Skip to main content

Advertisement

Log in

Mechanisms of drug-induced delayed-type hypersensitivity reactions in the skin

  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

Cutaneous drug reactions (CDRs) are the most commonly reported adverse drug reactions. These reactions can range from mildly discomforting to life threatening. CDRs can arise either from immunological or nonimmunological mechanisms, though the preponderance of evidence suggests an important role for immunological responses. Some cutaneous eruptions appear shortly after drug intake, while others are not manifested until 7 to 10 days after initiation of therapy and are consistent with delayed-type hypersensitivity. This review discusses critical steps in the initiation of delayed-type hypersensitivity reactions in the skin, which include protein haptenation, dendritic cell activation/migration and T-cell propagation. Recently, an alternative mechanism of drug presentation has been postulated that does not require bioactivation of the parent drug or antigen processing to elicit a drug-specific T-cell response. This review also discusses the role of various immune-mediators, such as cytokines, nitric oxide, and reactive oxygen species, in the development of delayed-type drug hypersensitivity reactions in skin. As keratinocytes have been shown to play a crucial role in the initiation and propagation of cutaneous immune responses, we also discuss the means by which these cells may initiate or modulate CDRs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Pirmohamed M, Breckenridge A, Kitteringham N, et al. Adverse drug reactions.BMJ. 1998;316:1295–1298.

    PubMed  CAS  Google Scholar 

  2. Vervloet D, Durham S. Adverse reactions to drugs.BMJ. 1998;316:1511–1514.

    PubMed  CAS  Google Scholar 

  3. Naisbitt DJ. Drug hypersensitivity reactions in skin: understanding mechanisms and the development of diagnostic and predictive tests.Toxicology. 2004;194:179–196.

    Article  PubMed  CAS  Google Scholar 

  4. Svensson CK, Cowen EW, Gaspari AA. Cutaneous drug reactions.Pharmacol Rev. 2001;53:357–379.

    PubMed  CAS  Google Scholar 

  5. Romano A, Torres MJ, Quaratino D, et al. Diagnostic evaluation of delayed hypersensitivity to systematically administered drugs.Allergy. 1999;54:23–27.

    Article  PubMed  Google Scholar 

  6. Saint-Mezard P, Rosieres A, Krasteva M, et al. Allergic contact dermatitis.Eur J Dermatol., 2004;14:284–295.

    PubMed  CAS  Google Scholar 

  7. Sertoli A, Francalanci S, Acciai MC, et al. Epidemiological survey of contact dermatitis in Italy (1984–1993) by GIRDCA (Gruppo Italiano Ricerca Dermatiti da Contatto e Ambientali).Am J Contact Dermat. 1999,10:18–30.

    Article  PubMed  CAS  Google Scholar 

  8. Matulich J, Sullivan J. A temporary henna tattoo causing hair and clothing dye allergy.Contact Dermatitis. 2005;53:33–36.

    Article  PubMed  Google Scholar 

  9. Militello G, James W. Lyral: a fragrance allergen.Dermatitis. 2005;16:41–44.

    PubMed  Google Scholar 

  10. Bonamonte D, Foti C, Antelmi AR, et al. Nickel contact allergy and menstrual cycle.Contact Dermatitis. 2005;52:309–313.

    Article  PubMed  Google Scholar 

  11. Li LY Jr, Cruz PD Jr. Allergic contact dematitis: pathophysiology applied to future therapy.Dermatol Ther. 2004;17:219–223.

    Article  PubMed  Google Scholar 

  12. Jensen C, Lisby S, Larsen J, et al. Characterization of lymphocyte subpopulations and cytokine profiles in peripheral blood of nickel-sensitive individuals with systemic contact dermatitis after oral nickel exposure.Contact Dermatitis. 2004;50:31–38.

    Article  PubMed  CAS  Google Scholar 

  13. Naldi L, Conforti A, Venegoni M, et al. Cutaneous reactions to drugs: an analysis of spontaneous reports in 4 Italian regions.Br J Clin Pharmacol. 1999;48:839–846.

    Article  PubMed  CAS  Google Scholar 

  14. Shepherd GM. Hypersensitivity reactions to drugs: evaluation and management.Mt Sinai J Med. 2003;70:113–125.

    PubMed  Google Scholar 

  15. Knowles SR, Shapiro LE, Shear NH. Anticonvulsant hypersensitivity syndrome: incidence, prevention, and management.Drug Saf. 1999;21:489–501.

    Article  PubMed  CAS  Google Scholar 

  16. Aronson JK, Ferner RE. Joining the DoTS: new approach to classifying adverse drug reactions.BMJ. 2003;327:1222–1225.

    Article  PubMed  CAS  Google Scholar 

  17. Edwards IR, Aronson JK. Adverse drug reactions: definitions, diagnosis, and management.Lancet. 2000;356:1255–1259.

    Article  PubMed  CAS  Google Scholar 

  18. Hari Y, Frutig-Schnyder K, Hurni M, et al. T cell involvement in cutaneous drug eruptions.Clin Exp Allergy. 2001;31:1398–1408.

    Article  PubMed  CAS  Google Scholar 

  19. Hertl M, Merk HF. Lymphocyte activation in cutaneous drug reactions.J Invest Dermatol. 1995;105:95S-98S.

    Article  PubMed  CAS  Google Scholar 

  20. Pichler WJ, Schnyder B, Zanni MP, et al. Role of T cells in drug allergies.Allergy. 1998;53:225–232.

    Article  PubMed  CAS  Google Scholar 

  21. Bessmertny O, Hatton R, Gonzalez-Peralta R. Antiepileptic hypersensitivity syndrome in children.Ann Pharmacother. 2001;35:533–538.

    Article  PubMed  CAS  Google Scholar 

  22. Yawalkar N. Drug-induced exanthems.Toxicology. 2005;209:131–134.

    Article  PubMed  CAS  Google Scholar 

  23. Merk HF. Diagnosis of drug hypersensitivity: lymphocyte transformation test and cytokines.Toxicology. 2005;209:217–220.

    Article  PubMed  CAS  Google Scholar 

  24. Britschgi M, Steiner UC, Schmid S, et al. T-cell involvement in drug-induced acute generalized exanthematous pustulosis.J Clin Invest. 2001;107:1433–1441.

    Article  PubMed  CAS  Google Scholar 

  25. Miyauchi H, Hosokawa H, Akaeda T, et al. T-cell subsets in drug-induced toxic epidermal necrolysis: possible pathogenic mechanism induced by CD8-positive T cells.Arch Dermatol. 1991;127:851–855.

    Article  PubMed  CAS  Google Scholar 

  26. Pichler WJ. T cells in drug allergy.Curr Allergy Asthma Rep. 2002;2:9–15.

    Article  PubMed  Google Scholar 

  27. Kaplan MH, Hall WW, Susin M, et al. Syndrome of severe skin disease, eiosinophilia, and dermatopathic lymphadenopathy in patients with HTLV-II complicating human immunodeficiency virus infection.Am J Med. 1991;91:300–309.

    Article  PubMed  CAS  Google Scholar 

  28. Mauri-Hellweg D, Bettens F, Mauri D, et al. Activation of drug-specific CD4+ and CD8+T cells in individuals allergic to sulfonamides, phenytoin, and carbamazepine.J Immunol. 1995;155:462–472.

    PubMed  CAS  Google Scholar 

  29. Schnyder B, Burkhart C, Schnyder-Frutig K, et al. Recognition of sulfamethoxazole and its reactive metabolites by drug-specific CD4+ T cells from allergic individuals.J Immunol. 2000;164:6647–6654.

    PubMed  CAS  Google Scholar 

  30. Zanni MP, von Greyerz S, Schnyder B, et al. HLA-restricted, processing- and metabolism-independent pathway of drug recognition by human alpha beta T lymphocytes.J Clin Invest. 1998;102:1591–1598.

    Article  PubMed  CAS  Google Scholar 

  31. Naisbitt DJ, Farrell J, Wong G, et al. Characterization of drug-specific T cells in lamotrigine hypersensitivity.J Allergy Clin Immunol. 2003;111:1393–1403.

    Article  PubMed  CAS  Google Scholar 

  32. Nassif A, Bensussan A, Boumsell L, et al. Toxic epidermal necrolysis: effector cells are drug-specific cytotoxic T cells.J Allergy Clin Immunol. 2004;114:1209–1215.

    Article  PubMed  CAS  Google Scholar 

  33. Nassif A, Bensussan A, Dorothee G, et al. Drug specific cytotoxic T cells in the skin lesions of a patient with toxic epidermal necrolysis.J Invest Dermatol. 2002;118:728–733.

    Article  PubMed  CAS  Google Scholar 

  34. Schnyder B, Frutig K, Mauri-Hellweg D, et al. T-cell-mediated cytotoxicity against keratinocytes in sulfamethoxazol-induced skin reaction.Clin Exp Allergy. 1998;28:1412–1417.

    Article  PubMed  CAS  Google Scholar 

  35. Kimbe I, Basketter DA, Gerberick GF, et al. Allergic contact dermatitis.Int Immunopharmacol. 2002;2:201–211.

    Article  Google Scholar 

  36. De Smedt AC, Van Den Heuvel RL, Van Tendeloo VF, et al. Capacity of CD34+ progenitor-derived dendritic cells to distinguish between sensitizers and irritants.Toxicol Lett. 2005;156:377–389.

    Article  PubMed  CAS  Google Scholar 

  37. Pichler WJ, Tilch J. The lymphocyte transformation test in the diagnosis of drug hypersensitivity.Allergy. 2004;59:809–820.

    Article  PubMed  CAS  Google Scholar 

  38. Romani N, Holzmann S, Tripp CH, et al. Langerhans cells-dendritic cells of the epidermis.APMIS. 2003;111:725–740.

    Article  PubMed  CAS  Google Scholar 

  39. Banerjee G, Damodaran A, Devi N, et al. Role of keratinocytes in antigen presentation and polarization of human T lymphocytes.Scand J Immunol. 2004;59:385–394.

    Article  PubMed  CAS  Google Scholar 

  40. Park BK, Kitteringham NR, Powell H, et al. Advances in molecular toxicology: towards understanding idiosyncratic drug toxicity.Toxicology. 2000;153:39–60.

    Article  PubMed  CAS  Google Scholar 

  41. Ju C, Uetrecht JP. Detection of 2-hydroxyiminostilbene in the urine of patients taking carbamazepine and its oxidation to a reactive iminoquinone intermediate.J Pharmacol Exp Ther. 1999;288;51–56.

    PubMed  CAS  Google Scholar 

  42. Madden S, Maggs JL, Park BK. Broactivation of carbamazepine in the rat in vivo: evidence for the formation of reactive arene oxide(s).Drug Metab Dispos. 1996;24:469–479.

    PubMed  CAS  Google Scholar 

  43. Cribb AE, Miller M, Tesoro A, et al. Peroxidase-dependent oxidation of sulfonamides by monocytes and neutrophils from humans and dogs.Mol Pharmacol. 1990;38:744–751.

    PubMed  CAS  Google Scholar 

  44. Cribb AE, Spielberg SP, Griffin GP. N4-hydroxylation of sulfamethoxazole by cytochrome P450 of the cytochrome P4502C subfamily and reduction of sulfamethoxazole hydroxylamine in human and rat hepatic microsomes.Drug Metab Dispos. 1995;23:406–414.

    PubMed  CAS  Google Scholar 

  45. Uetrecht JP, Shear, NH, Zahid N. N-chlorination of sulfamethoxazole and dapsone by the myeloperoxidase system.Drug Metab Dispos. 1993;21:830–834.

    PubMed  CAS  Google Scholar 

  46. Winter HR, Wang Y, Unadkat JD. CYP2C8/9 mediate dapsone N-hydroxylation at clinical concentrations of dapsone.Drug Metab Dispos. 2000:28:865–868.

    PubMed  CAS  Google Scholar 

  47. Mitra AK, Thummel KE, Kalhorn TF, et al. Metabolism of dapsone to its hydroxylamine by CYP2E1 in vitro and in vivo.Clin Pharmacol Ther. 1995;58:556–566.

    Article  PubMed  CAS  Google Scholar 

  48. Reilly TP, Lash LH, Doll MA, et al. A role for bioactivation and covalent binding within epidermal keratinocytes in sulfonamide-induced cutaneous drug reactions.J Invest Dermatol. 2000;114:1164–1173.

    Article  PubMed  CAS  Google Scholar 

  49. Yan Z, Li J, Huebert N, et al. Detection of a novel reactive metabolite of diclofenac: evidence for CYP2C9-mediated bioactivation via arene oxides.Drug Metab Dispos. 2005;33:706–713.

    Article  PubMed  CAS  Google Scholar 

  50. Kumar S, Samuel K, Subramanian R, et al. Extrapolation of diclofenac clearance from in vitro microsomal metabolism data: role of acyl glucuronidation and sequential oxidative metabolism of the acyl glucuronide.J Pharmacol Exp Ther 2002; 303:969–978.

    Article  PubMed  CAS  Google Scholar 

  51. Masubuchi Y, Umeda S, Igarashi S, et al. Participation of the CYP2D subfamily in lidocaine 3-hydroxylation and formation of a reactive metabolite covalently bound to liver microsomal protein in rats.Biochem Pharmacol. 1993;46:1867–1869.

    Article  PubMed  CAS  Google Scholar 

  52. Walsh JS, Reese MJ, Thurmond LM. The metabolic activation of abacavir by human liver cytosol and expressed human alcohol dehydrogenase isozymes.Chem Biol Interact. 2002;142:135–154.

    Article  PubMed  CAS  Google Scholar 

  53. Cuttle L, Munns AJ, Hogg NA,et al. Phenytoin metabolism by human cytochrome P450: involvement of P450 3A and 2C forms in secondary metabolism and drug-protein adduct formation.Drug Metab Dispos. 2000;28:945–950.

    PubMed  CAS  Google Scholar 

  54. Uetrecht JP. Reactivity and possible significance of hydroxylamine and nitroso metabolites of procainamide.J Pharmacol Exp Ther. 1985;232:420–425.

    PubMed  CAS  Google Scholar 

  55. Swanson HI. Cytochrome P450 expression in human keratinocytes: an aryl hydrocarbon receptor perspective.Chem Biol Interact. 2004;149:69–79.

    Article  PubMed  CAS  Google Scholar 

  56. Janmohamed A, Dolphin CT, Phillips IR, et al. Quantification and cellular localization of expression in human skin of genes encoding flavin-containing monooxygenases and cytochromes P450.Biochem Pharmacol. 2001;62:777–786.

    Article  PubMed  CAS  Google Scholar 

  57. Lee JL, Mukhtar H, Bickers DR, et al. Cyclooxygenases in the skin: pharmacological and toxicological implications.Toxicol Appl Pharmacol. 2003;192:294–306.

    Article  PubMed  CAS  Google Scholar 

  58. Banchereau J, Steinman RM. Dendritic cells and the control of immunity.Nature. 1998;392:245–252.

    Article  PubMed  CAS  Google Scholar 

  59. Randolph GJ. Dendritic cell migration to lymph nodes: cytokines, chemokines, and lipid mediators.Semin Immunol. 2001;13:267–274.

    Article  PubMed  CAS  Google Scholar 

  60. Randolph GJ, Angeli V, Swartz MA. Dendritic-cell trafficking to lymph nodes through lymphatic vessels.Nat Rev Immunol. 2005;5:617–628.

    Article  PubMed  CAS  Google Scholar 

  61. Kimber I, Cumberbatch M. Dendritic cells and cutaneous immune responses to chemical allergens.Toxicol Appl Pharmacol. 1992;117:137–146.

    Article  PubMed  CAS  Google Scholar 

  62. Kimber I, Cumberbatch M, Betts CJ, et al. Dendritic cells and skin sensitization hazard assessment.Toxicol In Vitro. 2004;18:195–202.

    Article  PubMed  CAS  Google Scholar 

  63. Shortman K, Liu YJ. Mouse and human dendritic cell subtypes.Nat Rev Immunol. 2002;2:151–161.

    Article  PubMed  CAS  Google Scholar 

  64. Becker D, Mohamadzadeh M, Reske K, et al. Increased level of intracellular MHC class II molecules in murine Langerhans cells following in vivo and in vitro administration of contact allergens.J Invest Dermatol. 1992;99:545–549.

    Article  PubMed  CAS  Google Scholar 

  65. Girolomoni G, Simon JC, Bergstresser PR, et al. Freshly isolated spleen dendritic cells and epidermal Langerhans cells undergo similar phenotypic and functional changes during short-term culture.J Immunol. 1990;145:2820–2826.

    PubMed  CAS  Google Scholar 

  66. Neisius U, Brand P, Plochmann S, et al. Detection of increased tyrosine phosphorylation in murine Langerhans cells after stimulation with contact sensitizers.Arch Dermatol Res. 1999;291:22–27.

    Article  PubMed  CAS  Google Scholar 

  67. Aiba S, Katz SI. Phenotypic and functional characteristics of in vivo-activated Langerhans cells.J Immunol. 1990;145:2791–2796.

    PubMed  CAS  Google Scholar 

  68. Verrier AC, Schmitt D, Staquet MJ. Fragrance and contact allergens in vitro modulate the HLA-DR and E-cadherin expression on human epidermal Langerhans cells.Int Arch Allergy Immunol. 1999;120:56–62.

    Article  PubMed  CAS  Google Scholar 

  69. Enk AH, Katz SI. Early molecular events in the induction phase of contact sensitivity.Proc Natl Acad Sci USA. 1992;89:1398–1402.

    Article  PubMed  CAS  Google Scholar 

  70. Wang B, Feliciani C, Howell BG, et al. Contribution of Langerhans cell-derived IL-18 to contact hypersensitivity.J Immunol. 2002;168:3303–3308.

    PubMed  CAS  Google Scholar 

  71. Kessler BM, Glas R, Ploegh HL. MHC class I antigen processing regulated by cytosolic proteolysis-short cuts that alter peptide generation.Mol Immunol. 2002;39:171–179.

    Article  PubMed  CAS  Google Scholar 

  72. Cresswell P. Assembly, transport, and function of MHC class II molecules.Annu Rev Immunol. 1994;12:259–293.

    Article  PubMed  CAS  Google Scholar 

  73. Cresswell P, Androlewicz MJ, Ortmann B. Assembly and transport of class I MHC-peptide complexes.Ciba Found Symp. 1994;187:150–162.

    PubMed  CAS  Google Scholar 

  74. Park BK, Pirmohamed M, Kitteringham NR. Role of drug disposition in drug hypersensitivity: a chemical, molecular, and clinical perspective.chem Res Toxicol. 1998;11:969–988.

    Article  PubMed  CAS  Google Scholar 

  75. Herouet C, Cottin M, LeClaire J, et al. Contact sensitizers specifically increase MHC class II expression on murine immature dendritic cells.In Vitr Mol Toxicol. 2000;13:113–123.

    Article  PubMed  CAS  Google Scholar 

  76. Cumberbatch M, Dearman RJ, Griffiths CE, et al. Epidermal Langerhans cell migration and sensitization to chemical allergens.APMIS. 2003;111:797–804.

    Article  PubMed  CAS  Google Scholar 

  77. Mizuashi M, Ohtani T, Nakagawa S, et al. Redox imbalance induced by contact sensitizers triggers the maturation of dendritic cells.J Invest Dermatol. 2005;124:579–586.

    Article  PubMed  CAS  Google Scholar 

  78. Chambers CA, Allison JP. Costimulation in T cell responses.Curr Opin Immunol. 1997;9:396–404.

    Article  PubMed  CAS  Google Scholar 

  79. McAdam AJ, Schweitzer AN, Sharpe AH. The role of B7 costimulation in activation and differentiation of CD4+ and CD8+ T cells.Immunol Rev. 1998;165:231–247.

    Article  PubMed  CAS  Google Scholar 

  80. Hochweller K, Anderton SM. Kinetics of costimulatory molecule expression by T cells and dendritic cells during the induction of tolerance versus immunity in vivo.Eur J Immunol. 2005;35:1086–1096.

    Article  PubMed  CAS  Google Scholar 

  81. Yokozeki H, Takayama K, Ohki O, et al. Comparative analysis of CD8- and CD86 on human Langerhans cells: expression and function.Arch Dermatol Res. 1998;290:547–552.

    Article  PubMed  CAS  Google Scholar 

  82. Wakems P Jr, Burns RP Jr, Ramirez F, et al. Allergens and irritants transcriptionally upregulate CD80 gene expression in human keratinocytes.J Invest Dermatol. 2000;114:1085–1092.

    Article  Google Scholar 

  83. Fabbri M, Smart C, Pardi R. T lymphocytes.Int J Biochem Cell Biol. 2003;35:1004–1008.

    Article  PubMed  CAS  Google Scholar 

  84. Yawalkar N, Hari Y, Frutig K, et al. T cells isolated from positive epicutaneous test reactions to amoxicillin and ceftriaxone are drug specific and cytotoxic.J Invest Dermatol. 2000;115:647–652.

    Article  PubMed  CAS  Google Scholar 

  85. Naisbitt DJ, Britschgi M, Wong G, et al. Hypersensitivity reactions to carbamazepine: characterization of the specificity, phenotype, and cytokine profile of drug-specific T cell clones.Mol Pharmacol. 2003;63:732–741.

    Article  PubMed  CAS  Google Scholar 

  86. Schnyder B, Mauri-Hellweg D, Zanni M, et al. Direct, MHC-dependent presentation of the drug sulfamethoxazole to human alphabeta T cell clones.J Clin Invest. 1997;100:136–141.

    Article  PubMed  CAS  Google Scholar 

  87. Zanni MP, Mauri-Hellweg D, Brander C, et al. Characterization of lidocaine-specific T cells.J Immunol. 1997;158:1139–1148.

    PubMed  CAS  Google Scholar 

  88. Zanni MP, von Greyerz S, Hari Y, et al. Recognition of local anesthetics by alphabeta+ T cells.J Invest Dermatol. 1999;112:197–204.

    Article  PubMed  CAS  Google Scholar 

  89. Gerber BO, Pichler WJ. Cellular mechanisms of T cell mediated drug hypersensitivity.Curr Opin Immunol. 2004;16:732–737.

    Article  PubMed  CAS  Google Scholar 

  90. Gerber BO, Pichler WJ. Noncovalent interactions of drugs with immune receptors may mediate drug-induced hypersensitivity reactions.AAPS J. In Press.

  91. Santamaria Babi LF, Perez Soler MT, Hauser C, et al. Skin-homing T cells in human cutaneous allergic inflammation.Immunol Res. 1995;14:317–324.

    Article  PubMed  CAS  Google Scholar 

  92. Santamaria LF, Perez Soler MT, Hauser C, et al. Allergen specificity and endothelial transmigration of T cells in allergic contact dermatitis and atopic dermatitis are associated with the cutaneous lymphocyte antigen.Int Arch Allergy Immunol. 1995;107:359–362.

    Article  PubMed  CAS  Google Scholar 

  93. Pichler WJ, Yawalkar N, Britschgi M, et al. Cellular and molecular pathophysiology of cutaneous drug reactions.Am J Clin Dermatol. 2002;3:229–238.

    Article  PubMed  Google Scholar 

  94. Nickoloff BJ, Turka LA. Immunological functions of nonprofessional antigen-presenting cells: new insights from studies of T-cell interactions with keratinocytes.Immunol Today. 1994;15:464–469.

    Article  PubMed  CAS  Google Scholar 

  95. Wikner NE, Huff JC, Norris DA, et al. Study of HLA-DR synthesis in cultured human keratinocytes.J Invest Dermatol. 1986;87:559–564.

    Article  PubMed  CAS  Google Scholar 

  96. Meunier L, Vian L, Lagoueyte C, et al. Quantification of CD1a, HLA-DR, and HLA class I expression on viable human Langerhans cells and keratinocytes.Cytometry. 1996;26:260–264.

    Article  PubMed  CAS  Google Scholar 

  97. Gueniche A, Viac J, Lizard G, et al. Effect of nickel on the activation state of normal human keratinocytes through interleukin 1 and intercellular adhesion molecule 1 expression.Br J Dermatol. 1994;131:250–256.

    Article  PubMed  CAS  Google Scholar 

  98. Gueniche A, Viac J, Lizard G, et al. Effect of various metals on intercellular adhesion molecule-1 expression and tumour necrosis factor alpha production by normal human keratinocytes.Arch Dermatol Res. 1994;286:466–470.

    Article  PubMed  CAS  Google Scholar 

  99. Dang LH, Michalek MT, Takei F, et al. Role of ICAM-1 in antigen presentation demonstrated by ICAM-1 defective mutants.J Immunol. 1990;144:4082–4091.

    PubMed  CAS  Google Scholar 

  100. Piguet PF. Keratinocyte-derived tumor necrosis factor and the physiopathology of the skin.Springer Semin Immunopathol. 1992;13:345–354.

    Article  PubMed  CAS  Google Scholar 

  101. Terunuma A, Aiba S, Tagami H. Cytokine mRNA profiles in cultured human skin component cells exposed to various chemicals: a simulation model of epicutaneous stimuli induced by skin barrier perturbation in comparison with that due to exposure to haptens or irritant.J Dermatol Sci. 2001;26:85–93.

    Article  PubMed  CAS  Google Scholar 

  102. Ansel J, Perry P, Brown J, et al. Cytokine modulation of keratinocyte cytokines.J Invest Dermatol. 1990;94:101S-107S.

    Article  PubMed  CAS  Google Scholar 

  103. Sebastiani S, Albanesi C, De PO, et al. The role of chemokines in allergic contact dermatitis.Arch Dermatol Res. 2002;293:552–559.

    PubMed  CAS  Google Scholar 

  104. Albanesi C, Scarponi C, Giustizieri ML, et al. Keratinocytes in inflammatory skin diseases.Curr Drug Targets Inflamm Allergy. 2005;4:329–334.

    Article  PubMed  CAS  Google Scholar 

  105. Cumberbatch M, Bhushan M, Dearman RJ, et al. IL-1beta-induced Langerhans’ cell migration and TNF-alpha production in human skin: regulation by lactoferrin.Clin Exp Immunol. 2003;132:352–359.

    Article  PubMed  CAS  Google Scholar 

  106. Cumberbatch M, Dearman RJ, Griffiths CE, et al. Langerhans cell migration.Clin Exp Dermatol. 2000;25:413–418.

    Article  PubMed  CAS  Google Scholar 

  107. Cumberbatch M, Griffiths CE, Tucker SC, et al. Tumour necrosis factor-alpha induces Langerhans cell migration in humans.Br J Dermatol. 1999;141:192–200.

    Article  PubMed  CAS  Google Scholar 

  108. Nassif A., Moslehi H, Le Gouvello S, et al. Evaluation of the potential role of cytokines in toxic epidernal necrolysis.J Invest Dermatol. 2004;123:850–855.

    Article  PubMed  CAS  Google Scholar 

  109. Hulette BA, Ryan CA, Gerberick GF. Elucidating changes in surface marker expression of dendritic cells following chemical allergen treatment.Toxicol Appl Pharmacol. 2002;182:226–233.

    Article  PubMed  CAS  Google Scholar 

  110. Albanesi C, Cavani A, Girolomoni G. Interferon-gamma-stimulated human keratinocytes express the genes necessary for the production of peptide-loaded MHC class II molecules.J Invest Dermatol. 1998;110:138–142.

    Article  PubMed  CAS  Google Scholar 

  111. Basham TY, Nickoloff BJ, Merigan TC, et al. Recombinatn gamma interferon induces HLA-DR expression on cultured human keratinocytes.J Invest Dermatol. 1984;83:88–90.

    Article  PubMed  CAS  Google Scholar 

  112. Lisby S, Muller KM, Jongeneel CV, et al. Nickel and skin irritants up-regulate tumor necrosis factor-alpha mRNA in keratinocytes by different but potentially synergistic mechanisms.Int Immunol. 1995;7:343–352.

    Article  PubMed  CAS  Google Scholar 

  113. Wilmer JL, Burleson FG, Kayama F, et al. Cytokine induction in human epidermal keratinocytes exposed to contact irritants and its relation to chemical-induced inflammation in mouse skin.J Invest Dermatol. 1994;102:915–922.

    Article  PubMed  CAS  Google Scholar 

  114. Piguet PF, Grau GE, Hauser C, et al. Tumor necrosis factor is a critical mediator in hapten induced irritant and contact hypersensitivity reactions.J Exp Med. 1991;173:673–679.

    Article  PubMed  CAS  Google Scholar 

  115. Vandebriel RJ, Van Och FM, van Loveren H. In vitro assessment of sensitizing activity of low molecular weight compounds.Toxicol Appl Pharmacol. 2005;207:142–148.

    Article  PubMed  CAS  Google Scholar 

  116. O’Garra A, McEvoy LM, Zlotnik A. T-cell subsets: chemokine receptors guide the way.Curr Biol. 1998;8:R646-R649.

    Article  PubMed  CAS  Google Scholar 

  117. Lebrec H, Kerdine S, Gaspard I, et al. Th(1)/Th(2) responses to drugs.Toxicology. 2001;158:25–29.

    Article  PubMed  CAS  Google Scholar 

  118. Umetsu DT, DeKruyff RH. Th1 and Th2 CD4+ cells in the pathogenesis of allergic diseases.Proc Soc Exp Biol Med. 1997;215:11–20.

    PubMed  CAS  Google Scholar 

  119. Xu H, DiIulio NA, Fairchild RL. T cell populations primed by hapten sensitization in contact sensitivity are distinguished by polarized patterns of cytokine production: interferon gamma-producing (Tc1) effector CD8+ T cells and interleukins (II) 4/II-10-producing (Th2) negative regulatory CD4+T cells.J Exp Med. 1996;183:1001–1012.

    Article  PubMed  CAS  Google Scholar 

  120. Fuchs J, Zollner TM, Kaufmann R, et al. Redox-modulated pathways in inflammatory skin diseases.Free Radic Biol Med. 2001;30:337–353.

    Article  PubMed  CAS  Google Scholar 

  121. Steinbrink K, Sorg C, Macher E. Low zone tolerance to contact allergens in mice: a functional role for CD8+T helper type 2 cells.J Exp Med. 1996;183:759–768.

    Article  PubMed  CAS  Google Scholar 

  122. Dearman RJ, Basketter DA, Kimber I. Characterization of chemical allergens as a function of divergent cytokine secretion profiles induced in mice.Toxicol Appl Pharmacol. 1996;138:308–316.

    Article  PubMed  CAS  Google Scholar 

  123. Dieli F, Asherson GL, Sireci G, et al. Development of IFN-gammaproducing CD8+ gamma delta+T lymphocytes and IL-2-producing CD4+ alpha beta+T lymphocytes during contact sensitivity.J Immunol. 1997;158:2567–2575.

    PubMed  CAS  Google Scholar 

  124. Blaise GA, Gauvin D, Gangal M, et al. Intric oxide, cell signaling and cell death.Toxicology. 2005;208:177–192.

    Article  PubMed  CAS  Google Scholar 

  125. Ross R, Reske-Kunz AB. The role of NO in contact hypersensitivity.Int Immunopharmacol. 2001;1:1469–1478.

    Article  PubMed  CAS  Google Scholar 

  126. Bruch-Gerharz D, Ruzicka T, Kolb-Bachofen V. Nitric oxide in human skin: current status and future prospects.J Invest Dermatol. 1998;110:1–7.

    Article  PubMed  CAS  Google Scholar 

  127. Weller R. Nitric oxide: a key mediator in cutaneous physiology.Clin Exp Dermatol. 2003;28:511–514.

    Article  PubMed  CAS  Google Scholar 

  128. Deliconstantinos G, Villiotou V, Stravrides JC. Release by ultraviolet B (u.v.B) radiation of nitric oxide (NO) from human keratinocytes: a potential role for nitric oxide in erythema production.Br J Pharmacol. 1995;114:1257–1265.

    PubMed  CAS  Google Scholar 

  129. Nathan C. Inducible nitric oxide synthase: what difference does it make?.J Clin Invest. 1997;100:2417–2423.

    Article  PubMed  CAS  Google Scholar 

  130. Arany I, Brysk MM, Brysk H, et al. Induction of iNOS mRNA by interferon-gamma in epithelial cells is associated with growth arrest and differentiation.Cancer Lett. 1996;110:93–96.

    Article  PubMed  CAS  Google Scholar 

  131. Qureshi AA, Hosoi J, Xu S, et al. Langerhans cells express inducible nitric oxide synthase and produce nitric oxide.J Invest Dermatol. 1996;107:815–821.

    Article  PubMed  CAS  Google Scholar 

  132. Rocha IM, Guillo LA. Lipopolysaccharide and cytokines induce nitric oxide synthase and produce nitric oxide in cultured normal human melanocytes.Arch Dermatol Res. 2001;293:245–248.

    Article  PubMed  CAS  Google Scholar 

  133. Chang HR, Tsao DA, Wang SR, et al. Expression of nitric oxide synthases in keratinocytes after UVB irradiation.Arch Dermatol Res. 2003;295:293–296.

    Article  PubMed  CAS  Google Scholar 

  134. Warren JB. Nitric oxide and human skin blood flow responses to acetylcholine and ultraviolet light.FASEB J. 1994;8:247–251.

    PubMed  CAS  Google Scholar 

  135. Lerner LH, Qureshi AA, Reddy BV, et al. Nitric oxide synthase in toxic epidermal necrolysis and Stevens-Johnson syndrome.J Invest Dermatol. 2000;114:196–199.

    Article  PubMed  CAS  Google Scholar 

  136. Rowe A, Farrell AM, Bunker CB. Constitutive endothelial and inducible nitric oxide synthase in inflammatory dermatoses.Br J Dermatol. 1997;136:18–23.

    Article  PubMed  CAS  Google Scholar 

  137. Lippe IT, Stabentheiner A, Holzer P. Participation of nitric oxide in the mustard oil-induced neurogenic inflammation of the rat paw skin.Eur J Pharmacol. 1993;232:113–120.

    Article  PubMed  CAS  Google Scholar 

  138. Morita H, Hori M, Kitano Y. Modulation of picryl chloride-induced contact hypersensitivity reaction in mice by nitric oxide.J Invest Dermatol. 1996;107:549–552.

    Article  PubMed  CAS  Google Scholar 

  139. Ross R, Gillitzer C, Kleinz R, et al. Involvement of NO in contact hypersensitivity.Int Immunol. 1998;10:61–69.

    Article  PubMed  CAS  Google Scholar 

  140. Nathan C, Xie QW. Nitric oxide synthases: roles, tolls, and controls.Cell. 1994;78:915–918.

    Article  PubMed  CAS  Google Scholar 

  141. Forstermann U, Closs EI, Pollock JS, et al. Nitric oxide synthase isozymes: characterization, purification, molecular cloning, and functions.Hypertension. 1994;23:1121–1131.

    PubMed  CAS  Google Scholar 

  142. Wanikiat P, Woodward DF, Armstrong RA. Investigation of the role of nitric oxide and cyclic GMP in both the activation and inhibition of human neutrophils.Br J Pharmacol. 1997;122:1135–1145.

    Article  PubMed  CAS  Google Scholar 

  143. Shin WS, Hong YH, Peng HB, et al. Nitric oxide attenuates vascular smooth muscle cell activation by interferon-gamma: the role of constitutive NF-kappa B activity.J Biol Chem. 1996;271:11317–11324.

    Article  PubMed  CAS  Google Scholar 

  144. Bonham CA, Lu L, Li Y, et al. Nitric oxide production by mouse bone marrow-derived dendritic cells: implications for the regulation of allogeneic T cell responses.Transplantation. 1996;62:1871–1877.

    Article  PubMed  CAS  Google Scholar 

  145. Lu L, Bonham CA, Chambers FG, et al. Induction of nitric oxide synthase in mouse dendritic cells by IFN-gamma, endotoxin, and interaction with allogeneic T cells: nitric oxide production is associated with dendritic cell apoptosis.J Immunol. 1996;157:3577–3586.

    PubMed  CAS  Google Scholar 

  146. Virag L, Szabo E, Bakondi E, et al. Nitric oxide-peroxynitritepoly(ADP-ribose) polymerase pathway in the skin.Exp Dermatol. 2002;11:189–202.

    Article  PubMed  CAS  Google Scholar 

  147. Briganti S, Picardo M. Antioxidant activity, lipid peroxidation and skin diseases: what’s new.J Eur Acad Dermatol Venereol. 2003;17:663–669.

    Article  PubMed  CAS  Google Scholar 

  148. Chain BM. Current issues in antigen presentation: focus on the dendritic cell.Immunol Lett. 2003;89:237–241.

    Article  PubMed  CAS  Google Scholar 

  149. Hubbard AK, Rothlein R. Intercellular adhesion molecule-1 (ICAM-1) expression and cell signaling cascades.Free Radic Biol Med. 2000;28:1379–1386.

    Article  PubMed  CAS  Google Scholar 

  150. Rutault K, Alderman C, Chain BM, et al. Reactive oxygen species activate human peripheral blood dendritic cells.Free Radic Biol Med. 1999;26:232–238.

    Article  PubMed  CAS  Google Scholar 

  151. Verhasselt V, Goldman M, Willems F. Oxidative stress up-regulates IL-8 and TNF-alpha synthesis by human dendritic cells.Eur J Immunol. 1998;28:3886–3890.

    Article  PubMed  CAS  Google Scholar 

  152. Mates JM, Perez-Gomez C, Olalla L, et al. Allergy to drugs: antioxidant enzymic activities, lipid peroxidation and protein oxidative damage in human blood.Cell Biochem Funct. 2000;18:77–84.

    Article  PubMed  CAS  Google Scholar 

  153. Coopman SA, Johnson RA, Platt R, et al. Cutaneous disease and drug reactions in HIV infection.N Engl J Med. 1993;328:1670–1674.

    Article  PubMed  CAS  Google Scholar 

  154. Buhl R, Jaffe HA, Holroyd KJ, et al. Systemic glutathione deficiency in symptom-free HIV-seropositive individuals.Lancet. 1989;2:1294–1298.

    Article  PubMed  CAS  Google Scholar 

  155. Kaur S, Zilmer M, Eisen M, et al. Patients with allergic and irritant contact dermatitis are characterized by striking change of iron and oxidized glutathione status in nonlesional area of the skin.J Invest Dermatol. 2001;116:886–890.

    Article  PubMed  CAS  Google Scholar 

  156. Kaur S, Zilmer M, Eisen M, et al. Nickel sulphate and epoxy resin: differences in iron status and glutathione redox ration at the time of patch testing.Arch Dermatol Res. 2004;295:517–520.

    Article  PubMed  CAS  Google Scholar 

  157. Nordberg J, Zhong L, Holmgren A, et al. Mammalian thioredoxin reductase is irreversibly inhibited by dinitrohalobenzenes by alkylation of both the redox active selenocysteine and its neighboring cysteine residue.J Biol Chem. 1998;273:10835–10842.

    Article  PubMed  CAS  Google Scholar 

  158. Vyas PM, Roychowdhury S, Woster PM, et al. Reactive oxygen species generation and its role in the differential cytotoxicity of the arylhy droxylamine metabolites of sulfamethoxazole and dapsone in normal human epidermal keratinocytes.Biochem Pharmacol. 2005;70:275–286.

    Article  PubMed  CAS  Google Scholar 

  159. Kantengwa S, Jornot L, Devenoges C, et al. Superoxide anions induce the maturation of human dendritic cells.Am J Respir Crit Care Med. 2003;167:431–437.

    Article  PubMed  Google Scholar 

  160. Chen KH, Reece LM, Leary JF. Mitochondrial glutathione modulates TNF-alpha-induced endothelial cell dysfunction.Free Radic Biol Med. 1999;27:100–109.

    Article  PubMed  CAS  Google Scholar 

  161. Ikeda M, Schroeder KK, Mosher LB, et al. Suppressive effect of antioxidants on intercellular adhesion molecule-1 (ICAM-1) expression in human epidermal keratinocytes.J Invest Dermatol. 1994;103:791–796.

    Article  PubMed  CAS  Google Scholar 

  162. Faruqi RM, Poptic EJ, Faruqi TR, et al. Distinct mechanisms for N-acetylcysteine inhibition of cytokine-induced E-selectin and VCAM-1 expression.Am J Physiol. 1997;273:H817-H826.

    PubMed  CAS  Google Scholar 

  163. Matsue H, Edelbaum D, Shalhevet D, et al. Generation and function of reactive oxygen species in dendritic cells during antigen presentation.J Immunol. 2003;171:3010–3018.

    PubMed  CAS  Google Scholar 

  164. Sandstrom PA, Buttke TM. Autocrine production of extracellular catalase prevents apoptosis of the human CEM T-cell line in serum-free medium.Proc Natl Acad Sci USA. 1993;90:4708–4712.

    Article  PubMed  CAS  Google Scholar 

  165. Kannan K, Jain SK. Oxidative stress and apoptosis.Pathophysiology. 2000;7:153–163.

    Article  PubMed  CAS  Google Scholar 

  166. Ogawa Y, Kobayashi T, Nishioka A, et al. Reactive oxygen species-producing site in hydrogen peroxide-induced apoptosis of human peripheral T cells: involvement of lysosomal membrane destabilization.Int J Mol Med. 2004;13:383–388.

    PubMed  CAS  Google Scholar 

  167. Devadas S, Zaritskaya L, Rhee SG, et al. Discrete generation of superoxide and hydrogen peroxide by T cell receptor stimulation: selective regulation of mitogen-activated protein kinase activation and fas ligand expression.J Exp Med. 2002;195:59–70.

    Article  PubMed  CAS  Google Scholar 

  168. Hildeman DA, Zhu Y, Mitchell TC, et al. Activated T cell death in vivo mediated by proapoptotic bcl-2 family membber bim.Immunity. 2002;16:759–767.

    Article  PubMed  CAS  Google Scholar 

  169. Fuchs J, Packer L. Antioxidant protection from solar-simulated radiation-induced suppression of contact hypersensitivity to the recall antigen nickel sulfate in human skin.Free Radic Biol Med. 1999;27:422–427.

    Article  PubMed  CAS  Google Scholar 

  170. Pasche-Koo F, Arechalde A, Arrighi JF, et al. Effect of N-acetylcysteine, an inhibitor of tumor necrosis factor, on irritant contact dermatitis in the human.Curr Probl Dermatol. 1995;23:198–206.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Craig K. Svensson.

Additional information

Published: December 9, 2005

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roychowdhury, S., Svensson, C.K. Mechanisms of drug-induced delayed-type hypersensitivity reactions in the skin. AAPS J 7, 80 (2005). https://doi.org/10.1208/aapsj070480

Download citation

  • Received:

  • Accepted:

  • DOI: https://doi.org/10.1208/aapsj070480

Keywords

Navigation