Skip to main content

Advertisement

Log in

Quantitative determination of total methamphetamine and active metabolites in rat tissue by liquid chromatography with tandem mass spectrometric detection

  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

High-throughput liquid chromatography with tandem mass spectrometric detection (LC-MS/MS) methodology for the determination of methamphetamine (METH), amphetamine (AMP), 4-hydroxymethamphetamine (4-OH-METH), and 4-hydroxyamphetamine (4-OH-AMP) was developed and validated using simple trichloroacetic acid sample treatment. The method was validated in rat serum, brain, and testis. Lower limits-of-quantitation (LOQ) for METH and AMP were 1 ng·mL−1 using positive ion electrospray tandem mass spectrometry (MS/MS). The accuracy of the method was within 25% of the actual values over a wide range of analyte concentrations. The within-assay precision was better than 12% (coefficient of variation). The method was linear over a wide dynamic range (0.3–1000 ng·mL−1). Quantitation was possible in all 3 matrices using only serum standards because of minimal matrix-associated ion effects or the use of an internal standard. Finally, the LC-MS/MS method was used to determine serum, brain, and testis METH and AMP concentrations during a subcutaneous infusion (5.6 mg kg−1 day−1) of METH in rats. Concentrations of 4-OH-AMP and 4-OH-METH were below the LOQ in experimental samples. The bias introduced by using serum calibrators for the determination of METH and AMP concentrations in testis and brain was less than 8% and insignificant relative to the interanimal variability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rawson RA, Marinelli-Casey P, Anglin MD, et al. A multi-site comparison of psychosocial approaches for the treatment of methamphetamine dependence. Addiction. 2004;99:708–717.

    Article  PubMed  Google Scholar 

  2. Greenwald MK, Schuh KJ, Hopper JA, Schuster CR, Johanson CE. Effects of buprenorphine sublingual tablet maintenance on opioid drugseeking behavior by humans. Psychopharmacology (Berl). 2002;160:344–352.

    Article  CAS  Google Scholar 

  3. Harrod SB, Dwoskin LP, Crooks PA, Klebaur JE, Bardo MT. Lobeline attenuates d-methamphetamine self-administration in rats. J Pharmacol Exp Ther. 2001;298:172–179.

    PubMed  CAS  Google Scholar 

  4. Ginawi OT, Al-Majed AA, Al-Suwailem AK. NAN-190, a possible specific antagonist for methamphetamine. Regul Toxicol Pharmacol. 2005;41:122–127.

    Article  PubMed  CAS  Google Scholar 

  5. Sattar SP, Bhatia SC, Petty F. Potential benefits of quetiapine in the treatment of substance dependence disorders. J Psychiatry Neurosci. 2004;29:452–457.

    PubMed  Google Scholar 

  6. Johnson BA, Roache JD, Ait-Daoud N, Wallace C, Wells LT, Wang Y, Effects of isradipine on methamphetamine-induced changes in attentional and perceptual-motor skills of cognition. Psychopharmacology (Berl). 2005;178:296–302.

    Article  CAS  Google Scholar 

  7. Laurenzana EM, Byrnes-Blake KA, Milesi-Halle A, Gentry WB, Williams DK, Owens SM. Use of anti-(+)-methamphetamine monoclonal antibody to significantly alter (+)-methamphetamine and (+)-amphetamine disposition in rats. Drug Metab Dispos. 2003;31:1320–1326.

    Article  PubMed  CAS  Google Scholar 

  8. Byrnes-Blake KA, Laurenzana EM, Carroll FI, et al. Phamacodynamic mechanisms of monoclonal antibody-based antagonism of (+)-methamphetamine in rats. Eur J Pharmacol. 2003;461:119–128.

    Article  PubMed  CAS  Google Scholar 

  9. Byrnes-Blake KA, Carroll FI, Abraham P, Owens SM. Generation of anti-(+)methamphetamine antibodies is not impeded by (+)methamphetamine administration during active immunization of rats. Int Immunopharmacol. 2001;1:329–338.

    Article  PubMed  CAS  Google Scholar 

  10. Byrnes-Blake KA, Laurenzana EM, Landes RD, Gentry WB, Owens SM. Monoclonal IgG affinity and treatment time alters antagonism of (+)-methamphetamine effects in rats. Eur J Pharmacol. 2005;521:86–94.

    Article  PubMed  CAS  Google Scholar 

  11. Kosten T, Owens SM. Immunotherapy for the treatment of drug abuse. Pharmacol Ther. 2005;108:76–85.

    Article  PubMed  CAS  Google Scholar 

  12. Berger M, Shankar V, Vafai A. Therapeutic applications of monoclonal antibodies. Am J Med Sci. 2002;324:14–30.

    Article  PubMed  Google Scholar 

  13. Haney M, Kosten TR. Therapeutic vaccines for substance dependence. Expert Rev Vaccines. 2004;3:11–18.

    Article  PubMed  CAS  Google Scholar 

  14. Zernig G, Giacomuzzi S, Riemer Y, Wakonigg G, Sturm K, Saria A. Intravenous drug injection habits: drug users' self-reports versus researchers' perception. Pharmacology. 2003;68:49–56.

    Article  PubMed  CAS  Google Scholar 

  15. Schiffer WK, Lee DE, Brodie JD, Dewey SL. Imaging addiction with PET: is insight in sight?. Drug Discov Today. 2005;10:547–562.

    Article  PubMed  CAS  Google Scholar 

  16. Nakamura H, Hishinuma T, Tomioka Y, et al. Positron emission tomography study of the alterations in brain distribution of [11C]methamphetamine in methamphetamine-sensitized dog. Ann N Y Acad Sci. 1996;801:401–408.

    Article  PubMed  CAS  Google Scholar 

  17. Volkow ND, Fowler JS, Ding YS, Wang GJ, Gatley SJ. Imaging the neurochemistry of nicotine actions: studies with positron emission tomography. Nicotine Tob Res. 1999;1:127–128.

    Article  Google Scholar 

  18. Volkow ND, Fowler JS, Wang GJ. Imaging studies on the role of dopamine in cocaine reinforcement and addiction in humans. J Psychopharmacol. 1999;13:337–345.

    PubMed  CAS  Google Scholar 

  19. Riviere GJ, Gentry WB, Owens SM. Disposition of methamphetamine and its metabolite amphetamine in brain and other tissues in rats after intravenous administration. J Pharmacol Exp Ther. 2000;292:1042–1047.

    PubMed  CAS  Google Scholar 

  20. Wessinger WD, Owens SM. Chronic administration of phencyclidine: pharmacokinetic comparison of intravenous and subcutaneous infusions in Sprague-Dawley rats. Drug Metab Dispos. 1991;19:719–721.

    PubMed  CAS  Google Scholar 

  21. Papac DI, Shahrokh Z. Mass spectrometry innovations in drug discovery and development. Pharm Res. 2001;18:131–145.

    Article  PubMed  CAS  Google Scholar 

  22. Mallet CR, Lu Z, Mazzeo JR. A study of ion suppression effects in electrospray ionization from mobile phase additives and solid-phase extracts. Rapid Commun Mass Spectrom. 2004;18:49–58.

    Article  PubMed  CAS  Google Scholar 

  23. Fiori M, Civitareale C, Mirante S, Magaro E, Brambilla G. Evaluation of two different clean-up steps, to minimize ion suppression phenomena in ion trap liquid chromatography-tandem mass spectrometry for the multi-residue analysis of beta agonists in calves urine. Anal Chim Acta. 2005;529:207–210.

    Article  CAS  Google Scholar 

  24. Dunn-Meynell KW, Wainhaus S, Korfnacher WA. Optimizing an ultrafast generic high-performance liquid chromatography/tandem mass spectrometry method for faster discovery pharmacokinetic sample throughput. Rapid Commun Mass Spectrom. 2005;19:2905–2910.

    Article  PubMed  CAS  Google Scholar 

  25. Villa JS, Jr, Cass RT, Jr, Karr DE, Jr, Adams SM, Jr, Shaw JP, Jr. Schmidt DE, Jr. Increasing the efficiency of pharmacokinetic sample procurement, preparation and analysis by liquid chromatography/tandem mass spectrometry. Rapid Commun Mass Spectrom. 2004;18:1066–1072.

    Article  PubMed  CAS  Google Scholar 

  26. Tang L, Kebarle P. Dependence of ion intensity in electrospray mass spectrometry on the concentration of the analytes in the electrosprayed solution. Anal Chem. 1993;65:3654–3668.

    Article  CAS  Google Scholar 

  27. Kebarle P, Tang L. From ions in solution to ions in the gas phase— the mechanism of electrospray mass spectrometry. Anal Chem. 1993;65:972A-986A.

    Article  CAS  Google Scholar 

  28. King R, Bonfiglio R, Fernandez-Metzler C, Miller-Stein C, Olah T. Mechanistic investigation of ionization suppression in electrospray ionization. J Am Soc Mass Spectrom. 2000;11:942–950.

    Article  PubMed  CAS  Google Scholar 

  29. Hayen H, Karst U. Strategies for the liquid chromatographic-mass spectrometric analysis of non-polar compounds. J Chromatogr A. 2003;1000:549–565.

    Article  PubMed  CAS  Google Scholar 

  30. Hori Y, Fujisawa M, Shimada K, Hirose Y, Yoshioka T. Method for screening and quantitative determination of serum levels of salicylic acid, acetaminophen, theophylline, phenobarbital, brom valerylurea, pentobarbital, and amobarbital using liquid chromatography/ electrospray mass spectrometry. Biol Pharm Bull. 2006;29:7–13.

    Article  PubMed  CAS  Google Scholar 

  31. Kahlich R, Gleiter CH, Laufer S, Kammerer B. Quantitative determination of piritramide in human plasma and urine by off- and on-line solid-phase extraction liquid chromatography coupled to tandem mass spectrometry. Rapid Commun Mass Spectrom. 2006;20:275–283.

    Article  PubMed  CAS  Google Scholar 

  32. Bhatt J, Jangid A, Shetty R, et al. Rapid and sensitive liquid chromatography-mass spectrometry method for determination of ropinirole in human plasma. J Pharm Biomed Anal. 2006;40:1202–1208.

    Article  PubMed  CAS  Google Scholar 

  33. Yulan S, Fang F. Sensitive liquid chromatography-tamdem mass spectrometry method for the determination of scutellarin in human plasma: application to a pharmacokinetic study. J Chromatogr B Analyt Technol Biomed Life Sci. 2006;830:1–5.

    Article  PubMed  CAS  Google Scholar 

  34. Zang X, Luo R, Song N, Chen TK, Bozigian H. A novel on-line solid-phase extraction approach integrated with a monolithic column and tandem mass spectrometry for direct plasma analysis of multiple drugs and metabolites. Rapid Commun Mass Spectrom. 2005;19:3259–3268.

    Article  PubMed  CAS  Google Scholar 

  35. Rook EJ, Hillebrand MJ, Rosing H, van Ree JM, Beijnen JH. The quantitative analysis of heroin, methadone and their metabolites and the simultaneous detection of cocaine, acetylcodeine and their metabolites in human plasma by high-performance liquid chromatography coupled with tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci. 2005;824:213–221.

    Article  PubMed  CAS  Google Scholar 

  36. Nordgren HK, Holmgren P, Liljeberg P, Eriksson N, Beck O. Application of direct urine LC-MS-MS analysis for screening of novel substances in drug abusers. J Anal Toxicol. 2005;29:234–239.

    PubMed  CAS  Google Scholar 

  37. Wood M, Laloup M, Ramirez Fernandez Mdel M, et al. Quantitative analysis of multiple illicit drugs in preserved oral fluid by solid-phase extraction and liquid chromatography-tandem mass spectrometry. Forensic Sci Int. 2005;150:227–238.

    Article  PubMed  CAS  Google Scholar 

  38. Li M, Alnouti Y, Leverence R, Bi H, Gusev AI. Increase of the LC-MS/MS sensitivity and detection limits using on-line sample preparation with large volume plasma injection. J Chromatogr B Analyt Technol Biomed Life Sci. 2005;825:152–160.

    Article  PubMed  CAS  Google Scholar 

  39. Rodriguez-Rosas ME, Medrano JG, Epstein DH, Moolchan ET, Preston KL, Wainer IW. Determination of total and free concentrations of the enantiomers of methadone and its metabolite (2-ethylidene-1,5-dimethyl-3,3-diphenyl-pyrrolidine) in human plasma by enantioselective liquid chromatography with mass spectrom etric detection. J Chromatogr A. 2005;1073:237–248.

    Article  PubMed  CAS  Google Scholar 

  40. Heavner DL, Richardson JD, Morgan WT, Ogden MW. Validation and application of a method for the determination of nicotine and five major metabolites in smokers' urine by solid-phase extraction and liquid chromatography-tandem mass spectrometry. Biomed Chromatogr. 2005;19:312–328.

    Article  PubMed  CAS  Google Scholar 

  41. Bi HC, Zhong GP, Zhou S, Chen X, Huang M. Determination of adefovir in human plasma by liquid chromatography/tandem mass spectrometry: application to a pharmacokinetic study. Rapid Commun Mass Spectrom. 2005;19:2911–2917.

    Article  PubMed  CAS  Google Scholar 

  42. Proenca P, Teixeira H, Castanheira F, et al. Two fatal intoxication cases with imidacloprid: LC/MS analysis. Forensic Sci Int. 2005;153:75–80.

    Article  PubMed  CAS  Google Scholar 

  43. Yun JH, Myung JH, Kim HJ, et al. LC-MS determination and bioavailability study of imidapril hydrochloride after the oral administration of imidapril tablets in human volunteers. Arch Pharm Res. 2005;28:463–468.

    Article  PubMed  CAS  Google Scholar 

  44. Li K, Chen X, Xu J, Li X, Zhong D. Liquid chromatography/tandem mass spectrometry for pharmacokinetic studies of 20(R)-ginsenoside Rg3 in dog. Rapid Commun Mass Spectrom. 2005;19:813–817.

    Article  PubMed  CAS  Google Scholar 

  45. Kousoulos C, Tsatsou G, Apostolon C, Dotsikas Y, Loukas YL. Development of a high-throughput method for the determination of itraconazole and its hydroxy metabolite in human plasma, employing automated liquid-liquid extraction based on 96-well format plates and LC/MS/MS. Anal Bioanal Chem. 2005;384:199–207.

    Article  PubMed  CAS  Google Scholar 

  46. Zhang N, Yang A, Rogers JD, Zhao JJ. Quantitative analysis of simvastatin and its β-hydroxy acid in human plasma using automated liquid-liquid extraction based on 96-well plate format and liquid chromatography-tandem mass spectrometry. J Pharm Biomed Anal. 2004;34:175–187.

    Article  PubMed  CAS  Google Scholar 

  47. Polson C, Sarkar P, Incledon B, Raguvaran V, Grant R. Optimization of protein precipitation based upon effectiveness of protein removal and ionization effect in liquid chromatography-tandem mass spectrometry. J Chromatogr B Analyt Techmol Biomed Life Sci. 2003;785:263–275.

    Article  CAS  Google Scholar 

  48. Hendrickson HP, Milesi-Halle A, Laurenzana EM, Owens SM. Development of a liquid chromatography-tandem mass spectrometric method for the determination of methamphetamine and amphetamine using small volumes of rat serum. J Chromatogr B Analyt Technol Biomed Life Sci. 2004;806:81–87.

    Article  PubMed  CAS  Google Scholar 

  49. Matuszewski BK. Standard line slopes as a measure of a relative matrix effect in quantitative HPLC-MS bioanalysis. J Chromatogr B. 2006;830:293–300.

    Article  CAS  Google Scholar 

  50. Shima N, Kamata HT, Katagi M, Tsuchihashi H. Urinary excretion of the main metabolites of methamphetamine, including p-hydroxymethamphetamine-sulfate and p-hydroxymethamphetamine-glucuronide, in humans and rats. Xenobiotica. 2006;36:259–267.

    Article  PubMed  CAS  Google Scholar 

  51. Fielding J, Ryall RG. Some characteristics of trichloroacetic acidprecipitated proteins and their effects on biochemical assay. Clin Chim Acta. 1971;33:235–240.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Howard Hendrickson.

Additional information

Published: November 22, 2006

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hendrickson, H., Laurenzana, E. & Owens, S.M. Quantitative determination of total methamphetamine and active metabolites in rat tissue by liquid chromatography with tandem mass spectrometric detection. AAPS J 8, 80 (2006). https://doi.org/10.1208/aapsj080480

Download citation

  • Received:

  • Accepted:

  • DOI: https://doi.org/10.1208/aapsj080480

Keywords

Navigation