Skip to main content
Log in

Targeting Fatty Acid Amide Hydrolase (FAAH) to Treat Pain and Inflammation

  • NIDA Symposium: Drugs of Abuse: Special Topics in Drug Development
  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

The endogenous cannabinoid N-arachidonoyl ethanolamine (anandamide; AEA) produces most of its pharmacological effects by binding and activating CB1 and CB2 cannabinoid receptors within the CNS and periphery. However, the actions of AEA are short lived because of its rapid catabolism by fatty acid amide hydrolase (FAAH). Indeed, FAAH knockout mice as well as animals treated with FAAH inhibitors are severely impaired in their ability to hydrolyze AEA as well as a variety of noncannabinoid lipid signaling molecules and consequently possess greatly elevated levels of these endogenous ligands. In this mini review, we describe recent research that has investigated the functional consequences of inhibiting this enzyme in a wide range of animal models of inflammatory and neuropathic pain states. FAAH-compromised animals reliably display antinociceptive and anti-inflammatory phenotypes with a similar efficacy as direct-acting cannabinoid receptor agonists, such as Δ9-tetrahydrocannabinol (THC), the primary psychoactive constituent of Cannabis sativa. Importantly, FAAH blockade does not elicit any apparent psychomimetic effects associated with THC or produce reinforcing effects that are predictive of human drug abuse. The beneficial effects caused by FAAH blockade in these models are predominantly mediated through the activation of CB1 and/or CB2 receptors, though noncannabinoid mechanisms of actions can also play contributory or even primary roles. Collectively, the current body of scientific literature suggests that activating the endogenous cannabinoid system by targeting FAAH is a promising strategy to treat pain and inflammation but lacks untoward side effects typically associated with Cannabis sativa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Notes

  1. Since the acceptance of this mini review, a research report introducing a novel and highly selective MAGL inhibitor found that inhibition of this enzyme elicited CB1 receptor mediated hypoalgesic effects in mice (27).

References

  1. W. A. Devane, L. Hanus, A. Breuer, R. G. Pertwee, L. A. Stevenson, G. Griffin, D. Gibson, A. Mandelbaum, A. Etinger, and R. Mechoulam. Isolation and structure of a brain constituent that binds to the cannabinoid receptor. Science. 258:1946–1949 (1992).

    Article  PubMed  CAS  Google Scholar 

  2. R. Mechoulam, et al. Identification of an endogenous 2-monoglyceride, present in canine gut, that binds to cannabinoid receptors. Biochem. Pharmacol. 50:83–90 (1995).

    Article  PubMed  CAS  Google Scholar 

  3. T. Sugiura, S. Kondo, A. Sukagawa, S. Nakane, A. Shinoda, K. Itoh, A. Yamashita, and K. Waku. 2-Arachidonoyglycerol: A possible endogenous cannabinoid receptor ligand in brain. Biochem. Biophys. Res. Comm. 215:89–97 (1995).

    Article  PubMed  CAS  Google Scholar 

  4. K. Ahn, M. K. McKinney, and B. F. Cravatt. Enzymatic pathways that regulate endocannabinoid signaling in the nervous system. Chem Rev. 108:1687–1707 (2008).

    Article  PubMed  CAS  Google Scholar 

  5. L. A. Matsuda, S. J. Lolait, M. J. Brownstein, A. C. Young, and T. I. Bonner. Structure of a cannabinoid receptor and functional expression of the cloned cDNA. Nature. 346:561–564 (1990).

    Article  PubMed  CAS  Google Scholar 

  6. C. M. Gerard, C. Mollereau, G. Vassart, and M. Parmentier. Molecular cloning of a human cannabinoid receptor which is also expressed in testis. Biochem J. 279(Pt 1):129–134 (1991).

    PubMed  CAS  Google Scholar 

  7. M. Herkenham, A. B. Lynn, M. R. Johnson, L. S. Melvin, B. R. de Costa, and K. C. Rice. Characterization and localization of cannabinoid receptors in rat brain: A quantitative in vitro autoradiographic study. J. Neurosci. 11:563–583 (1991).

    PubMed  CAS  Google Scholar 

  8. G. A. Cabral, E. S. Raborn, L. Griffin, J. Dennis, and F. Marciano-Cabral. CB2 receptors in the brain: role in central immune function. Br. J. Pharmacol. 153:240–251 (2008).

    Article  PubMed  CAS  Google Scholar 

  9. M. D. Van Sickle, et al. Identification and functional characterization of brainstem cannabinoid CB2 receptors. Science. 310:329–332 (2005).

    Article  PubMed  Google Scholar 

  10. D. Leung, A. Saghatelian, G. M. Simon, and B. F. Cravatt. Inactivation of N-acyl phosphatidylethanolamine phospholipase D reveals multiple mechanisms for the biosynthesis of endocannabinoids. Biochemistry. 45:4720–4726 (2006).

    Article  PubMed  CAS  Google Scholar 

  11. G. M. Simon, and B. F. Cravatt. Endocannabinoid biosynthesis proceeding through glycerophospho-N-acyl ethanolamine and a role for alpha/beta-hydrolase 4 in this pathway. J. Biol. Chem. 281:26465–26472 (2006).

    Article  PubMed  CAS  Google Scholar 

  12. J. Liu, L. Wang, J. Harvey-White, D. Osei-Hyiaman, R. Razdan, Q. Gong, A. C. Chan, Z. Zhou, B. X. Huang, H. Y. Kim, and G. Kunos. A biosynthetic pathway for anandamide. Proc. Natl. Acad. Sci. USA. 103:13345–13350 (2006).

    Article  PubMed  CAS  Google Scholar 

  13. B. F. Cravatt, D. K. Giang, S. P. Mayfield, D. L. Boger, R. A. Lerner, and N. B. Gilula. Molecular characterization of an enzyme that degrades neuromodulatory fatty-acid amides. Nature. 384:83–87 (1996).

    Article  PubMed  CAS  Google Scholar 

  14. B. F. Cravatt, K. Demarest, M. P. Patricelli, M. H. Bracey, D. K. Giang, B. R. Martin, and A. H. Lichtman. Supersensitivity to anandamide and enhanced endogenous cannabinoid signaling in mice lacking fatty acid amide hydrolase. Proc. Natl. Acad. Sci. U S A. 98:9371–9376 (2001).

    Article  PubMed  CAS  Google Scholar 

  15. A. Saghatelian, M. K. McKinney, M. Bandell, A. Patapoutian, and B. F. Cravatt. A FAAH-regulated class of N-acyl taurines that activates TRP ion channels. Biochemistry. 45:9007–9015 (2006).

    Article  PubMed  CAS  Google Scholar 

  16. N. Ueda. Endocannabinoid hydrolases. Prostaglandins Other Lipid Mediat. 68-69:521–534 (2002).

    Article  PubMed  CAS  Google Scholar 

  17. J. L. Blankman, G. M. Simon, and B. F. Cravatt. A comprehensive profile of brain enzymes that hydrolyze the endocannabinoid 2-arachidonoylglycerol. Chem. Biol. 14:1347–1356 (2007).

    Article  PubMed  CAS  Google Scholar 

  18. P. Pacher, S. Batkai, and G. Kunos. The endocannabinoid system as an emerging target of pharmacotherapy. Pharmacol. Rev. 58:389–462 (2006).

    Article  PubMed  CAS  Google Scholar 

  19. A. G. Hohmann, and M. Herkenham. Localization of central cannabinoid CB1 receptor messenger RNA in neuronal subpopulations of rat dorsal root ganglia: a double-label in situ hybridization study. Neurosci. 90:923–931 (1999).

    Article  CAS  Google Scholar 

  20. A. G. Hohmann, and M. Herkenham. Cannabinoid receptors undergo axonal flow in sensory nerves. Neuroscience. 92:1171–1175 (1999).

    Article  PubMed  CAS  Google Scholar 

  21. V. Di Marzo, C. S. Breivogel, Q. Tao, D. T. Bridgen, R. K. Razdan, A. M. Zimmer, A. Zimmer, and B. R. Martin. Levels, metabolism, and pharmacological activity of anandamide in CB(1) cannabinoid receptor knockout mice: evidence for non-CB(1), non-CB(2) receptor-mediated actions of anandamide in mouse brain. J. Neurochem. 75:2434–2444 (2000).

    Article  PubMed  Google Scholar 

  22. J. M. Walker, and A. G. Hohmann. Cannabinoid mechanisms of pain suppression. Handb. Exp. Pharmacol. 168:509–554 (2005).

    Article  PubMed  CAS  Google Scholar 

  23. S. Kathuria, et al. Modulation of anxiety through blockade of anandamide hydrolysis. Nat. Med. 9:76–81 (2003).

    Article  PubMed  CAS  Google Scholar 

  24. A. H. Lichtman, C. C. Shelton, T. Advani, and B. F. Cravatt. Mice lacking fatty acid amide hydrolase exhibit a cannabinoid receptor-mediated phenotypic hypoalgesia. Pain. 109:319–327 (2004).

    Article  PubMed  CAS  Google Scholar 

  25. A. H. Lichtman, D. Leung, C. C. Shelton, A. Saghatelian, C. Hardouin, D. L. Boger, and B. F. Cravatt. Reversible inhibitors of fatty acid amide hydrolase that promote analgesia: evidence for an unprecedented combination of potency and selectivity. J. Pharmacol. Exp. Ther. 311:441–448 (2004).

    Article  PubMed  CAS  Google Scholar 

  26. Z. Justinova, R. A. Mangieri, M. Bortolato, S. I. Chefer, A. G. Mukhin, J. R. Clapper, A. R. King, G. H. Redhi, S. Yasar, D. Piomelli, and S. R. Goldberg. Fatty acid amide hydrolase inhibition heightens anandamide signaling without producing reinforcing effects in primates. Biol. Psychiatry. 64(11):930–937 (2008).

    Article  PubMed  CAS  Google Scholar 

  27. J. Z. Long, W. Li, L. Booker, J. J. Burston, S. G. Kinsey, J.E. Schlosburg, F. J. Pavón , A. M. Serrano, D. E. Selley, L. H. Parsons, A. H. Lichtman, and B. F. Cravatt. Selective blockade of 2-arachidonoylglycerol hydrolysis produces cannabinoid behavioral effects. Nat Chem Biol. 5:37-44 (2009).

    Google Scholar 

  28. J. L. Croxford, and T. Yamamura. Cannabinoids and the immune system: potential for the treatment of inflammatory diseases? J. Neuroimmunol. 166:3–18 (2005).

    Article  PubMed  CAS  Google Scholar 

  29. D. Richardson, R. G. Pearson, N. Kurian, M. L. Latif, M. J. Garle, D. A. Barrett, D. A. Kendall, B. E. Scammell, A. J. Reeve, and V. Chapman. Characterisation of the cannabinoid receptor system in synovial tissue and fluid in patients with osteoarthritis and rheumatoid arthritis. Arthritis research & therapy. 10:R43 (2008).

    Article  Google Scholar 

  30. B. F. Cravatt, A. Saghatelian, E. G. Hawkins, A. B. Clement, M. H. Bracey, and A. H. Lichtman. Functional disassociation of the central and peripheral fatty acid amide signaling systems. Proc. Natl. Acad. Sci. USA. 101:10821–10826 (2004).

    Article  PubMed  CAS  Google Scholar 

  31. L. E. Wise, R. Cannavacciulo, B. F. Cravatt, B. F. Martin, and A. H. Lichtman. Evaluation of fatty acid amides in the carrageenan-induced paw edema model. Neuropharmacology. 54:181–188 (2008).

    Article  PubMed  CAS  Google Scholar 

  32. B. Costa, S. Conti, G. Giagnoni, and M. Colleoni. Therapeutic effect of the endogenous fatty acid amide, palmitoylethanolamide, in rat acute inflammation: inhibition of nitric oxide and cyclo-oxygenase systems. Br. J. Pharmacol. 137:413–420 (2002).

    Article  PubMed  CAS  Google Scholar 

  33. S. Holt, F. Comelli, B. Costa, and C. J. Fowler. Inhibitors of fatty acid amide hydrolase reduce carrageenan-induced hind paw inflammation in pentobarbital-treated mice: comparison with indomethacin and possible involvement of cannabinoid receptors. Br. J. Pharmacol. 146:467–476 (2005).

    Article  PubMed  CAS  Google Scholar 

  34. M. D. Jhaveri, et al. Inhibition of fatty acid amide hydrolase and cyclooxygenase-2 increases levels of endocannabinoid related molecules and produces analgesia via peroxisome proliferator-activated receptor-alpha in a model of inflammatory pain. Neuropharmacology. 55:85–93 (2008).

    Article  PubMed  CAS  Google Scholar 

  35. D. R. Sagar, D. A. Kendall, and V. Chapman. Inhibition of fatty acid amide hydrolase produces PPAR-alpha-mediated analgesia in a rat model of inflammatory pain. Br. J. Pharmacol. 155(8):1297–1306 (2008).

    Article  PubMed  CAS  Google Scholar 

  36. C. Potenzieri, T. S. Brink, C. Pacharinsak, and D. A. Simone. Cannabinoid modulation of cutaneous A{delta} nociceptors during inflammation. J. Neurophysiol. 100(5):2794–2806 (2008).

    Article  PubMed  CAS  Google Scholar 

  37. A. Jayamanne, R. Greenwood, V. A. Mitchell, S. Aslan, D. Piomelli, and C. W. Vaughan. Actions of the FAAH inhibitor URB597 in neuropathic and inflammatory chronic pain models. Br. J. Pharmacol. 147:281–288 (2006).

    Article  PubMed  CAS  Google Scholar 

  38. G. La Rana, R. Russo, P. Campolongo, M. Bortolato, R. A. Mangieri, V. Cuomo, A. Iacono, G. M. Raso, R. Meli, D. Piomelli, and A. Calignano. Modulation of neuropathic and inflammatory pain by the endocannabinoid transport inhibitor AM404 [N-(4-hydroxyphenyl)-eicosa-5,8,11,14-tetraenamide]. J. Pharmacol. Exp. Ther. 317:1365–1371 (2006).

    Article  PubMed  Google Scholar 

  39. M. Karsak, et al. Attenuation of allergic contact dermatitis through the endocannabinoid system. Science. 316:1494–1497 (2007).

    Article  PubMed  CAS  Google Scholar 

  40. A. A. Izzo, and A. A. Coutts. Cannabinoids and the digestive tract. Handb. Exp. Pharmacol. 168:573–598 (2005).

    Article  PubMed  CAS  Google Scholar 

  41. F. Massa, G. Marsicano, H. Hermann, A. Cannich, K. Monory, B. F. Cravatt, G. L. Ferri, A. Sibaev, M. Storr, and B. Lutz. The endogenous cannabinoid system protects against colonic inflammation. J. Clin. Invest. 113:1202–1209 (2004).

    PubMed  CAS  Google Scholar 

  42. M. A. Storr, et al. Targeting endocannabinoid degradation protects against experimental colitis in mice: involvement of CB1 and CB2 receptors. J. Mol. Med. 86:925–936 (2008).

    Article  PubMed  CAS  Google Scholar 

  43. G. D’Argenio, M. Valenti, G. Scaglione, V. Cosenza, I. Sorrentini, and V. Di Marzo. Up-regulation of anandamide levels as an endogenous mechanism and a pharmacological strategy to limit colon inflammation. FASEB J: official publication of the Federation of American Societies for Experimental Biology. 20:568–570 (2006).

    Google Scholar 

  44. N. Attal, G. Cruccu, M. Haanpaa, P. Hansson, T. S. Jensen, T. Nurmikko, C. Sampaio, S. Sindrup, and P. Wiffen. EFNS guidelines on pharmacological treatment of neuropathic pain. Eur. J. Neurol. 13:1153–1169 (2006).

    Article  PubMed  CAS  Google Scholar 

  45. L. R. Watkins, M. R. Hutchinson, A. Ledeboer, J. Wieseler-Frank, E. D. Milligan, and S. F. Maier. Norman Cousins Lecture. Glia as the “bad guys”: implications for improving clinical pain control and the clinical utility of opioids. Brain Behav. Immun. 21:131–146 (2007).

    Article  PubMed  CAS  Google Scholar 

  46. J. Zhang, C. Hoffert, H. K. Vu, T. Groblewski, S. Ahmad, and D. O’Donnell. Induction of CB2 receptor expression in the rat spinal cord of neuropathic but not inflammatory chronic pain models. Eur. J. Neurosci. 17:2750–2754 (2003).

    Article  PubMed  Google Scholar 

  47. S. Petrosino, E. Palazzo, V. de Novellis, T. Bisogno, F. Rossi, S. Maione, and V. Di Marzo. Changes in spinal and supraspinal endocannabinoid levels in neuropathic rats. Neuropharmacology. 52:415–422 (2007).

    Article  PubMed  CAS  Google Scholar 

  48. S. Mitrirattanakul, N. Ramakul, A. V. Guerrero, Y. Matsuka, T. Ono, H. Iwase, K. Mackie, K. F. Faull, and I. Spigelman. Site-specific increases in peripheral cannabinoid receptors and their endogenous ligands in a model of neuropathic pain. Pain. 126:102–114 (2006).

    Article  PubMed  CAS  Google Scholar 

  49. I. Kaufmann, G. Schelling, C. Eisner, H. P. Richter, T. Krauseneck, M. Vogeser, D. Hauer, P. Campolongo, A. Chouker, A. Beyer, and M. Thiel. Anandamide and neutrophil function in patients with fibromyalgia. Psychoneuroendocrinology. 33:676–685 (2008).

    Article  PubMed  CAS  Google Scholar 

  50. R. Russo, J. Loverme, G. La Rana, T. R. Compton, J. Parrott, A. Duranti, A. Tontini, M. Mor, G. Tarzia, A. Calignano, and D. Piomelli. The fatty acid amide hydrolase inhibitor URB597 (cyclohexylcarbamic acid 3’-carbamoylbiphenyl-3-yl ester) reduces neuropathic pain after oral administration in mice. J. Pharmacol. Exp. Ther. 322:236–242 (2007).

    Article  PubMed  CAS  Google Scholar 

  51. J. Desroches, J. Guindon, C. Lambert, and P. Beaulieu. Modulation of the anti-nociceptive effects of 2-arachidonoyl glycerol by peripherally administered FAAH and MGL inhibitors in a neuropathic pain model. Br. J. Pharmacol. 155(6):913–924 (2008).

    Article  PubMed  CAS  Google Scholar 

  52. L. Chang, L. Luo, J. A. Palmer, S. Sutton, S. J. Wilson, A. J. Barbier, J. G. Breitenbucher, S. R. Chaplan, and M. Webb. Inhibition of fatty acid amide hydrolase produces analgesia by multiple mechanisms. Br. J. Pharmacol. 148:102–113 (2006).

    Article  PubMed  CAS  Google Scholar 

  53. V. A. Mitchell, R. Greenwood, A. Jayamanne, and C. W. Vaughan. Actions of the endocannabinoid transport inhibitor AM404 in neuropathic and inflammatory pain models. Clin. Exp. Pharmacol. Physiol. 34:1186–1190 (2007).

    PubMed  CAS  Google Scholar 

  54. M. Tognetto, S. Amadesi, S. Harrison, C. Creminon, M. Trevisani, M. Carreras, M. Matera, P. Geppetti, and A. Bianchi. Anandamide excites central terminals of dorsal root ganglion neurons via vanilloid receptor-1 activation. J. Neurosci. 21:1104–1109 (2001).

    PubMed  CAS  Google Scholar 

  55. G. Horvath, G. Kekesi, E. Nagy, and G. Benedek. The role of TRPV1 receptors in the antinociceptive effect of anandamide at spinal level. Pain. 134:277–284 (2008).

    Article  PubMed  CAS  Google Scholar 

  56. S. Maione, T. Bisogno, V. de Novellis, E. Palazzo, L. Cristino, M. Valenti, S. Petrosino, V. Guglielmotti, F. Rossi, and V. Di Marzo. Elevation of endocannabinoid levels in the ventrolateral periaqueductal grey through inhibition of fatty acid amide hydrolase affects descending nociceptive pathways via both cannabinoid receptor type 1 and transient receptor potential vanilloid type-1 receptors. J. Pharmacol. Exp. Ther. 316:969–982 (2006).

    Article  PubMed  CAS  Google Scholar 

  57. B. Costa, F. Comelli, I. Bettoni, M. Colleoni, and G. Giagnoni. The endogenous fatty acid amide, palmitoylethanolamide, has anti-allodynic and anti-hyperalgesic effects in a murine model of neuropathic pain: involvement of CB(1), TRPV1 and PPARgamma receptors and neurotrophic factors. Pain. (2008), Epub ahead of print.

  58. A. Singh Tahim, P. Santha, and I. Nagy. Inflammatory mediators convert anandamide into a potent activator of the vanilloid type 1 transient receptor potential receptor in nociceptive primary sensory neurons. Neuroscience. 136:539–548 (2005).

    Article  PubMed  CAS  Google Scholar 

  59. J. Ahluwalia, L. Urban, S. Bevan, and I. Nagy. Anandamide regulates neuropeptide release from capsaicin-sensitive primary sensory neurons by activating both the cannabinoid 1 receptor and the vanilloid receptor 1 in vitro. Eur. J. Neurosci. 17:2611–2618 (2003).

    Article  PubMed  Google Scholar 

  60. Y. Sun, S. P. Alexander, D. A. Kendall, and A. J. Bennett. Cannabinoids and PPARalpha signalling. Biochem. Soc. Trans. 34:1095–1097 (2006).

    Article  PubMed  CAS  Google Scholar 

  61. J. Lo Verme, J. Fu, G. Astarita, G. La Rana, R. Russo, A. Calignano, and D. Piomelli. The nuclear receptor peroxisome proliferator-activated receptor-alpha mediates the anti-inflammatory actions of palmitoylethanolamide. Mol. Pharmacol. 67:15–19 (2005).

    Article  PubMed  CAS  Google Scholar 

  62. V. L. Haller, D. L. Stevens, and S. P. Welch. Modulation of opioids via protection of anandamide degradation by fatty acid amide hydrolase. Eur. J. Pharmacol. 600(1–3):50–58 (2008).

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the following grants from the NIH: P50DA005274, R01DA015197, R01DA015683, P01DA009789, and T32DA007027.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aron H. Lichtman.

Additional information

Guest Editors: Rao Rapaka and Vishnu Purohit

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schlosburg, J.E., Kinsey, S.G. & Lichtman, A.H. Targeting Fatty Acid Amide Hydrolase (FAAH) to Treat Pain and Inflammation. AAPS J 11, 39–44 (2009). https://doi.org/10.1208/s12248-008-9075-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12248-008-9075-y

Key words

Navigation