CYP2C19 genotype in a Caucasian population. Br J Clin Pharmacol 1998; 46: 499–504.

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Bramness JG, Skurtveit S, Fauske L, Grung M, Molven A, Mørland J et al. Association between blood carisoprodol:meprobamate concentration ratios and CYP2C19 genotype in carisoprodol-drugged drivers: decreased metabolic capacity in heterozygous CYP2C19*1/CYP2C19*2 subjects? Pharmacogenetics 2003; 13: 383–388.

    CAS  PubMed  Google Scholar 

  99. Hilli J, Rane A, Lundgren S, Bertilsson L, Laine K . Genetic polymorphism of cytochrome P450s and P-glycoprotein in the Finnish population. Fundam Clin Pharmacol 2007; 21: 379–386.

    CAS  PubMed  Google Scholar 

  100. Pedersen RS, Brasch-Andersen C, Sim SC, Bergmann TK, Halling J, Petersen MS et al. Linkage disequilibrium between the CYP2C19*17 allele and wildtype CYP2C8 and CYP2C9 alleles: identification of CYP2C haplotypes in healthy Nordic populations. Eur J Clin Pharmacol 2010; 66: 1199–1205.

    PubMed  Google Scholar 

  101. Ramsjö M, Aklillu E, Bohman L, Ingelman-Sundberg M, Roh H-K, Bertilsson L . CYP2C19 activity comparison between Swedes and Koreans: effect of genotype, sex, oral contraceptive use, and smoking. Eur J Clin Pharmacol 2010; 66: 871–877.

    PubMed  Google Scholar 

  102. Brockmöller J, Rost KL, Gross D, Schenkel A, Roots I . Phenotyping of CYP2C19 with enantiospecific HPLC-quantification of R- and S-mephenytoin and comparison with the intron4/exon5 G—&gt;A-splice site mutation. Pharmacogenetics 1995; 5: 80–88.

    PubMed  Google Scholar 

  103. Tamminga WJ, Wemer J, Oosterhuis B, Weiling J, Wilffert B, de Leij LF et al. CYP2D6 and CYP2C19 activity in a large population of Dutch healthy volunteers: indications for oral contraceptive-related gender differences. Eur J Clin Pharmacol 1999; 55: 177–184.

    CAS  PubMed  Google Scholar 

  104. Rideg O, Háber A, Botz L, Szücs F, Várnai R, Miseta A et al. Pilot study for the characterization of pharmacogenetically relevant CYP2D6, CYP2C19 and ABCB1 gene polymorphisms in the Hungarian population. Cell Biochem Funct 2011; 29: 562–568.

    CAS  PubMed  Google Scholar 

  105. Sipeky C, Weber A, Szabo M, Melegh BI, Janicsek I, Tarlos G et al. High prevalence of CYP2C19*2 allele in Roma samples: study on Roma and Hungarian population samples with review of the literature. Mol Biol Rep 2013; 40: 4727–4735.

    CAS  PubMed  Google Scholar 

  106. Ruas JL, Lechner MC . Allele frequency of CYP2C19 in a Portuguese population. Pharmacogenetics 1997; 7: 333–335.

    CAS  PubMed  Google Scholar 

  107. Scordo MG, Caputi AP, D’Arrigo C, Fava G, Spina E . Allele and genotype frequencies of CYP2C9, CYP2C19 and CYP2D6 in an Italian population. Pharmacol Res 2004; 50: 195–200.

    CAS  PubMed  Google Scholar 

  108. Oliveira E, Marsh S, van Booven DJ, Amorim A, Prata MJ, McLeod HL . Pharmacogenetically relevant polymorphisms in Portugal. Pharmacogenomics 2007; 8: 703–712.

    CAS  PubMed  Google Scholar 

  109. Arvanitidis K, Ragia G, Iordanidou M, Kyriaki S, Xanthi A, Tavridou A et al. Genetic polymorphisms of drug-metabolizing enzymes CYP2D6, CYP2C9, CYP2C19 and CYP3A5 in the Greek population. Fundam Clin Pharmacol 2007; 21: 419–426.

    CAS  PubMed  Google Scholar 

  110. Gaikovitch EA, Cascorbi I, Mrozikiewicz PM, Brockmöller J, Frötschl R, Köpke K et al. Polymorphisms of drug-metabolizing enzymes CYP2C9, CYP2C19, CYP2D6, CYP1A1, NAT2 and of P-glycoprotein in a Russian population. Eur J Clin Pharmacol 2003; 59: 303–312.

    CAS  PubMed  Google Scholar 

  111. Makeeva O, Stepanov V, Puzyrev V, Goldstein DB, Grossman I . Global pharmacogenetics: genetic substructure of Eurasian populations and its effect on variants of drug-metabolizing enzymes. Pharmacogenomics 2008; 9: 847–868.

    CAS  PubMed  Google Scholar 

  112. Gra O, Mityaeva O, Berdichevets I, Kozhekbaeva Z, Fesenko D, Kurbatova O et al. Microarray-based detection of CYP1A1, CYP2C9, CYP2C19, CYP2D6, GSTT1, GSTM1, MTHFR, MTRR, NQO1, NAT2, HLA-DQA1, and AB0 allele frequencies in native Russians. Genet Test Mol Biomarkers 2010; 14: 329–342.

    CAS  PubMed  Google Scholar 

  113. Adithan C, Gerard N, Vasu S, Rosemary J, Shashindran CH, Krishnamoorthy R . Allele and genotype frequency of CYP2C19 in a Tamilian population. Br J Clin Pharmacol 2003; 56: 331–333.

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Jose R, Chandrasekaran A, Sam SS, Gerard N, Chanolean S, Abraham BK et al. CYP2C9 and CYP2C19 genetic polymorphisms: frequencies in the south Indian population. Fundam Clin Pharmacol 2005; 19: 101–105.

    CAS  PubMed  Google Scholar 

  115. Panchabhai TS, Noronha SF, Davis S, Shinde VM, Kshirsagar NA, Gogtay NJ . Evaluation of the activity of CYP2C19 in Gujrati and Marwadi subjects living in Mumbai (Bombay). BMC Clin Pharmacol 2006; 6: 8.

    PubMed  PubMed Central  Google Scholar 

  116. Ghodke Y, Joshi K, Arya Y, Radkar A, Chiplunkar A, Shintre P et al. Genetic polymorphism of CYP2C19 in Maharashtrian population. Eur J Epidemiol 2007; 22: 907–915.

    CAS  PubMed  Google Scholar 

  117. Satyanarayana CRU, Devendran A, Sundaram R, Gopal SD, Rajagopal K, Chandrasekaran A . Genetic variations and haplotypes of the 5’ regulatory region of CYP2C19 in South Indian population. Drug Metab Pharmacokinet 2009; 24: 185–193.

    CAS  PubMed  Google Scholar 

  118. Anichavezhi D, Chakradhara Rao US, Shewade DG, Krishnamoorthy R, Adithan C . Distribution of CYP2C19*17 allele and genotypes in an Indian population. J Clin Pharm Ther 2012; 37: 313–318.

    CAS  PubMed  Google Scholar 

  119. Shalia KK, Shah VK, Pawar P, Divekar SS, Payannavar S . Polymorphisms of MDR1, CYP2C19 and P2Y12 genes in Indian population: effects on clopidogrel response. Indian Heart J 2013; 65: 158–167.

    PubMed  PubMed Central  Google Scholar 

  120. Gulati S, Yadav A, Kumar N, Kanupriya, Kumar G, Aggarwal N et al. Frequency distribution of high risk alleles of CYP2C19, CYP2E1, CYP3A4 genes in Haryana population. Environ Toxicol Pharmacol 2014; 37: 1186–1193.

    CAS  PubMed  Google Scholar 

  121. De Morais SM, Goldstein JA, Xie HG, Huang SL, Lu YQ, Xia H et al. Genetic analysis of the S-mephenytoin polymorphism in a Chinese population. Clin Pharmacol Ther 1995; 58: 404–411.

    CAS  PubMed  Google Scholar 

  122. Kubota T, Chiba K, Ishizaki T . Genotyping of S-mephenytoin 4’-hydroxylation in an extended Japanese population. Clin Pharmacol Ther 1996; 60: 661–666.

    CAS  PubMed  Google Scholar 

  123. Takakubo F, Kuwano A, Kondo I . Evidence that poor metabolizers of (S)-mephenytoin could be identified by haplotypes of CYP2C19 in Japanese. Pharmacogenetics 1996; 6: 265–267.

    CAS  PubMed  Google Scholar 

  124. Xiao ZS, Goldstein JA, Xie HG, Blaisdell J, Wang W, Jiang CH et al. Differences in the incidence of the CYP2C19 polymorphism affecting the S-mephenytoin phenotype in Chinese Han and Bai populations and identification of a new rare CYP2C19 mutant allele. J Pharmacol Exp Ther 1997; 281: 604–609.

    CAS  PubMed  Google Scholar 

  125. Kimura M, Ieiri I, Mamiya K, Urae A, Higuchi S . Genetic polymorphism of cytochrome P450s, CYP2C19, and CYP2C9 in a Japanese population. Ther Drug Monit 1998; 20: 243–247.

    CAS  PubMed  Google Scholar 

  126. Kimura M, Ieiri I, Wada Y, Mamiya K, Urae A, Iimori E et al. Reliability of the omeprazole hydroxylation index for CYP2C19 phenotyping: possible effect of age, liver disease and length of therapy. Br J Clin Pharmacol 1999; 47: 115–119.

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Kubota T, Hibi N, Chiba K . Linkage of mutant alleles of CYP2C18 and CYP2C19 in a Japanese population. Biochem Pharmacol 1998; 55: 2039–2042.

    CAS  PubMed  Google Scholar 

  128. Yao TW, Zeng S, Wang TW, Chen SQ . Phenotype analysis of cytochrome P450 2C19 in Chinese subjects with mephenytoin S/R enantiomeric ratio in urine measured by chiral GC. Biomed Chromatogr 2001; 15: 9–13.

    CAS  PubMed  Google Scholar 

  129. Tassaneeyakul W, Tawalee A, Tassaneeyakul W, Kukongviriyapan V, Blaisdell J, Goldstein JA et al. Analysis of the CYP2C19 polymorphism in a North-eastern Thai population. Pharmacogenetics 2002; 12: 221–225.

    CAS  PubMed  Google Scholar 

  130. Tassaneeyakul W, Mahatthanatrakul W, Niwatananun K, Na-Bangchang K, Tawalee A, Krikreangsak N et al. CYP2C19 genetic polymorphism in Thai, Burmese and Karen populations. Drug Metab Pharmacokinet 2006; 21: 286–290.

    CAS  PubMed  Google Scholar 

  131. He N, Yan F-X, Huang S-L, Wang W, Xiao Z-S, Liu Z-Q et al. CYP2C19 genotype and S-mephenytoin 4’-hydroxylation phenotype in a Chinese Dai population. Eur J Clin Pharmacol 2002; 58: 15–18.

    CAS  PubMed  Google Scholar 

  132. Niu CY, Luo JY, Hao ZM . Genetic polymorphism analysis of cytochrome P4502C19 in Chinese Uigur and Han populations. Chin J Dig Dis 2004; 5: 76–80.

    CAS  PubMed  Google Scholar 

  133. Yang ZF, Cui HW, Hasi T, Jia SQ, Gong ML, Su XL . Genetic polymorphisms of cytochrome P450 enzymes 2C9 and 2C19 in a healthy Mongolian population in China. Genet Mol Res 2010; 9: 1844–1851.

    CAS  PubMed  Google Scholar 

  134. Ishiguro A, Kubota T, Soya Y, Sasaki H, Yagyu O, Takarada Y et al. High-throughput detection of multiple genetic polymorphisms influencing drug metabolism with mismatch primers in allele-specific polymerase chain reaction. Anal Biochem 2005; 337: 256–261.

    CAS  PubMed  Google Scholar 

  135. Lee SS, Lee S-J, Gwak J, Jung H-J, Thi-Le H, Song I-S et al. Comparisons of CYP2C19 genetic polymorphisms between Korean and Vietnamese populations. Ther Drug Monit 2007; 29: 455–459.

    CAS  PubMed  Google Scholar 

  136. Lee S-J, Kim W-Y, Kim H, Shon J-H, Lee SS, Shin J-G . Identification of new CYP2C19 variants exhibiting decreased enzyme activity in the metabolism of S-mephenytoin and omeprazole. Drug Metab Dispos 2009; 37: 2262–2269.

    CAS  PubMed  Google Scholar 

  137. Matsumoto N, Kakihara F, Kimura S, Kurebayashi Y, Hirai M, Yohda M et al. Single nucleotide polymorphism genotyping of CYP2C19 using a new automated system. Anal Biochem 2007; 370: 121–123.

    CAS  PubMed  Google Scholar 

  138. Wang J-H, Li P-Q, Fu Q-Y, Li Q-X, Cai W-W . Cyp2c19 genotype and omeprazole hydroxylation phenotype in Chinese Li population. Clin Exp Pharmacol Physiol 34: 421–424.

    CAS  PubMed  Google Scholar 

  139. Chen L, Qin S, Xie J, Tang J, Yang L, Shen W et al. Genetic polymorphism analysis of CYP2C19 in Chinese Han populations from different geographic areas of mainland China. Pharmacogenomics 2008; 9: 691–702.

    CAS  PubMed  Google Scholar 

  140. Jin SK, Kang TS, Eom SO, Kim J-I, Lee HJ, Roh J . CYP2C19 haplotypes in Koreans as a marker of enzyme activity evaluated with omeprazole. J Clin Pharm Ther 2009; 34: 437–446.

    CAS  PubMed  Google Scholar 

  141. Perini JA, Vargens DD, Santana ISC, Moriguchi EH, Ribeiro-Dos-Santos AKC, Tsutsumi M et al. Pharmacogenetic polymorphisms in Brazilian-born, first-generation Japanese descendants. Braz J Med Biol Res 2009; 42: 1179–1184.

    CAS  PubMed  Google Scholar 

  142. Veiga MI, Asimus S, Ferreira PE, Martins JP, Cavaco I, Ribeiro V et al. Pharmacogenomics of CYP2A6, CYP2B6, CYP2C19, CYP2D6, CYP3A4, CYP3A5 and MDR1 in Vietnam. Eur J Clin Pharmacol 2009; 65: 355–363.

    CAS  PubMed  Google Scholar 

  143. Zhou Q, Yu XM, Lin HB, Wang L, Yun QZ, Hu SN et al. Genetic polymorphism, linkage disequilibrium, haplotype structure and novel allele analysis of CYP2C19 and CYP2D6 in Han Chinese. Pharmacogenomics J 2009; 9: 380–394.

    CAS  PubMed  Google Scholar 

  144. Kim K-A, Song W-K, Kim K-R, Park J-Y . Assessment of CYP2C19 genetic polymorphisms in a Korean population using a simultaneous multiplex pyrosequencing method to simultaneously detect the CYP2C19*2, CYP2C19*3, and CYP2C19*17 alleles. J Clin Pharm Ther 2010; 35: 697–703.

    PubMed  Google Scholar 

  145. Shi Y, Xiang P, Li L, Shen M . Analysis of 50 SNPs in CYP2D6, CYP2C19, CYP2C9, CYP3A4 and CYP1A2 by MALDI-TOF mass spectrometry in Chinese Han population. Forensic Sci Int 2011; 207: 183–187.

    CAS  PubMed  Google Scholar 

  146. Wei W, Fang L, Wang N, Zhang T, Zeng J, Lin M . Prevalence of CYP2C19 polymorphisms involved in clopidogrel metabolism in Fujian Han population. Zhonghua Yi Xue Yi Chuan Xue Za Zhi 2012; 29: 420–425.

    CAS  PubMed  Google Scholar 

  147. Hu L-M, Dai D-P, Hu G-X, Yang J-F, Xu R-A, Yang L-P et al. Genetic polymorphisms and novel allelic variants of CYP2C19 in the Chinese Han population. Pharmacogenomics 2012; 13: 1571–1581.

    CAS  PubMed  Google Scholar 

  148. Yin S-J, Ni Y-B, Wang S-M, Wang X, Lou Y-Q, Zhang G-L . Differences in genotype and allele frequency distributions of polymorphic drug metabolizing enzymes CYP2C19 and CYP2D6 in mainland Chinese Mongolian, Hui and Han populations. J Clin Pharm Ther 2012; 37: 364–369.

    CAS  PubMed  Google Scholar 

  149. Wu Z, Zhang X, Shen L, Xiong Y, Wu X, Huo R et al. A systematically combined genotype and functional combination analysis of CYP2E1, CYP2D6, CYP2C9, CYP2C19 in different geographic areas of mainland China—a basis for personalized therapy. PLoS One 2013; 8: e71934.

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Honda M, Ogura Y, Toyoda W, Taguchi M, Nozawa T, Inoue H et al. Multiple regression analysis of pharmacogenetic variability of carvedilol disposition in 54 healthy Japanese volunteers. Biol Pharm Bull 2006; 29: 772–778.

    CAS  PubMed  Google Scholar 

  151. Roh HK, Dahl ML, Tybring G, Yamada H, Cha YN, Bertilsson L . CYP2C19 genotype and phenotype determined by omeprazole in a Korean population. Pharmacogenetics 1996; 6: 547–551.

    CAS  PubMed  Google Scholar 

  152. Zuo LJ, Guo T, Xia DY, Jia LH . Allele and genotype frequencies of CYP3A4, CYP2C19, and CYP2D6 in Han, Uighur, Hui, and Mongolian Chinese populations. Genet Test Mol Biomarkers 2012; 16: 102–108.

    CAS  PubMed  Google Scholar 

  153. Skjelbo E, Mutabingwa TK, Bygbjerg Ib, Nielsen KK, Gram LF, Brøosen K . Chloroguanide metabolism in relation to the efficacy in malaria prophylaxis and the S-mephenytoin oxidation in Tanzanians. Clin Pharmacol Ther 1996; 59: 304–311.

    CAS  PubMed  Google Scholar 

  154. Basci NE, Bozkurt A, Kortunay S, Isimer A, Sayal A, Kayaalp SO . Proguanil metabolism in relation to S-mephenytoin oxidation in a Turkish population. Br J Clin Pharmacol 1996; 42: 771–773.

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Evans DA, Krahn P, Narayanan N . The mephenytoin (cytochrome P450 2C 19) and dextromethorphan (cytochrome P450 2D6) polymorphisms in Saudi Arabians and Filipinos. Pharmacogenetics 1995; 5: 64–71.

    CAS  PubMed  Google Scholar 

  156. Hadidi HF, Irshaid YM, Woosley RL, Idle JR, Flockhart DA . S-mephenytoin hydroxylation phenotypes in a Jordanian population. Clin Pharmacol Ther 1995; 58: 542–547.

    CAS  PubMed  Google Scholar 

  157. Kortunay S, Basci NE, Bozkurt A, Isimer A, Sayal A, Kayaalp SO . The hydroxylation of omeprazole correlates with S-mephenytoin and proguanil metabolism. Eur J Clin Pharmacol 1997; 53: 261–264.

    CAS  PubMed  Google Scholar 

  158. Arias TD, Jorge LF . Population pharmacology and ethnopharmacokinetics in 3 Amerindian groups from Panama: Cuna, Ngawbe Guaymi and Teribe. Rev Med Panama 1990; 15: 20–26.

    CAS  PubMed  Google Scholar 

  159. Inaba T, Jorge LF, Arias TD . Mephenytoin hydroxylation in the Cuna Amerindians of Panama. Br J Clin Pharmacol 1988; 25: 75–79.

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Gonzalez HM, Romero EM, Peregrina AA, de J Chávez T, Escobar-Islas E, Lozano F et al. CYP2C19- and CYP3A4-dependent omeprazole metabolism in West Mexicans. J Clin Pharmacol 2003; 43: 1211–1215.

    CAS  PubMed  Google Scholar 

  161. Wedlund PJ, Aslanian WS, McAllister CB, Wilkinson GR, Branch RA . Mephenytoin hydroxylation deficiency in Caucasians: frequency of a new oxidative drug metabolism polymorphism. Clin Pharmacol Ther 1984; 36: 773–780.

    CAS  PubMed  Google Scholar 

  162. Marandi T, Dahl ML, Rägo L, Kiivet R, Sjöqvist F . Debrisoquine and S-mephenytoin hydroxylation polymorphisms in a Russian population living in Estonia. Eur J Clin Pharmacol 1997; 53: 257–260.

    CAS  PubMed  Google Scholar 

  163. Küpfer A, Preisig R . Pharmacogenetics of mephenytoin: a new drug hydroxylation polymorphism in man. Eur J Clin Pharmacol 1984; 26: 753–759.

    PubMed  Google Scholar 

  164. Marandi T, Dahl ML, Kiivet RA, Rägo L, Sjöqvist F . Debrisoquin and S-mephenytoin hydroxylation phenotypes and CYP2D6 genotypes in an Estonian population. Pharmacol Toxicol 1996; 78: 303–307.

    CAS  PubMed  Google Scholar 

  165. Doshi BS, Kulkarni RD, Chauhan BL, Wilkinson GR . Frequency of impaired mephenytoin 4’-hydroxylation in an Indian population. Br J Clin Pharmacol 1990; 30: 779–780.

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Lamba JK, Dhiman RK, Kohli KK . Genetic polymorphism of the hepatic cytochrome P450 2C19 in north Indian subjects. Clin Pharmacol Ther 1998; 63: 422–427.

    CAS  PubMed  Google Scholar 

  167. Rosemary J, Adithan C, Padmaja N, Shashindran CH, Gerard N, Krishnamoorthy R . The effect of the CYP2C19 genotype on the hydroxylation index of omeprazole in South Indians. Eur J Clin Pharmacol 2005; 61: 19–23.

    CAS  PubMed  Google Scholar 

  168. Weerasuriya K, Jayakody RL, Smith CA, Wolf CR, Tucker GT, Lennard MS . Debrisoquine and mephenytoin oxidation in Sinhalese: a population study. Br J Clin Pharmacol 1994; 38: 466–470.

    CAS  PubMed  PubMed Central  Google Scholar 

  169. Yang YS, Wong LP, Lee TC, Mustafa AM, Mohamed Z, Lang CC . Genetic polymorphism of cytochrome P450 2C19 in healthy Malaysian subjects. Br J Clin Pharmacol 2004; 58: 332–335.

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Horai Y, Nakano M, Ishizaki T, Ishikawa K, Zhou HH, Zhou BI et al. Metoprolol and mephenytoin oxidation polymorphisms in Far Eastern Oriental subjects: Japanese versus mainland Chinese. Clin Pharmacol Ther 1989; 46: 198–207.

    CAS  PubMed  Google Scholar 

  171. Roh HK, Dahl ML, Johansson I, Ingelman-Sundberg M, Cha YN, Bertilsson L . Debrisoquine and S-mephenytoin hydroxylation phenotypes and genotypes in a Korean population. Pharmacogenetics 1996; 6: 441–447.

    CAS  PubMed  Google Scholar 

  172. Setiabudy R, Kusaka M, Chiba K, Darmansjah I, Ishizaki T . Dapsone N-acetylation, metoprolol alpha-hydroxylation, and S-mephenytoin 4-hydroxylation polymorphisms in an Indonesian population: a cocktail and extended phenotyping assessment trial. Clin Pharmacol Ther 1994; 56: 142–153.

    CAS  PubMed  Google Scholar 

  173. Sohn DR, Kusaka M, Ishizaki T, Shin SG, Jang IJ, Shin JG et al. Incidence of S-mephenytoin hydroxylation deficiency in a Korean population and the interphenotypic differences in diazepam pharmacokinetics. Clin Pharmacol Ther 1992; 52: 160–169.

    CAS  PubMed  Google Scholar 

  174. Xie HG, Huang SL, Xu ZH, Xiao ZS, He N, Zhou HH . Evidence for the effect of gender on activity of (S)-mephenytoin 4’-hydroxylase (CYP2C19) in a Chinese population. Pharmacogenetics 1997; 7: 115–119.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by Gobierno de Extremadura, AEXCID 13IA001 (to SIFF) and coordinated by the network Red Iberoamericana de Farmacogenética y Farmacogenómica (http://www.ribef.com). Consejo Nacional de Ciencia y Tecnología de México (CONACyT; no. 167261). Some researchers were supported by fellowships from the University of Costa Rica (PhD fellowship to CCG in Spain), Gobierno de Extremadura, Consejería de Empleo, Empresa e Innovación and Fondo Social Europeo (FSE) (TE14002 to AD), Instituto de Salud Carlos III-Sara Borrell Postdoc Program (CD13/00348 to FdA), Brazilian Government CAPES grant (BEX 12350/2013-03 fellowship to FR-S and 110/2012) and from CONACYT (no. 369708 to IF-G).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A LLerena.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fricke-Galindo, I., Céspedes-Garro, C., Rodrigues-Soares, F. et al. Interethnic variation of CYP2C19 alleles, ‘predicted’ phenotypes and ‘measured’ metabolic phenotypes across world populations. Pharmacogenomics J 16, 113–123 (2016). https://doi.org/10.1038/tpj.2015.70

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/tpj.2015.70

This article is cited by

Search

Quick links