Skip to main content

Advertisement

Log in

Population-Based Mechanistic Prediction of Oral Drug Absorption

  • Review Article
  • Theme: Towards Integrated ADME Prediction: Past, Present, and Future Directions
  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

The bioavailability of drugs from oral formulations is influenced by many physiological factors including gastrointestinal fluid composition, pH and dynamics, transit and motility, and metabolism and transport, each of which may vary with age, gender, race, food, and disease. Therefore, oral bioavailability, particularly of poorly soluble and/or poorly permeable compounds and those that are extensively metabolized, often exhibits a high degree of inter- and intra-individual variability. While several models and algorithms have been developed to predict bioavailability in an average person, efforts to accommodate intrinsic variability in the component processes are less common. An approach that incorporates such variability for human populations within a mechanistic framework is described together with examples of its application to drug and formulation development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Rostami-Hodjegan A, Tucker GT. Simulation and prediction of in vivo drug metabolism in human populations from in vitro data. Nat Rev Drug Discov 2007;6 2:140–8.

    PubMed  CAS  Google Scholar 

  2. Jamei M, Dickinson G, Rostami-Hodjegan A. A framework for assessing interindividual variability in pharmacokinetics using virtual human populations and integrating general knowledge of physical chemistry, biology, anatomy, physiology and genetics: a tale of ‘bottom-up’ vs ‘top-down’ recognition of covariates. Drug Metab Pharmacokinet 2009;24 1:53–75.

    PubMed  CAS  Google Scholar 

  3. Jamei M et al. The Simcyp® Population-Based ADME Simulator. Expert Opin Drug Metab Toxicol. 2009;5 2:211–23.

  4. Yu LX, et al. Transport approaches to the biopharmaceutical design of oral drug delivery systems: prediction of intestinal absorption. Adv Drug Deliv Rev 1996;19:359–76.

    PubMed  CAS  Google Scholar 

  5. Yu LX, Crison JR, Amidon GL. Compartmental transit and dispersion model analysis of small intestinal transit flow in humans. Int J Pharm. 1996;140:111–8.

    CAS  Google Scholar 

  6. Yu LX, Crison JR, Amidon GL. Saturable small intestinal drug absorption in humans: modeling and interpretation of cefatrizine data. Eur J Pharm Biopharm 1998;45:199–203.

    PubMed  CAS  Google Scholar 

  7. Yu LX, Amidon GL. Characterization of small intestinal transit time distribution in humans. Int J Pharm 1998;171 2:157–63.

    CAS  Google Scholar 

  8. Yu LX. An integrated model for determining causes of poor oral drug absorption. Pharm Res 1999;16 12:1883–7.

    PubMed  CAS  Google Scholar 

  9. Yu LX, Amidon GL. A compartmental absorption and transit model for estimating oral drug absorption. Int J Pharm 1999;186:119–25.

    PubMed  CAS  Google Scholar 

  10. Yu LX, Gatlin L, Amidon G. Predicting oral drug absorption in humans. In: Amidon G, Lee PI, editors. Transport processes in pharmaceutical systems. New York: Marcel Dekker; 2000. p. 377–409.

    Google Scholar 

  11. Agoram B, Woltosz WS, Bolger MB. Predicting the impact of physiological and biochemical processes on oral drug bioavailability. Adv Drug Deliv Rev 2001;50 Suppl 1:S41–67.

    PubMed  CAS  Google Scholar 

  12. Burton PS, et al. Predicting drug absorption: how nature made it a difficult problem. J Pharmacol Exp Ther 2002;303 3:889–95.

    PubMed  CAS  Google Scholar 

  13. McConnell EL, Fadda HM, Basit AW. Gut instincts: explorations in intestinal physiology and drug delivery. Int J Pharm 2008;364 2:213–26.

    PubMed  CAS  Google Scholar 

  14. Olsson C, Holmgren S. The control of gut motility. Comp Biochem Physiol Part A: Mol Integr Physiol 2001;128 3:481–503.

    CAS  Google Scholar 

  15. Dressman JB. Comparison of canine and human gastrointestinal physiology. Pharm Res 1986;3 3:123–31.

    CAS  Google Scholar 

  16. Davis SS, Hardy JG, Fara JW. Transit of pharmaceutical dosage forms through the small intestine. Gut 1986;27 8:886–92.

    PubMed  CAS  Google Scholar 

  17. Brogna A, et al. Influence of aging on gastrointestinal transit time. An ultrasonographic and radiologic study. Invest Radiol 1999;34 5:357–9.

    PubMed  CAS  Google Scholar 

  18. Graff J, Brinch K, Madsen JL. Gastrointestinal mean transit times in young and middle-aged healthy subjects. Clin Physiol 2001;21 2:253–9.

    PubMed  CAS  Google Scholar 

  19. Gryback P, et al. Nationwide standardisation and evaluation of scintigraphic gastric emptying: reference values and comparisons between subgroups in a multicentre trial. Eur J Nucl Med 2000;27 6:647–55.

    PubMed  CAS  Google Scholar 

  20. Madsen JL. Effects of gender, age, and body mass index on gastrointestinal transit times. Dig Dis Sci 1992;37 10:1548–53.

    PubMed  CAS  Google Scholar 

  21. Lindsey JK. Introductory statistics: a modelling approach. Oxford: Oxford University Press; 1995.

    Google Scholar 

  22. Weitschies W, et al. Magnetic marker monitoring: an application of biomagnetic measurement instrumentation and principles for the determination of the gastrointestinal behavior of magnetically marked solid dosage forms. Adv Drug Deliv Rev 2005;57 8:1210–22.

    PubMed  CAS  Google Scholar 

  23. Schiller C, et al. Intestinal fluid volumes and transit of dosage forms as assessed by magnetic resonance imaging. Aliment Pharmacol Ther 2005;22 10:971–9.

    PubMed  CAS  Google Scholar 

  24. Fadda H, et al. Meal-induced acceleration of tablet transit through the human small intestine. Pharm Res 2009;26 2:356–60.

    PubMed  CAS  Google Scholar 

  25. Valetin J. Basic anatomical and physiological data for use in radiological protection: reference values. A report of age- and gender-related differences in the anatomical and physiological characteristics of reference individuals. Ann ICRP 2002;89 32:5–265.

    Google Scholar 

  26. Du Bois D, Du Bois E. A formula to estimate the approximate surface area if height and weight are known. Arch Intern Med 1916;17:863–71.

    CAS  Google Scholar 

  27. Evans DF, et al. Measurement of gastrointestinal pH profiles in normal ambulant human subjects. Gut 1988;29 8:1035–41.

    PubMed  CAS  Google Scholar 

  28. Dressman JB, et al. Upper gastrointestinal (GI) pH in young, healthy men and women. Pharm Res 1990;7 7:756–61.

    PubMed  CAS  Google Scholar 

  29. Russell TL, et al. Upper gastrointestinal pH in seventy-nine healthy, elderly, North American men and women. Pharm Res 1993;10 2:187–96.

    PubMed  CAS  Google Scholar 

  30. Fallingborg J, et al. pH-profile and regional transit times of the normal gut measured by a radiotelemetry device. Aliment Pharmacol Ther 1989;3 6:605–13.

    PubMed  CAS  Google Scholar 

  31. Ibekwe V, et al. Interplay between intestinal pH, transit time and feed status on the in vivo performance of pH responsive ileo-colonic release systems. Pharm Res 2008;25 8:1828–35.

    PubMed  CAS  Google Scholar 

  32. Arnold R. Diagnosis and differential diagnosis of hypergastrinemia. Wien Klin Wochenschr 2007;119 19–20:564–9.

    PubMed  CAS  Google Scholar 

  33. Lake-Bakaar G, et al. Gastric secretory failure in patients with the acquired immunodeficiency syndrome (AIDS). Ann Intern Med 1988;109 6:502–4.

    PubMed  CAS  Google Scholar 

  34. Lake-Bakaar G, et al. Gastropathy and ketoconazole malabsorption in the acquired immunodeficiency syndrome (AIDS). Ann Intern Med 1988;109 6:471–3.

    PubMed  CAS  Google Scholar 

  35. Lin JH. Pharmacokinetic and pharmacodynamic properties of histamine H2-receptor antagonists. Relationship between intrinsic potency and effective plasma concentrations. Clin Pharmacokinet 1991;20 3:218–36.

    PubMed  CAS  Google Scholar 

  36. Shi S, Klotz U. Proton pump inhibitors: an update of their clinical use and pharmacokinetics. Eur J Clin Pharmacol 2008;64 10:935–51.

    PubMed  CAS  Google Scholar 

  37. Feldman M, Barnett C. Fasting gastric pH and its relationship to true hypochlorhydria in humans. Dig Dis Sci 1991;36 7:866–9.

    PubMed  CAS  Google Scholar 

  38. Morihara M, et al. Assessment of gastric acidity of Japanese subjects over the last 15 years. Biol Pharm Bull 2001;24 3:313–5.

    PubMed  CAS  Google Scholar 

  39. ICRP. Report of the Task Group on Reference Man (No. 23). International Commission on Radiological Protection. Oxford: Pergamon; 1975.

    Google Scholar 

  40. ICRP. Basic anatomical and physiological data for use in radiological protection: reference values. A report of age- and gender-related differences in the anatomical and physiological characteristics of reference individuals. ICRP Publication 89. Ann ICRP 2002;32 3–4:5–265.

    Google Scholar 

  41. Ilett KF, et al. Metabolism of drugs and other xenobiotics in the gut lumen and wall. Pharmacol Ther 1990;46 1:67–93.

    PubMed  CAS  Google Scholar 

  42. Watkins PB, et al. Identification of glucocorticoid-inducible cytochromes P-450 in the intestinal mucosa of rats and man. J Clin Invest 1987;80 4:1029–36.

    PubMed  CAS  Google Scholar 

  43. Kolars JC, et al. Identification of rifampin-inducible P450IIIA4 (CYP3A4) in human small bowel enterocytes. J Clin Invest 1992;90 5:1871–8.

    PubMed  CAS  Google Scholar 

  44. Zhang QY, et al. Characterization of human small intestinal cytochromes P-450. Drug Metab Dispos 1999;27 7:804–9.

    PubMed  CAS  Google Scholar 

  45. Paine MF, et al. Characterization of interintestinal and intraintestinal variations in human CYP3A-dependent metabolism. J Pharmacol Exp Ther 1997;283 3:1552–62.

    PubMed  CAS  Google Scholar 

  46. Paine MF, et al. The human intestinal cytochrome P450 “Pie”. Drug Metab Dispos 2006;34 5:880–6.

    PubMed  CAS  Google Scholar 

  47. Kolars JC, et al. First-pass metabolism of cyclosporin by the gut. Lancet 1991;338 8781:1488–90.

    PubMed  CAS  Google Scholar 

  48. Hebert MF, et al. Bioavailability of cyclosporine with concomitant rifampin administration is markedly less than predicted by hepatic enzyme induction. Clin Pharmacol Ther 1992;52 5:453–7.

    PubMed  CAS  Google Scholar 

  49. Wu CY, et al. Differentiation of absorption and first-pass gut and hepatic metabolism in humans: studies with cyclosporine. Clin Pharmacol Ther 1995;58 5:492–7.

    PubMed  CAS  Google Scholar 

  50. Paine MF, et al. First-pass metabolism of midazolam by the human intestine. Clin Pharmacol Ther 1996;60 1:14–24.

    PubMed  CAS  Google Scholar 

  51. Gorski JC, et al. The contribution of intestinal and hepatic CYP3A to the interaction between midazolam and clarithromycin. Clin Pharmacol Ther 1998;64 2:133–43.

    PubMed  CAS  Google Scholar 

  52. Tsunoda SM, et al. Differentiation of intestinal and hepatic cytochrome P450 3A activity with use of midazolam as an in vivo probe: effect of ketoconazole. Clin Pharmacol Ther 1999;66 5:461–71.

    PubMed  CAS  Google Scholar 

  53. Fromm MF, et al. Differential induction of prehepatic and hepatic metabolism of verapamil by rifampin. Hepatology 1996;24 4:796–801.

    PubMed  CAS  Google Scholar 

  54. von Richter O, et al. Determination of in vivo absorption, metabolism, and transport of drugs by the human intestinal wall and liver with a novel perfusion technique. Clin Pharmacol Ther 2001;70 3:217–27.

    Google Scholar 

  55. Yang J, Tucker GT, Rostami-Hodjegan A. Cytochrome P450 3A expression and activity in the human small intestine. Clin Pharmacol Ther 2004;76 4:391.

    PubMed  CAS  Google Scholar 

  56. Thummel KE, et al. Oral first-pass elimination of midazolam involves both gastrointestinal and hepatic CYP3A-mediated metabolism. Clin Pharmacol Ther 1996;59 5:491–502.

    PubMed  CAS  Google Scholar 

  57. Floren LC, et al. Tacrolimus oral bioavailability doubles with coadministration of ketoconazole. Clin Pharmacol Ther 1997;62 1:41–9.

    PubMed  CAS  Google Scholar 

  58. Strassburg CP, et al. UDP-glucuronosyltransferase activity in human liver and colon. Gastroenterology 1999;116 1:149–60.

    PubMed  CAS  Google Scholar 

  59. Tukey RH, Strassburg CP. Human UDP-glucuronosyltransferases: metabolism, expression, and disease. Annu Rev Pharmacol Toxicol 2000;40:581–616.

    PubMed  CAS  Google Scholar 

  60. Strassburg CP, et al. Polymorphic gene regulation and interindividual variation of UDP-glucuronosyltransferase activity in human small intestine. J Biol Chem 2000;275 46:36164–71.

    PubMed  CAS  Google Scholar 

  61. Zhang L, et al. A regulatory viewpoint on transporter-based drug interactions. Xenobiotica 2008;38 7:709–24.

    PubMed  CAS  Google Scholar 

  62. Fricker G, et al. Relevance of p-glycoprotein for the enteral absorption of cyclosporin A: in vitroin vivo correlation. Br J Pharmacol 1996;118 7:1841–7.

    PubMed  CAS  Google Scholar 

  63. Mouly S, Paine MF. P-glycoprotein increases from proximal to distal regions of human small intestine. Pharm Res 2003;20 10:1595–9.

    PubMed  CAS  Google Scholar 

  64. Troutman MD, Thakker DR. Rhodamine 123 requires carrier-mediated influx for its activity as a P-glycoprotein substrate in Caco-2 cells. Pharm Res 2003;20 8:1192–9.

    PubMed  CAS  Google Scholar 

  65. Matheson PJ, Wilson MA, Garrison RN. Regulation of intestinal blood flow. J Surg Res 2000;93 1:182–96.

    PubMed  CAS  Google Scholar 

  66. Granger DN, et al. Intestinal blood flow. Gastroenterology 1980;78 4:837–63.

    PubMed  CAS  Google Scholar 

  67. Dregelid E, et al. Microsphere method in measurement of blood flow to wall layers of small intestine. Am J Physiol 1986;250:G670–8.

    PubMed  CAS  Google Scholar 

  68. Howgate EM, et al. Prediction of in vivo drug clearance from in vitro data. I: Impact of inter-individual variability. Xenobiotica 2006;36 6:473–97.

    PubMed  CAS  Google Scholar 

  69. Minchin RF, Ilett KF. Presystemic elimination of drugs: theoretical considerations for quantifying the relative contribution of gut and liver. J Pharm Sci 1982;71 4:458–60.

    PubMed  CAS  Google Scholar 

  70. Lin JH, Chiba M, Baillie TA. In vivo assessment of intestinal drug metabolism. Drug Metab Dispos 1997;25 9:1107–9.

    PubMed  CAS  Google Scholar 

  71. Chiba M, Hensleigh M, Lin JH. Hepatic and intestinal metabolism of indinavir, an HIV protease inhibitor, in rat and human microsomes. Major role of CYP3A. Biochem Pharmacol 1997;53 8:1187–95.

    PubMed  CAS  Google Scholar 

  72. Zimmerman CL, Wen Y, Remmel RP. First-pass disposition of (−)-6-aminocarbovir in rats: II. Inhibition of intestinal first-pass metabolism. Drug Metab Dispos 2000;28 6:672–9.

    PubMed  CAS  Google Scholar 

  73. Yang J, et al. Prediction of intestinal first-pass drug metabolism. Curr Drug Metab 2007;8:676–84.

    PubMed  CAS  Google Scholar 

  74. Sun H, Pang KS. Disparity in intestine disposition between formed and preformed metabolites and implications: a theoretical study. Drug Metab Dispos 2009;37 1:187–202.

    PubMed  CAS  Google Scholar 

  75. Rostami-Hodjegan A, Tucker GT. The effects of portal shunts on intestinal cytochrome P450 3A activity. Hepatology 2002;35 6:1549–50.

    PubMed  Google Scholar 

  76. Chalasani N, et al. Hepatic and intestinal cytochrome P450 3A activity in cirrhosis: effects of transjugular intrahepatic portosystemic shunts. Hepatology 2001;34 6:1103–8.

    PubMed  CAS  Google Scholar 

  77. DeSesso JM, Jacobson CF. Anatomical and physiological parameters affecting gastrointestinal absorption in humans and rats. Food Chem Toxicol 2001;39 3:209–28.

    PubMed  CAS  Google Scholar 

  78. FDA. Guidance for industry food-effect bioavailability and fed bioequivalence studies, U.S. Department of Health and Human Services, 2002, Food and Drug Administration.

  79. Jantratid E, et al. Dissolution media simulating conditions in the proximal human gastrointestinal tract: an update. Pharm Res 2008;25 7:1663–76.

    PubMed  CAS  Google Scholar 

  80. Mithani SD, et al. Estimation of the increase in solubility of drugs as a function of bile salt concentration. Pharm Res 1996;13 1:163–7.

    PubMed  CAS  Google Scholar 

  81. Noyes A, Whitney WR. The rate of solution of solid substances in their own solutions. J Am Chem Soc 1897;19:930–4.

    Google Scholar 

  82. Nernst W. Theorie der Reaktionsgeschwindigkeit in heterogenen Systemen. Zeitschrift fur Physikalische Chemie 1904;47:52–5.

    CAS  Google Scholar 

  83. Brunner E. Reaktionsgeschwindigkeit in heterogenen Systemen. Zeitschrift fur Physikalische Chemie 1904;47:56–102.

    Google Scholar 

  84. Wang J, Flanagan DR. General solution for diffusion-controlled dissolution of spherical particles. 1. Theory. J Pharm Sci 1999;88 7:731–8.

    PubMed  CAS  Google Scholar 

  85. Wang J, Flanagan DR. General solution for diffusion-controlled dissolution of spherical particles. 2. Evaluation of experimental data. J Pharm Sci 2002;91 2:534–42.

    PubMed  CAS  Google Scholar 

  86. Badawy SI, Hussain MA. Microenvironmental pH modulation in solid dosage forms. J Pharm Sci 2007;96 5:948–59.

    PubMed  CAS  Google Scholar 

  87. Pudipeddi M, et al. Measurement of surface pH of pharmaceutical solids: a critical evaluation of indicator dye-sorption method and its comparison with slurry pH method. J Pharm Sci 2008;97 5:1831–42.

    PubMed  CAS  Google Scholar 

  88. Li S, et al. Investigation of solubility and dissolution of a free base and two different salt forms as a function of pH. Pharm Res 2005;22 4:628–35.

    PubMed  CAS  Google Scholar 

  89. Serajuddin ATM. Salt formation to improve drug solubility. Adv Drug Deliv Rev 2007;59 7:603–16.

    PubMed  CAS  Google Scholar 

  90. Hintz RJ, Johnson KC. The effect of particle size distribution on dissolution rate and oral absorption. Int J Pharm 1989;51 1:9–17.

    CAS  Google Scholar 

  91. Okazaki A, Mano T, Sugano K. Theoretical dissolution model of poly-disperse drug particles in biorelevant media. J Pharm Sci 2008;97 5:1843–52.

    PubMed  CAS  Google Scholar 

  92. Sugano K, et al. Solubility and dissolution profile assessment in drug discovery. Drug Metab Pharmacokinet 2007;22 4:225–54.

    PubMed  CAS  Google Scholar 

  93. Harriott P. Mass transfer to particles: part 1. Suspended in agitated tanks. A ICHE J 1962;8 1:93–102.

    CAS  Google Scholar 

  94. Sheng JJ, et al. Particle diffusional layer thickness in a USP dissolution apparatus II: a combined function of particle size and paddle speed. J Pharm Sci 2008;97 11:4815–29.

    PubMed  CAS  Google Scholar 

  95. Avdeef A. Solubility of sparingly-soluble ionizable drugs. Adv Drug Deliv Rev 2007;59 7:568–90.

    PubMed  CAS  Google Scholar 

  96. Glomme A, März J, Dressman JB. Predicting the intestinal solubility of poorly soluble drugs. In: Testa B, et al, editor. Pharmacokinetic profiling in drug research. Zurich: Wiley; 2006. p. 259–80.

    Google Scholar 

  97. Streng WH. The Gibbs constant and pH solubility profiles. Int J Pharm 1999;186 2:137–40.

    PubMed  CAS  Google Scholar 

  98. Guo J, et al. Rapid throughput screening of apparent K(SP) values for weakly basic drugs using 96-well format. J Pharm Sci 2008;97 6:2080–90.

    PubMed  CAS  Google Scholar 

  99. Avdeef A. Absorption and drug development solubility, permeability, and charge state. Hoboken, New Jersey: Wiley; 2003.

    Google Scholar 

  100. Avdeef A, et al. Absorption-excipient-pH classification gradient maps: sparingly soluble drugs and the pH partition hypothesis. Eur J Pharm Sci 2008;33 1:29–41.

    PubMed  CAS  Google Scholar 

  101. Kostewicz ES, et al. Predicting the precipitation of poorly soluble weak bases upon entry in the small intestine. J Pharm Pharmacol 2004;56 1:43–51.

    PubMed  CAS  Google Scholar 

  102. Box KJ, et al. Equilibrium versus kinetic measurements of aqueous solubility, and the ability of compounds to supersaturate in solution—a validation study. J Pharm Sci 2006;95 6:1298–307.

    PubMed  CAS  Google Scholar 

  103. Box KJ, Comer JE. Using measured pK(a), LogP and solubility to investigate supersaturation and predict BCS class. Curr Drug Metab 2008;9 9:868–78.

    Google Scholar 

  104. Vandecruys R, et al. Use of a screening method to determine excipients which optimize the extent and stability of supersaturated drug solutions and application of this system to solid formulation design. Int J Pharm 2007;342 1–2:168–75.

    PubMed  CAS  Google Scholar 

  105. Dressman JB, et al. Estimating drug solubility in the gastrointestinal tract. Adv Drug Deliv Rev 2007;59 7:591–602.

    PubMed  CAS  Google Scholar 

  106. Persson EM, et al. The effects of food on the dissolution of poorly soluble drugs in human and in model small intestinal fluids. Pharm Res 2005;22 12:2141–51.

    PubMed  CAS  Google Scholar 

  107. Crison JR, et al. Drug dissolution into micellar solutions: development of a convective diffusion model and comparison to the film equilibrium model with application to surfactant-facilitated dissolution of carbamazepine. J Pharm Sci 1996;85 9:1005–11.

    PubMed  CAS  Google Scholar 

  108. Zimmermann T, et al. Influence of concomitant food intake on the oral absorption of two triazole antifungal agents, itraconazole and fluconazole. Eur J Clin Pharmacol 1994;46 2:147–50.

    PubMed  CAS  Google Scholar 

  109. Barnwell SG, et al. Reduced bioavailability of atenolol in man: the role of bile acids. Int J Pharm 1993;89 3:245–50.

    CAS  Google Scholar 

  110. Bakatselou V, Oppenheim RC, Dressman JB. Solubilization and wetting effects of bile salts on the dissolution of steroids. Pharm Res 1991;8 12:1461–9.

    PubMed  CAS  Google Scholar 

  111. Di L, et al. Development and application of an automated solution stability assay for drug discovery. J Biomol Screen 2006;11 1:40–7.

    PubMed  CAS  Google Scholar 

  112. Sousa T, et al. The gastrointestinal microbiota as a site for the biotransformation of drugs. Int J Pharm 2008;363 1–2:1–25.

    PubMed  CAS  Google Scholar 

  113. Knutson L, Odlind B, Hallgren R. A new technique for segmental jejunal perfusion in man. Am J Gastroenterol 1989;84 10:1278–84.

    PubMed  CAS  Google Scholar 

  114. Lennernas H, et al. Regional jejunal perfusion, a new in vivo approach to study oral drug absorption in man. Pharm Res 1992;9 10:1243–51.

    PubMed  CAS  Google Scholar 

  115. Lennernas H, et al. A residence-time distribution analysis of the hydrodynamics within the intestine in man during a regional single-pass perfusion with Loc-I-Gut: in-vivo permeability estimation. J Pharm Pharmacol 1997;49 7:682–6.

    PubMed  CAS  Google Scholar 

  116. Sun D, et al. Comparison of human duodenum and Caco-2 gene expression profiles for 12,000 gene sequences tags and correlation with permeability of 26 drugs. Pharm Res 2002;19 10:1400–16.

    PubMed  CAS  Google Scholar 

  117. von Richter O, et al. Cytochrome P450 3A4 and P-glycoprotein expression in human small intestinal enterocytes and hepatocytes: a comparative analysis in paired tissue specimens. Clin Pharmacol Ther 2004;75 3:172–83.

    Google Scholar 

  118. Galetin A, Houston JB. Intestinal and hepatic metabolic activity of five cytochrome P450 enzymes: impact on prediction of first-pass metabolism. J Pharmacol Exp Ther 2006;318 3:1220–9.

    PubMed  CAS  Google Scholar 

  119. Troutman MD, Thakker DR. Novel experimental parameters to quantify the modulation of absorptive and secretory transport of compounds by P-glycoprotein in cell culture models of intestinal epithelium. Pharm Res 2003;20 8:1210–24.

    PubMed  CAS  Google Scholar 

  120. Balimane PV, Marino A, Chong S. P-gp inhibition potential in cell-based models: which “calculation” method is the most accurate? AAPS J 2008;10 4:577–86.

    PubMed  CAS  Google Scholar 

  121. Paul HE, et al. Laboratory studies with nitrofurantoin. Relationship between crystal size, urinary excretion in the rat and man, and emesis in dogs. J Pharm Sci 1967;56 7:882–5.

    PubMed  CAS  Google Scholar 

  122. Ridolfo AS, et al. Benoxaprofen, a new anti-inflammatory agent: particle-size effect on dissolution rate and oral absorption in humans. J Pharm Sci 1979;68 7:850–2.

    PubMed  CAS  Google Scholar 

  123. Wolen RL, et al. The effect of crystal size on the bioavailability of benoxaprofen: studies utilizing deuterium labeled drug. Biomed Mass Spectrom 1979;6 4:173–8.

    PubMed  CAS  Google Scholar 

  124. Jounela AJ, Pentikainen PJ, Sothmann A. Effect of particle size on the bioavailability of digoxin. Eur J Clin Pharmacol 1975;8 5:365–70.

    PubMed  CAS  Google Scholar 

  125. Kabasakalian P, et al. Parameters affecting absorption of griseofulvin in a human subject using urinary metabolite excretion data. J Pharm Sci 1970;59 5:595–600.

    PubMed  CAS  Google Scholar 

  126. Johnson KC. Dissolution and absorption modeling: model expansion to simulate the effects of precipitation, water absorption, longitudinally changing intestinal permeability, and controlled release on drug absorption. Drug Dev Ind Pharm 2003;29 8:833–42.

    PubMed  CAS  Google Scholar 

  127. Jamei M, Yang J, Rostami-Hodjegan A. Inter- and intra-individual variability in physiological parameters of gastro-intestinal tract has significant effects on the predicted fraction of dose absorbed. In LogP2004, The 3rd Lipophilicity Symposium, Physicochemical and Biological Profiling in Drug Research. 2004. ETH Zurich, Switzerland.

  128. Lennernas H. Intestinal permeability and its relevance for absorption and elimination. Xenobiotica 2007;37 10–11:1015–51.

    PubMed  CAS  Google Scholar 

  129. Amidon GL, et al. A theoretical basis for a biopharmaceutic drug classification: the correlation of in vitro drug product dissolution and in vivo bioavailability. Pharm Res 1995;12 3:413–20.

    PubMed  CAS  Google Scholar 

  130. Sharpstone D, et al. Small intestinal transit, absorption, and permeability in patients with AIDS with and without diarrhoea. Gut 1999;45 1:70–6.

    Article  PubMed  CAS  Google Scholar 

  131. Jamei M et al. A novel physiologically-based mechanistic model for predicting oral drug absorption: the advanced dissolution, absorption, and metabolism (ADAM) model. In The 4th World Conference on Drug Absorption, Transport and Delivery. 2007. Kanazawa, Japan.

  132. Allan G, et al. Pre-clinical pharmacokinetics of UK-453,061, a novel non-nucleoside reverse transcriptase inhibitor (NNRTI), and use of in silico physiologically based prediction tools to predict the oral pharmacokinetics of UK-453,061 in man. Xenobiotica 2008;38 6:620–40.

    PubMed  CAS  Google Scholar 

  133. Sirisuth N, Eddington ND. The influence of first pass metabolism on the development and validation of an IVIVC for metoprolol extended release tablets. Eur J Pharm Biopharm 2002;53 3:301–9.

    PubMed  CAS  Google Scholar 

  134. Polak S, et al. Prediction of the in vivo behaviour of modified release formulations of metoprolol from in vitro dissolution profiles using the ADAM model (Simcyp®V8). Drug Metab Rev 2008;40 Suppl 1:45. Abstracts from the 10th European Regional ISSX Meeting.

    Google Scholar 

  135. Tannergren C, et al. Toward an increased understanding of the barriers to colonic drug absorption in humans: implications for early controlled release candidate assessment. Mol Pharm 2009;6 1:60–73.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank other members of the Simcyp team for their contributions to the development of the Simcyp® Simulator. We also appreciate the continued support of the Simcyp Consortium members (www.simcyp.com).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masoud Jamei.

Additional information

Guest Editors: Lawrence X. Yu, Steven C. Sutton, and Michael B. Bolger

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jamei, M., Turner, D., Yang, J. et al. Population-Based Mechanistic Prediction of Oral Drug Absorption. AAPS J 11, 225–237 (2009). https://doi.org/10.1208/s12248-009-9099-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12248-009-9099-y

Key words

Navigation