Skip to main content

Advertisement

Log in

Reaction Phenotyping: Current Industry Efforts to Identify Enzymes Responsible for Metabolizing Drug Candidates

  • Mini-Review/Themed Issue: Enabling Drug Developability: Defining Metabolism Properties of New Drug Candidates During Drug Discov
  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

Reaction phenotyping studies to identify specific enzymes involved in the metabolism of drug candidates are increasingly important in drug discovery efforts. Experimental approaches used for CYP reaction phenotyping include incubations with cDNA expressed CYP enzyme systems and incubations containing specific CYP enzyme inhibitors. Since both types of experiments present specific advantages as well as known drawbacks, these studies are generally viewed as complementary approaches. Although glucuronidation pathways are also known to present potential drug–drug interaction issues as well as challenges related to their polymorphic expression, reaction phenotyping approaches for glucuronidation are generally limited to cDNA expressed systems due to lack of availability of specific UGT inhibitors. This article presents a limited review of current approaches to reaction phenotyping studies used within the pharmaceutical industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. A. D. Rodrigues, and T. H. Rushmore. Cytochrome P450 pharmacogenetics in drug development: in vitro studies and clinical consequences. Curr. Drug Metab. 3:289–309 (2002).

    Article  PubMed  CAS  Google Scholar 

  2. K. Nakamura, F. Goto, W. A. Ray, C. B. McAllister, E. Jacqz, G. R. Wilkinson, and R. A. Branch. Interethnic differences in genetic polymorphism of debrisoquin and mephenytoin hydroxylation between Japanese and Caucasian populations. Clin. Pharmacol. Ther. 38:402–408 (1985).

    PubMed  CAS  Google Scholar 

  3. M. Kimura, I. Ieiri, K. Mamiya, A. Urae, and S. Higuchi. Genetic polymorphism of cytochrome P450s, CYP2C19, and CYP2C9 in a Japanese population. Ther. Drug Monit. 20:243–247 (1998).

    Article  PubMed  CAS  Google Scholar 

  4. R. Jose, and A. Chandrasekaran. The pharmacogenetics of CYP2C9 and CYP2C19: ethnic variation and clinical significance. Curr. Clin. Pharm. 2(1):93–109 (2007).

    CAS  Google Scholar 

  5. E. Garcia-Martin, C. Martinez, J. M. Ladero, and J. A. G. Agundez. Interethnic and intraethnic variability of CYP2C8 and CYP2C9 polymorphisms in healthy individuals. Mol. Diagn. Ther. 10:29–40 (2006).

    PubMed  CAS  Google Scholar 

  6. E. Tanaka. Clinically important pharmacokinetic drug–drug interactions: role of cytochrome P450 enzymes. J. Clin. Pharm. Ther. 23:403–416 (1998).

    Article  PubMed  CAS  Google Scholar 

  7. G. K. Dresser, J. D. Spence, and D. G. Bailey. Pharmacokinetic-pharmacodynamic consequences and clinical relevance of cytochrome P450 3A4 inhibition. Clin. Pharm. 38:41–57 (2000).

    Article  CAS  Google Scholar 

  8. A. Hsu, G. R. Granneman, and J. Bertz. Ritonavir: Clinical pharmacokinetics and interactions with other anti-HIV agents. Clin. Pharm. 35:275–291 (1998).

    Article  CAS  Google Scholar 

  9. A. Hsu, G. R. Granneman, G. Cao, L. Carothers, A. Japour, T. El-Shourbagy, S. Dennis, J. Berg, K. Erdman, J. M. Leonard, and E. Sun. Pharmacokinetic Interaction between ritonavir and indinavir in healthy volunteers. Antimicrob. Agents Chemother. 42:2784–2791 (1998).

    PubMed  CAS  Google Scholar 

  10. S. B. Koukouritaki, P. Simpson, C. K. Yeung, A. E. Rettie, and R. N. Hines. Human hepatic flavin-containing monooxygenases 1 (FMO1) and 3 (FMO3) developmental expression. Pediatr. Res. 51:236–243 (2002).

    Article  PubMed  CAS  Google Scholar 

  11. S. Larsen-Su, and D. E. Williams. Dietary indole-3-carbinol inhibits FMO activity and the expression of flavin-containing monooxygenase form 1 in rat liver and intestine. Drug Metab. Dispos. 24:927–931 (1996).

    PubMed  CAS  Google Scholar 

  12. C. Guillemette. Pharmacogenomics of human UDP-glucuronosyltransferase enzymes. Pharmacogenomics J. 3:136–158 (2003).

    Article  PubMed  CAS  Google Scholar 

  13. E. Levesque, R. Delage, M.-O. Benoit-Biancamano, P. Caron, O. Bernard, F. Couture, and C. Guillemette. The impact of UGT1A8, UGT1A9, and UGT2B7 genetic polymorphisms on the pharmacokinetic profile of mycophenolic acid after a single oral dose in healthy volunteers. Clin. Pharm. Ther. 81:392–400 (2007).

    Article  CAS  Google Scholar 

  14. T. K. L. Kiang, M. H. H. Ensom, and T. K. H. Chang. UDP-glucuronosyltransferases and clinical drug–drug interactions. Pharmacol. Ther. 106:97–132 (2005).

    Article  PubMed  CAS  Google Scholar 

  15. A. D. Rodrigues. Integrated cytochrome P450 reaction phenotyping: attempting to bridge the gap between cDNA-expressed cytochromes P450 and native human liver microsomes. Biochem. Pharmacol. 57:465–480 (1999).

    Article  PubMed  CAS  Google Scholar 

  16. A. Parkinson. An overview of current cytochrome P450 technology for assessing the safety and efficacy of new materials. Toxicol. Pathol. 24:48–57 (1996).

    Article  PubMed  CAS  Google Scholar 

  17. A. D. Rodrigues. Use of in vitro human metabolism studies in drug development. An industrial perspective. Biochem. Pharmacol. 48:2147–2156 (1994).

    Article  PubMed  CAS  Google Scholar 

  18. C. Emoto, S. Murase, and K. Iwasaki. Approach to the prediction of the contribution of major cytochrome P450 enzymes to drug metabolism in the early drug-discovery stage. Xenobiotica. 36:671–683 (2006).

    Article  PubMed  CAS  Google Scholar 

  19. J. B. Houston. Utility of in vitro drug metabolism data in predicting in vivo metabolic clearance. Biochem. Pharm. 47:1469–1479 (1994).

    Article  PubMed  CAS  Google Scholar 

  20. T. Iwatsubo, N. Hirota, T. Ooie, H. Suzuki, N. Simada, K. Chiba, T. Ishizaki, G. E. Green, C. A. Tyson, and Y. Sugiyama. Prediction of in vivo drug metabolism in the human liver from in vitro metabolism data. Pharmacol. Ther. 73:147–171 (1997).

    Article  PubMed  CAS  Google Scholar 

  21. R. S. Obach, J. G. Baxter, T. E. Liston, B. M. Silber, B. C. Jones, R. MacIntyre, D. J. Rance, and P. Wastal. The prediction of human pharmacokinetic parameters from preclinical and in vitro metabolism data. J. Pharmacol. Exp. Ther. 283:46–58 (1997).

    PubMed  CAS  Google Scholar 

  22. N. J. Proctor, G. T. Tucker, and A. Rostami-Hodjegan. Predicting drug clearance from recombinantly expressed CYPs: intersystem extrapolation factors. Xenobiotica. 34:151–178 (2004).

    Article  PubMed  CAS  Google Scholar 

  23. S.-I. Ikushiro, E. Yoshikazu, K. Yoshihisa, S. Yamada, and T. Sakaki. Monospecific antipeptide antibodies against human hepatic UDP-glucuronosyltransferase 1A subfamily (UGT1A) isoforms. Drug Metab. Pharmacokinet. 21:70–74 (2006).

    Article  PubMed  CAS  Google Scholar 

  24. J. H. Lin, and B. K. Wong. Complexities of glucuronidation affecting in vitroin vivo extrapolation. Curr. Drug Metab. 3:623–646 (2002).

    Article  PubMed  CAS  Google Scholar 

  25. M. H. Court, S. X. Duan, L. L. Von Moltke, D. J. Greenblatt, C. J. Patten, J. O. Miners, and P. I. MacKenzie. Interindividual variability in acetaminophen glucuronidation by human liver microsomes: identification of relevant acetaminophen UDP-glucuronosyltransferase isoforms. J. Pharmacol. Exp. Ther. 299:998–1006 (2001).

    PubMed  CAS  Google Scholar 

  26. K. R. Yeo, A. Rostami-Hodjegan, and G. T. Tucker. Abundance of cytochromes P450 in human liver: a meta-analysis. Br. J. Clin. Pharmacol. 57:687–688 (2004).

    Google Scholar 

  27. S. Krishnaswamy, S. X. Duan, L. L. Von Moltke, D. J. Greenblatt, and M. H. Court. Validation of serotonin (5-hydrosytryptamine) as an in vitro substrate probe for human UDP-glucuronosyltransferase (UGT) 1A6. Drug Metab. Disp. 31:133–139 (2003).

    Article  CAS  Google Scholar 

  28. M. B. Fisher, M. Vandenbranden, K. Findlay, B. Burchell, K. E. Thummel, S. D. Hall, and S. A. Wrighton. Tissue distribution and interindividual variation in human UDP-glucuronosyltransferase activity: relationship between UGT1A1 promoter genotype and variability in a liver bank. Pharmacogenetics. 10:727–739 (2000).

    Article  PubMed  CAS  Google Scholar 

  29. C. P. Strassburg, S. Kneip, J. Topp, P. Obermayer-Straub, A. Barutt, R. H. Turkey, and M. P. Manns. Polymorphic gene regulation and interindividual variation of UDP-glucuronosyltransferase activity in human small intestine. J. Biol. Chem. 46a:36164–36171 (2000).

    Article  Google Scholar 

  30. R. Fulceri, G. Banhegyi, A. Gamberucci, R. Giunti, J. Mandl, and A. Benedetti. Evidence for the intraluminal positioning of p-nitrol UDP-glucuronosyltransferase activity in rat liver microsomes. Arch. Biochem. Biophys. 309:43–46 (1994).

    Article  PubMed  CAS  Google Scholar 

  31. M. B. Fisher, K. Campanale, B. L. Ackermann, M. Banderbranden, and S. A. Wrighton. In vitro glucuronidation using human liver microsomes and the pore-forming peptide alamethicin. Drug Metab. Disp. 25:560–566 (2000).

    Google Scholar 

  32. J. M. Little, P. A. Lehman, S. Nowell, V. Samokyszyn, and A. Radominska. Glucuronidation of all-trans-retinoic acid and 5,6-epoxy-all-trans-retinoic acid. Drug Metab. Disp. 25:5–11 (1997).

    CAS  Google Scholar 

  33. K. He, S. J. Ludtke, W. T. Heller, and H. W. Huang. Mechanism of alamethicin insertion into lipid bilayers. Biophys. J. 71:2669–2679 (1996).

    PubMed  CAS  Google Scholar 

  34. E. Lett, W. Kriszt, V. de Sandro, G. Ducrotoy, and L. Richert. Optimal detergent activation of rat liver microsomal UDP-glucuronosyltransferases toward morphine and 1-naphthol: contribution to induction and latency studies. Biochem. Pharmacol. 43:1649–1653 (1992).

    Article  PubMed  CAS  Google Scholar 

  35. C. B. Trapnell, R. W. Klecker, C. Jamis-Dow, and J. M. Colling. Glucuronidation of 3¢-azido-3¢-deoxythymidine (zidovudine) by human liver microsomes—relevance to clinical pharmacokinetic interactions with atovaquone, fluconazole, methadone and valproic acid. Antimicrob. Agents Chemother. 42:1592–1596 (1998).

    PubMed  CAS  Google Scholar 

  36. H. V. Gelboin, and K. Krausz. Monoclonal Antibodies and Multifunctional Cytochrome P450: Drug Metabolism as Paradigm. J. Clin. Pharmacol. 46:353–372 (2006).

    Article  PubMed  CAS  Google Scholar 

  37. K. W. Krausz, I. Goldfarb, J. T. Buters, T. J. Yang, F. J. Gonzalez, and H. V. Gelboin. Monoclonal antibodies specific and inhibitory to human cytochromes P450 2C8, 2C9, and 2C19. Drug Metab. Dispos. 29:1410–1423 (2001).

    PubMed  CAS  Google Scholar 

  38. D. Sesardic, A. R. Boobis, B. P. Murray, S. Murray, J. Segura, R. de la Torre, and D. S. Davies. Furafylline is a potent and selective inhibitor of cytochrome P4501A2 in man. Br. J. Clin. Pharm. 29:651–663 (1990).

    CAS  Google Scholar 

  39. S. E. Clarke, A. D. Ayrton, and R. J. Chenery. Characterization of the inhibition of P4501A2 by furafylline. Xenobiotica. 24:517–526 (1994).

    Article  PubMed  CAS  Google Scholar 

  40. M. Bourrie, V. Meunier, Y. Berger, and G. Fabre. Cytochrome P450 isoform inhibitors as a tool for the investigation of metabolic reactions catalyzed by human liver microsomes. J. Pharmacol. Exp. Ther. 277:321–332 (1996).

    PubMed  CAS  Google Scholar 

  41. A. Mancy, S. Dijols, S. Poli, F. P. Guengerich, and D. Mansuy. Interaction of sulfaphenazole derivatives with human liver cytochromes P4502C: Molecular origin of the specific inhibitory effects of sulfaphenazole on CYP2C9 and consequences for the substrate binding site topology of CYP2C9. Biochemistry. 35:16205–16212 (1996).

    Article  PubMed  CAS  Google Scholar 

  42. H. Suzuki, M. B. Kneller, R. L. Haining, W. F. Trager, and A. E. Rettie. (+)-N-3-benzyl-nirvanol and (−)-N-3-benzylphenobarbital: New potent and selective in vitro inhibitors of CYP2C19. Drug Metab. Dispos. 30:235–239 (2002).

    Article  PubMed  CAS  Google Scholar 

  43. R. L. Walsky, and R. S. Obach. Verification of the selectivity of (+)N-3-benzylnirvanol as a CYP2C19 inhibitor. Drug Metab. Dispos. 31:343 (2003).

    Article  PubMed  CAS  Google Scholar 

  44. D. J. Newton, R. W. Wang, and A. Y. Lu. Cytochrome P450 inhibitors. Evaluation of specificities in the in vitro metabolism of therapeutic agents by human liver microsomes. Drug Metab. Dispos. 23:154–158 (1995).

    PubMed  CAS  Google Scholar 

  45. A. D. Rodrigues, and E. M. Roberts. The in vitro interaction of dexmedetomidine with human liver microsomal cytochrome P4502D6 (CYP2D6). Drug Metab. Dispos. 25:651–655 (1997).

    PubMed  CAS  Google Scholar 

  46. H. Yamazaki, and T. Shimada. Comparative studies of in vitro inhibition of cytochrome P450 3A4-dependent testosterone 6beta-hydroxylation by roxithromycin and its metabolites, troleandomycin, and erythromycin. Drug Metab. Dispos. 26:1053–1057 (1998).

    PubMed  CAS  Google Scholar 

  47. F. Marre, G. de Sousa, A. M. Orloff, and R. Rahmani. In vitro interaction between cyclosporin A and macrolide antibiotics. Br. J. Clin. Pharm. 35:447–448 (1993).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy W. Harper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harper, T.W., Brassil, P.J. Reaction Phenotyping: Current Industry Efforts to Identify Enzymes Responsible for Metabolizing Drug Candidates. AAPS J 10, 200–207 (2008). https://doi.org/10.1208/s12248-008-9019-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12248-008-9019-6

Keywords

Navigation