Skip to main content

Advertisement

Log in

Prediction of Hepatic Clearance in Human From In Vitro Data for Successful Drug Development

  • Review Article
  • Theme: Towards Integrated ADME Prediction: Past, Present, and Future Directions
  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

The in vivo metabolic clearance in human has been successfully predicted by using in vitro data of metabolic stability in cryopreserved preparations of human hepatocytes. In the predictions by human hepatocytes, the systematic underpredictions of in vivo clearance have been commonly observed among different datasets. The regression-based scaling factor for the in vitro-to-in vivo extrapolation has mitigated discrepancy between in vitro prediction and in vivo observation. In addition to the elimination by metabolic degradation, the important roles of transporter-mediated hepatic uptake and canalicular excretion have been increasingly recognized as a rate-determining step in the hepatic clearance. It has been, therefore, proposed that the in vitro assessment should allow the evaluation of clearances for both transporter(s)-mediated uptake/excretion and metabolic degradation. This review first outlines the limited ability of subcellular fractions such as liver microsomes to predict hepatic clearance in vivo. It highlights the advantages of cryopreserved human hepatocytes as one of the versatile in vitro systems for the prediction of in vivo metabolic clearance in human at the early development stage. The following section discusses the mechanisms underlying the systematic underprediction of in vivo intrinsic clearance by hepatocytes. It leads to the proposal for the assessment of hepatic uptake clearance as one of the kinetically important determinants for accurate predictions of hepatic clearance in human. The judicious combination of advanced technologies and understandings for the drug disposition allows us to rationally optimize new chemical entities to the drug candidate with higher probability of success during the clinical development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Muck W, Mai I, Fritsche L, Ochmann K, Rohde G, Unger S, et al. Increase in cerivastatin systemic exposure after single and multiple dosing in cyclosporine-treated kidney transplant recipients. Clin Pharmacol Ther 1999;65:251–61.

    PubMed  CAS  Google Scholar 

  2. Shitara Y, Itoh T, Sato H, Li AP, Sugiyama Y. Inhibition of transporter-mediated hepatic uptake as a mechanism for drug-drug interaction between cerivastatin and cyclosporin A. J Pharmacol Exp Ther 2003;304:610–6.

    PubMed  CAS  Google Scholar 

  3. Kajosaari LI, Niemi M, Neuvonen M, Laitila J, Neuvonen PJ, Backman JT. Cyclosporine markedly raises the plasma concentrations of repaglinide. Clin Pharmacol Ther 2005;78:388–99.

    PubMed  CAS  Google Scholar 

  4. Shitara Y, Horie T, Sugiyama Y. Transporters as a determinant of drug clearance and tissue distribution. Eur J Pharm Sci 2006;27:425–46.

    PubMed  CAS  Google Scholar 

  5. Sissung TM, Gardner ER, Gao R, Figg WD. Pharmacogenetics of membrane transporters: a review of current approaches. Methods Mol Biol 2008;448:41–62.

    PubMed  CAS  Google Scholar 

  6. Mizuno N, Sugiyama Y. Drug transporters: their role and importance in the selection and development of new drugs. Drug Metab Pharmacokinet 2002;17:93–108.

    PubMed  CAS  Google Scholar 

  7. Kitamura S, Maeda K, Sugiyama Y. Recent progresses in the experimental methods and evaluation strategies of transporter functions for the prediction of the pharmacokinetics in humans. Naunyn Schmiedebergs Arch Pharmacol 2008;377:617–28.

    PubMed  CAS  Google Scholar 

  8. Maeda K, Suzuki H, Sugiyama Y. Hepatic transport. In: van de Waterbeemd H, Testa B, editors. Drug bioavailability. 2nd ed. Weinheim: Wiley; 2008.

    Google Scholar 

  9. Houston JB. Utility of in vitro drug metabolism data in predicting in vivo metabolic clearance. Biochem Pharmacol 1994;47:1469–79.

    PubMed  CAS  Google Scholar 

  10. Houston JB, Carlile DJ. Prediction of hepatic clearance from microsomes, hepatocytes, and liver slices. Drug Metab Rev 1997;29:891–922.

    PubMed  CAS  Google Scholar 

  11. Carlile DJ, Stevens AJ, Ashforth EI, Waghela D, Houston JB. In vivo clearance of ethoxycoumarin and its prediction from in vitro systems. Use of drug depletion and metabolite formation methods in hepatic microsomes and isolated hepatocytes. Drug Metab Dispos 1998;26:216–21.

    PubMed  CAS  Google Scholar 

  12. Carlile DJ, Zomorodi K, Houston JB. Scaling factors to relate drug metabolic clearance in hepatic microsomes, isolated hepatocytes, and the intact liver: studies with induced livers involving diazepam. Drug Metab Dispos 1997;25:903–11.

    PubMed  CAS  Google Scholar 

  13. Worboys PD, Brennan B, Bradbury A, Houston JB. Metabolite kinetics of ondansetron in rat. Comparison of hepatic microsomes, isolated hepatocytes and liver slices, with in vivo disposition. Xenobiotica 1996;26:897–907.

    PubMed  CAS  Google Scholar 

  14. Zomorodi K, Houston JB. Effect of omeprazole on diazepam disposition in the rat: in vitro and in vivo studies. Pharm Res 1995;12:1642–6.

    PubMed  CAS  Google Scholar 

  15. Zomorodi K, Carlile DJ, Houston JB. Kinetics of diazepam metabolism in rat hepatic microsomes and hepatocytes and their use in predicting in vivo hepatic clearance. Xenobiotica 1995;25:907–16.

    Article  PubMed  CAS  Google Scholar 

  16. Hayes KA, Brennan B, Chenery R, Houston JB. In vivo disposition of caffeine predicted from hepatic microsomal and hepatocyte data. Drug Metab Dispos 1995;23:349–53.

    PubMed  CAS  Google Scholar 

  17. Ashforth EI, Carlile DJ, Chenery R, Houston JB. Prediction of in vivo disposition from in vitro systems: clearance of phenytoin and tolbutamide using rat hepatic microsomal and hepatocyte data. J Pharmacol Exp Ther 1995;274:761–6.

    PubMed  CAS  Google Scholar 

  18. Obach RS, Baxter JG, Liston TE, Silber BM, Jones BC, MacIntyre F, et al. The prediction of human pharmacokinetic parameters from preclinical and in vitro metabolism data. J Pharmacol Exp Ther 1997;283:46–58.

    PubMed  CAS  Google Scholar 

  19. Obach RS. Prediction of human clearance of twenty-nine drugs from hepatic microsomal intrinsic clearance data: an examination of in vitro half-life approach and nonspecific binding to microsomes. Drug Metab Dispos 1999;27:1350–9.

    PubMed  CAS  Google Scholar 

  20. Niro R, Byers JP, Fournier RL, Bachmann K. Application of a convective-dispersion model to predict in vivo hepatic clearance from in vitro measurements utilizing cryopreserved human hepatocytes. Curr Drug Metab 2003;4:357–69.

    PubMed  CAS  Google Scholar 

  21. Ito K, Houston JB. Comparison of the use of liver models for predicting drug clearance using in vitro kinetic data from hepatic microsomes and isolated hepatocytes. Pharm Res 2004;21:785–92.

    PubMed  CAS  Google Scholar 

  22. Ito K, Iwatsubo T, Kanamitsu S, Nakajima Y, Sugiyama Y. Quantitative prediction of in vivo drug clearance and drug interactions from in vitro data on metabolism, together with binding and transport. Annu Rev Pharmacol Toxicol 1998;38:461–99.

    PubMed  CAS  Google Scholar 

  23. Iwatsubo T, Hirota N, Ooie T, Suzuki H, Sugiyama Y. Prediction of in vivo drug disposition from in vitro data based on physiological pharmacokinetics. Biopharm Drug Dispos 1996;17:273–310.

    PubMed  CAS  Google Scholar 

  24. Iwatsubo T, Hisaka A, Suzuki H, Sugiyama Y. Prediction of in vivo nonlinear first-pass hepatic metabolism of YM796 from in vitro metabolic data. J Pharmacol Exp Ther 1998;286:122–7.

    PubMed  CAS  Google Scholar 

  25. Iwatsubo T, Suzuki H, Shimada N, Chiba K, Ishizaki T, Green CE, et al. Prediction of in vivo hepatic metabolic clearance of YM796 from in vitro data by use of human liver microsomes and recombinant P-450 isozymes. J Pharmacol Exp Ther 1997;282:909–19.

    PubMed  CAS  Google Scholar 

  26. Iwatsubo T, Hirota N, Ooie T, Suzuki H, Shimada N, Chiba K, et al. Prediction of in vivo drug metabolism in the human liver from in vitro metabolism data. Pharmacol Ther 1997;73:147–71.

    PubMed  CAS  Google Scholar 

  27. Shibata Y, Takahashi H, Chiba M, Ishii Y. Prediction of hepatic clearance and availability by cryopreserved human hepatocytes: an application of serum incubation method. Drug Metab Dispos 2002;30:892–6.

    PubMed  CAS  Google Scholar 

  28. Kennedy T. Managing the drug discovery/development interface. Drug Discov Today 1997;2:436–44.

    Google Scholar 

  29. Kola I, Landis J. Can the pharmaceutical industry reduce attrition rates. Nat Rev Drug Discov 2004;3:711–5.

    PubMed  CAS  Google Scholar 

  30. Mistry M, Houston JB. Glucuronidation in vitro and in vivo. Comparison of intestinal and hepatic conjugation of morphine, naloxone, and buprenorphine. Drug Metab Dispos 1987;15:710–7.

    PubMed  CAS  Google Scholar 

  31. Soars MG, Burchell B, Riley RJ. In vitro analysis of human drug glucuronidation and prediction of in vivo metabolic clearance. J Pharmacol Exp Ther 2002;301:382–90.

    PubMed  CAS  Google Scholar 

  32. Boase S, Miners JO. In vitroin vivo correlations for drugs eliminated by glucuronidation: investigations with the model substrate zidovudine. Br J Clin Pharmacol 2002;54:493–503.

    PubMed  CAS  Google Scholar 

  33. Rowland A, Gaganis P, Elliot DJ, Mackenzie PI, Knights KM, Miners JO. Binding of inhibitory fatty acids is responsible for the enhancement of UDP-glucuronosyltransferase 2B7 activity by albumin: implications for in vitroin vivo extrapolation. J Pharmacol Exp Ther 2007;321:137–47.

    PubMed  CAS  Google Scholar 

  34. Grime K, Riley RJ. The impact of in vitro binding on in vitroin vivo extrapolations, projections of metabolic clearance and clinical drug–drug interactions. Curr Drug Metab 2006;7:251–64.

    PubMed  CAS  Google Scholar 

  35. Riley RJ, McGinnity DF, Austin RP. A unified model for predicting human hepatic, metabolic clearance from in vitro intrinsic clearance data in hepatocytes and microsomes. Drug Metab Dispos 2005;33:1304–11.

    PubMed  CAS  Google Scholar 

  36. Li AP. Human hepatocytes: isolation, cryopreservation and applications in drug development. Chem Biol Interact 2007;168:16–29.

    PubMed  CAS  Google Scholar 

  37. Li AP, Lu C, Brent JA, Pham C, Fackett A, Ruegg CE, et al. Cryopreserved human hepatocytes: characterization of drug-metabolizing enzyme activities and applications in higher throughput screening assays for hepatotoxicity, metabolic stability, and drug–drug interaction potential. Chem Biol Interact 1999;121:17–35.

    PubMed  CAS  Google Scholar 

  38. Li AP. Overview: hepatocytes and cryopreservation—a personal historical perspective. Chem Biol Interact 1999;121:1–5.

    PubMed  CAS  Google Scholar 

  39. Li AP, Gorycki PD, Hengstler JG, Kedderis GL, Koebe HG, Rahmani R, et al. Present status of the application of cryopreserved hepatocytes in the evaluation of xenobiotics: consensus of an international expert panel. Chem Biol Interact 1999;121:117–23.

    PubMed  CAS  Google Scholar 

  40. Soars MG, McGinnity DF, Grime K, Riley RJ. The pivotal role of hepatocytes in drug discovery. Chem Biol Interact 2007;168:2–15.

    PubMed  CAS  Google Scholar 

  41. Hallifax D, Galetin A, Houston JB. Prediction of metabolic clearance using fresh human hepatocytes: comparison with cryopreserved hepatocytes and hepatic microsomes for five benzodiazepines. Xenobiotica 2008;38:353–67.

    PubMed  CAS  Google Scholar 

  42. McGinnity DF, Soars MG, Urbanowicz RA, Riley RJ. Evaluation of fresh and cryopreserved hepatocytes as in vitro drug metabolism tools for the prediction of metabolic clearance. Drug Metab Dispos 2004;32:1247–53.

    PubMed  CAS  Google Scholar 

  43. Ito K, Houston JB. Prediction of human drug clearance from in vitro and preclinical data using physiologically based and empirical approaches. Pharm Res 2005;22:103–12.

    PubMed  CAS  Google Scholar 

  44. Brown HS, Griffin M, Houston JB. Evaluation of cryopreserved human hepatocytes as an alternative in vitro system to microsomes for the prediction of metabolic clearance. Drug Metab Dispos 2007;35:293–301.

    PubMed  CAS  Google Scholar 

  45. Hallifax D, Rawden HC, Hakooz N, Houston JB. Prediction of metabolic clearance using cryopreserved human hepatocytes: kinetic characteristics for five benzodiazepines. Drug Metab Dispos 2005;33:1852–8.

    PubMed  CAS  Google Scholar 

  46. Rawden HC, Carlile DJ, Tindall A, Hallifax D, Galetin A, Ito K, et al. Microsomal prediction of in vivo clearance and associated interindividual variability of six benzodiazepines in humans. Xenobiotica 2005;35:603–25.

    PubMed  CAS  Google Scholar 

  47. Blanchard N, Hewitt NJ, Silber P, Jones H, Coassolo P, Lave T. Prediction of hepatic clearance using cryopreserved human hepatocytes: a comparison of serum and serum-free incubations. J Pharm Pharmacol 2006;58:633–41.

    PubMed  CAS  Google Scholar 

  48. Jouin D, Blanchard N, Alexandre E, Delobel F, David-Pierson P, Lave T, et al. Cryopreserved human hepatocytes in suspension are a convenient high throughput tool for the prediction of metabolic clearance. Eur J Pharm Biopharm 2006;63:347–55.

    PubMed  CAS  Google Scholar 

  49. Blanchard N, Richert L, Notter B, Delobel F, David P, Coassolo P, et al. Impact of serum on clearance predictions obtained from suspensions and primary cultures of rat hepatocytes. Eur J Pharm Sci 2004;23:189–99.

    PubMed  CAS  Google Scholar 

  50. Blanchard N, Alexandre E, Abadie C, Lave T, Heyd B, Mantion G, et al. Comparison of clearance predictions using primary cultures and suspensions of human hepatocytes. Xenobiotica 2005;35:1–15.

    PubMed  CAS  Google Scholar 

  51. Roberts MS, Rowland M. Correlation between in-vitro microsomal enzyme activity and whole organ hepatic elimination kinetics: analysis with a dispersion model. J Pharm Pharmacol 1986;38:177–81.

    PubMed  CAS  Google Scholar 

  52. Davies B, Morris T. Physiological parameters in laboratory animals and humans. Pharm Res 1993;10:1093–5.

    PubMed  CAS  Google Scholar 

  53. Sawada Y, Hanano M, Sugiyama Y, Iga T. Prediction of the disposition of nine weakly acidic and six weakly basic drugs in humans from pharmacokinetic parameters in rats. J Pharmacokinet Biopharm 1985;13:477–92.

    PubMed  CAS  Google Scholar 

  54. Chiou WL, Barve A. Linear correlation of the fraction of oral dose absorbed of 64 drugs between humans and rats. Pharm Res 1998;15:1792–5.

    PubMed  CAS  Google Scholar 

  55. Chiou WL, Jeong HY, Chung SM, Wu TC. Evaluation of using dog as an animal model to study the fraction of oral dose absorbed of 43 drugs in humans. Pharm Res 2000;17:135–40.

    PubMed  CAS  Google Scholar 

  56. Thummel KE, Shen DD, Podoll TD, Kunze KL, Trager WF, Bacchi CE, et al. Use of midazolam as a human cytochrome P450 3A probe: II. Characterization of inter- and intraindividual hepatic CYP3A variability after liver transplantation. J Pharmacol Exp Ther 1994;271:557–66.

    PubMed  CAS  Google Scholar 

  57. Thummel KE, Shen DD, Podoll TD, Kunze KL, Trager WF, Hartwell PS, et al. Use of midazolam as a human cytochrome P450 3A probe: I. In vitroin vivo correlations in liver transplant patients. J Pharmacol Exp Ther 1994;271:549–56.

    PubMed  CAS  Google Scholar 

  58. Korashy HM, Elbekai RH, El Kadi AO. Effects of renal diseases on the regulation and expression of renal and hepatic drug-metabolizing enzymes: a review. Xenobiotica 2004;34:1–29.

    PubMed  CAS  Google Scholar 

  59. Krishna DR, Klotz U. Extrahepatic metabolism of drugs in humans. Clin Pharmacokinet 1994;26:144–60.

    PubMed  CAS  Google Scholar 

  60. Kapitulnik J, Strobel HW. Extrahepatic drug metabolizing enzymes. J Biochem Mol Toxicol 1999;13:227–30.

    PubMed  CAS  Google Scholar 

  61. Ding X, Kaminsky LS. Human extrahepatic cytochromes P450: function in xenobiotic metabolism and tissue-selective chemical toxicity in the respiratory and gastrointestinal tracts. Annu Rev Pharmacol Toxicol 2003;43:149–73.

    PubMed  CAS  Google Scholar 

  62. Dolphin CT, Cullingford TE, Shephard EA, Smith RL, Phillips IR. Differential developmental and tissue-specific regulation of expression of the genes encoding three members of the flavin-containing monooxygenase family of man, FMO1, FMO3 and FM04. Eur J Biochem 1996;235:683–9.

    PubMed  CAS  Google Scholar 

  63. Yeung CK, Lang DH, Thummel KE, Rettie AE. Immunoquantitation of FMO1 in human liver, kidney, and intestine. Drug Metab Dispos 2000;28:1107–11.

    PubMed  CAS  Google Scholar 

  64. Satoh T, Taylor P, Bosron WF, Sanghani SP, Hosokawa M, La Du BN. Current progress on esterases: from molecular structure to function. Drug Metab Dispos 2002;30:488–93.

    PubMed  CAS  Google Scholar 

  65. Schwer H, Langmann T, Daig R, Becker A, Aslanidis C, Schmitz G. Molecular cloning and characterization of a novel putative carboxylesterase, present in human intestine and liver. Biochem Biophys Res Commun 1997;233:117–20.

    PubMed  CAS  Google Scholar 

  66. Imai T. Human carboxylesterase isozymes: catalytic properties and rational drug design. Drug Metab Pharmacokinet 2006;21:173–85.

    PubMed  CAS  Google Scholar 

  67. Imai T, Taketani M, Shii M, Hosokawa M, Chiba K. Substrate specificity of carboxylesterase isozymes and their contribution to hydrolase activity in human liver and small intestine. Drug Metab Dispos 2006;34:1734–41.

    PubMed  CAS  Google Scholar 

  68. Fisher MB, Paine MF, Strelevitz TJ, Wrighton SA. The role of hepatic and extrahepatic UDP-glucuronosyltransferases in human drug metabolism. Drug Metab Rev 2001;33:273–97.

    PubMed  CAS  Google Scholar 

  69. Gillette JR, Pang KS. Theoretic aspects of pharmacokinetic drug interactions. Clin Pharmacol Ther 1977;22:623–39.

    PubMed  CAS  Google Scholar 

  70. Klippert PJ, Noordhoek J. Influence of administration route and blood sampling site on the area under the curve. Assessment of gut wall, liver, and lung metabolism from a physiological model. Drug Metab Dispos 1983;11:62–6.

    PubMed  CAS  Google Scholar 

  71. Lin JH, Chiba M, Baillie TA. Is the role of the small intestine in first-pass metabolism overemphasized. Pharmacol Rev 1999;51:135–58.

    PubMed  CAS  Google Scholar 

  72. Kato M. Intestinal first-pass metabolism of CYP3A4 substrates. Drug Metab Pharmacokinet 2008;23:87–94.

    PubMed  CAS  Google Scholar 

  73. Kato M, Chiba K, Hisaka A, Ishigami M, Kayama M, Mizuno N, et al. The intestinal first-pass metabolism of substrates of CYP3A4 and P-glycoprotein-quantitative analysis based on information from the literature. Drug Metab Pharmacokinet 2003;18:365–72.

    PubMed  CAS  Google Scholar 

  74. Wu CY, Benet LZ, Hebert MF, Gupta SK, Rowland M, Gomez DY, et al. Differentiation of absorption and first-pass gut and hepatic metabolism in humans: studies with cyclosporine. Clin Pharmacol Ther 1995;58:492–7.

    PubMed  CAS  Google Scholar 

  75. Lampen A, Christians U, Guengerich FP, Watkins PB, Kolars JC, Bader A, et al. Metabolism of the immunosuppressant tacrolimus in the small intestine: cytochrome P450, drug interactions, and interindividual variability. Drug Metab Dispos 1995;23:1315–24.

    PubMed  CAS  Google Scholar 

  76. Paine MF, Shen DD, Kunze KL, Perkins JD, Marsh CL, McVicar JP, et al. First-pass metabolism of midazolam by the human intestine. Clin Pharmacol Ther 1996;60:14–24.

    PubMed  CAS  Google Scholar 

  77. Thummel KE, O’Shea D, Paine MF, Shen DD, Kunze KL, Perkins JD, et al. Oral first-pass elimination of midazolam involves both gastrointestinal and hepatic CYP3A-mediated metabolism. Clin Pharmacol Ther 1996;59:491–502.

    PubMed  CAS  Google Scholar 

  78. Wang SX, Sutfin TA, Baarnhielm C, Regardh CG. Contribution of the intestine to the first-pass metabolism of felodipine in the rat. J Pharmacol Exp Ther 1989;250:632–6.

    PubMed  CAS  Google Scholar 

  79. Naritomi Y, Terashita S, Kimura S, Suzuki A, Kagayama A, Sugiyama Y. Prediction of human hepatic clearance from in vivo animal experiments and in vitro metabolic studies with liver microsomes from animals and humans. Drug Metab Dispos 2001;29:1316–24.

    PubMed  CAS  Google Scholar 

  80. Naritomi Y, Terashita S, Kagayama A, Sugiyama Y. Utility of hepatocytes in predicting drug metabolism: comparison of hepatic intrinsic clearance in rats and humans in vivo and in vitro. Drug Metab Dispos 2003;31:580–8.

    PubMed  CAS  Google Scholar 

  81. Obach RS. The importance of nonspecific binding in in vitro matrices, its impact on enzyme kinetic studies of drug metabolism reactions, and implications for in vitroin vivo correlations. Drug Metab Dispos 1996;24:1047–9.

    PubMed  CAS  Google Scholar 

  82. Obach RS. Nonspecific binding to microsomes: impact on scale-up of in vitro intrinsic clearance to hepatic clearance as assessed through examination of warfarin, imipramine, and propranolol. Drug Metab Dispos 1997;25:1359–69.

    PubMed  CAS  Google Scholar 

  83. Pang KS, Rowland M. Hepatic clearance of drugs. I. Theoretical considerations of a “well-stirred” model and a “parallel tube” model. Influence of hepatic blood flow, plasma and blood cell binding, and the hepatocellular enzymatic activity on hepatic drug clearance. J Pharmacokinet Biopharm 1977;5:625–53.

    PubMed  CAS  Google Scholar 

  84. Roberts MS, Rowland M. A dispersion model of hepatic elimination. 1. Formulation of the model and bolus considerations. J Pharmacokinet Biopharm 1986;14:227–60.

    PubMed  CAS  Google Scholar 

  85. Ridgway D, Tuszynski JA, Tam YK. Reassessing models of hepatic extraction. J Biol Phys 2003;29:1–21.

    CAS  Google Scholar 

  86. Yamamoto T, Suzuki A, Kohno Y, Nagata K, Yamazoe Y. Prediction of drug–drug interactions for AUCoral of high clearance drug from in vitro data: utilization of a microtiter plate assay and a dispersion model. Current Drug Metabolism 2006;7:135–46.

    PubMed  CAS  Google Scholar 

  87. Yamamoto T, Itoga H, Kohno Y, Nagata K, Yamazoe Y. Prediction of oral clearance from in vitro metabolic data using recombinant CYPs: comparison among well-stirred, parallel-tube, distributed and dispersion models. Xenobiotica 2005;35:627–46.

    PubMed  CAS  Google Scholar 

  88. Delannoy IAM, Pang KS. Effect of diffusional barriers on drug and metabolite kinetics. Drug Metab Dispos 1987;15:51–8.

    CAS  Google Scholar 

  89. Liu LC, Pang KS. The roles of transporters and enzymes in hepatic drug processing. Drug Metab Dispos 2005;33:1–9.

    PubMed  Google Scholar 

  90. Webborn PJ, Parker AJ, Denton RL, Riley RJ. In vitroin vivo extrapolation of hepatic clearance involving active uptake: theoretical and experimental aspects. Xenobiotica 2007;37:1090–109.

    PubMed  CAS  Google Scholar 

  91. Miyauchi S, Sawada Y, Iga T, Hanano M, Sugiyama Y. Dose-dependent hepatic handling of L-propranolol determined by multiple indicator dilution method—influence of tissue binding of L-propranolol on its hepatic elimination. Biol Pharm Bull 1993;16:1019–24.

    PubMed  CAS  Google Scholar 

  92. Miyauchi S, Sugiyama Y, Sawada Y, Morita K, Iga T, Hanano M. Kinetics of hepatic transport of 4-methylumbelliferone in rats—analysis by multiple indicator dilution method. J Pharmacokinet Biopharm 1987;15:25–38.

    PubMed  CAS  Google Scholar 

  93. Baker M, Parton T. Kinetic determinants of hepatic clearance: plasma protein binding and hepatic uptake. Xenobiotica 2007;37:1110–34.

    PubMed  CAS  Google Scholar 

  94. Weisiger RA. Dissociation from albumin—a potentially rate-limiting step in the clearance of substances by the liver. Proc Natl Acad Sci USA 1985;82:1563–7.

    PubMed  CAS  Google Scholar 

  95. Maeda K, Sugiyama Y. In vitroin vivo scale-up of drug transport activities. In: You G, Morris ME, editors. Drug transporters. Hoboken: Wiley; 2007. p. 557–8.

    Google Scholar 

  96. Tirona RG, Leake BF, Merino G, Kim RB. Polymorphisms in OATP-C: identification of multiple allelic variants associated with altered transport activity among European– and African–Americans. J Biol Chem 2001;276:35669–75.

    PubMed  CAS  Google Scholar 

  97. Konig J, Seithel A, Gradhand U, Fromm MF. Pharmacogenomics of human OATP transporters. Naunyn Schmiedebergs Arch Pharmacol 2006;372:432–43.

    PubMed  Google Scholar 

  98. Mwinyi J, Kopke K, Schaefer M, Roots I, Gerloff T. Comparison of SLCO1B1 sequence variability among German, Turkish, and African populations. Eur J Clin Pharmacol 2008;64:257–66.

    PubMed  CAS  Google Scholar 

  99. Pasanen MK, Neuvonen PJ, Niemi M. Global analysis of genetic variation in SLCO1B1. Pharmacogenomics 2008;9:19–33.

    PubMed  CAS  Google Scholar 

  100. Xu LY, He YJ, Zhang W, Deng S, Li Q, Zhang WX, Liu ZQ, Wang D, Huang YF, Zhou HH, Sun ZQ. Organic anion transporting polypeptide-1B1 haplotypes in Chinese patients. Acta Pharmacol Sin 2007;28:1693–7.

    PubMed  Google Scholar 

  101. Niemi M, Kivisto KT, Hofmann U, Schwab M, Eichelbaum M, Fromm MF. Fexofenadine pharmacokinetics are associated with a polymorphism of the SLCO1B1 gene (encoding OATP1B1). Br J Clin Pharmacol 2005;59:602–4.

    PubMed  CAS  Google Scholar 

  102. Chung JY, Cho JY, Yu KS, Kim JR, Oh DS, Jung HR, et al. Effect of OATP1B1 (SLCO1B1) variant alleles on the pharmacokinetics of pitavastatin in healthy volunteers. Clin Pharmacol Ther 2005;78:342–50.

    PubMed  CAS  Google Scholar 

  103. Nishizato Y, Ieiri I, Suzuki H, Kimura M, Kawabata K, Hirota T, et al. Polymorphisms of OATP-C (SLC21A6) and OAT3 (SLC22A8) genes: consequences for pravastatin pharmacokinetics. Clin Pharmacol Ther 2003;73:554–65.

    PubMed  CAS  Google Scholar 

  104. Kivisto KT, Niemi M. Influence of drug transporter polymorphisms on pravastatin pharmacokinetics in humans. Pharm Res 2007;24:239–47.

    PubMed  Google Scholar 

  105. Niemi M, Neuvonen PJ, Hofmann U, Backman JT, Schwab M, Lutjohann D, et al. Acute effects of pravastatin on cholesterol synthesis are associated with SLCO1B1 (encoding OATP1B1) haplotype *17. Pharmacogenet Genomics 2005;15:303–9.

    PubMed  CAS  Google Scholar 

  106. Tachibana-Iimori R, Tabara Y, Kusuhara H, Kohara K, Kawamoto R, Nakura J, et al. Effect of genetic polymorphism of OATP-C (SLCO1B1) on lipid-lowering response to HMG-CoA reductase inhibitors. Drug Metab Pharmacokinet 2004;19:375–80.

    PubMed  CAS  Google Scholar 

  107. Mwinyi J, Johne A, Bauer S, Roots I, Gerloff T. Evidence for inverse effects of OATP-C (SLC21A6) 5 and 1b haplotypes on pravastatin kinetics. Clin Pharmacol Ther 2004;75:415–21.

    PubMed  CAS  Google Scholar 

  108. Niemi M, Schaeffeler E, Lang T, Fromm MF, Neuvonen M, Kyrklund C, et al. High plasma pravastatin concentrations are associated with single nucleotide polymorphisms and haplotypes of organic anion transporting polypeptide-C (OATP-C, SLCO1B1). Pharmacogenetics 2004;14:429–40.

    PubMed  CAS  Google Scholar 

  109. Maeda K, Ieiri I, Yasuda K, Fujino A, Fujiwara H, Otsubo K, et al. Effects of organic anion transporting polypeptide 1B1 haplotype on pharmacokinetics of pravastatin, valsartan, and temocapril. Clin Pharmacol Ther 2006;79:427–39.

    PubMed  CAS  Google Scholar 

  110. Zhang W, Chen BL, Ozdemir V, He YJ, Zhou G, Peng DD, et al. SLCO1B1 521T–>C functional genetic polymorphism and lipid-lowering efficacy of multiple-dose pravastatin in Chinese coronary heart disease patients. Br J Clin Pharmacol 2007;64:346–52.

    PubMed  CAS  Google Scholar 

  111. Niemi M, Backman JT, Kajosaari LI, Leathart JB, Neuvonen M, Daly AK, et al. Polymorphic organic anion transporting polypeptide 1B1 is a major determinant of repaglinide pharmacokinetics. Clin Pharmacol Ther 2005;77:468–78.

    PubMed  CAS  Google Scholar 

  112. Kalliokoski A, Neuvonen M, Neuvonen PJ, Niemi M. Different effects of SLCO1B1 polymorphism on the pharmacokinetics and pharmacodynamics of repaglinide and nateglinide. J Clin Pharmacol 2008;48:311–21.

    PubMed  CAS  Google Scholar 

  113. Choi JH, Lee MG, Cho JY, Lee JE, Kim KH, Park K. Influence of OATP1B1 genotype on the pharmacokinetics of rosuvastatin in Koreans. Clin Pharmacol Ther 2008;83:251–7.

    PubMed  CAS  Google Scholar 

  114. Crespi CL. Xenobiotic-metabolizing human cells as tools for pharmacological and toxicological research. Adv Drug Res 1995;26:179–235.

    CAS  Google Scholar 

  115. Nakajima M, Nakamura S, Tokudome S, Shimada N, Yamazaki H, Yokoi T. Azelastine N-demethylation by cytochrome P-450 (CYP)3A4, CYP2D6, and CYP1A2 in human liver microsomes: evaluation of approach to predict the contribution of multiple CYPs. Drug Metab Dispos 1999;27:1381–91.

    PubMed  CAS  Google Scholar 

  116. Soars MG, Gelboin HV, Krausz KW, Riley RJ. A comparison of relative abundance, activity factor and inhibitory monoclonal antibody approaches in the characterization of human CYP enzymology. Br J Clin Pharmacol 2003;55:175–81.

    PubMed  CAS  Google Scholar 

  117. Venkatakrishnan K, von Moltke LL, Court MH, Harmatz JS, Crespi CL, Greenblatt DJ. Comparison between cytochrome P450 (CYP) content and relative activity approaches to scaling from cDNA-expressed CYPs to human liver microsomes: ratios of accessory proteins as sources of discrepancies between the approaches. Drug Metab Dispos 2000;28:1493–504.

    PubMed  CAS  Google Scholar 

  118. Stormer E, von Moltke LL, Greenblatt DJ. Scaling drug biotransformation data from cDNA-expressed cytochrome P-450 to human liver: a comparison of relative activity factors and human liver abundance in studies of mirtazapine metabolism. J Pharmacol Exp Ther 2000;295:793–801.

    PubMed  CAS  Google Scholar 

  119. Yamamoto T, Hagima N, Nakamura M, Kohno Y, Nagata K, Yamzoe Y. Prediction of differences in in vivo oral clearance of N,N-dipropyl-2-[4-methoxy-3-(2-phenylethoxy)phenyl]ethylamine monohydrochloride (NE-100) between extensive and poor metabolizers from in vitro metabolic data in human liver microsomes lacking CYP2D6 activity and recombinant CYPs. Xenobiotica 2004;34:687–703.

    PubMed  CAS  Google Scholar 

  120. Galetin A, Brown C, Hallifax D, Ito K, Houston JB. Utility of recombinant enzyme kinetics in prediction of human clearance: impact of variability, CYP3A5, and CYP2C19 on CYP3A4 probe substrates. Drug Metab Dispos 2004;32:1411–20.

    PubMed  CAS  Google Scholar 

  121. Proctor NJ, Tucker GT, Rostami-Hodjegan A. Predicting drug clearance from recombinantly expressed CYPs: intersystem extrapolation factors. Xenobiotica 2004;34:151–78.

    PubMed  CAS  Google Scholar 

  122. Yamamoto T, Suzuki A, Kohno Y. High-throughput screening to estimate single or multiple enzymes involved in drug metabolism: microtitre plate assay using a combination of recombinant CYP2D6 and human liver microsomes. Xenobiotica 2003;33:823–39.

    PubMed  CAS  Google Scholar 

  123. Emoto C, Murase S, Iwasaki K. Approach to the prediction of the contribution of major cytochrome P450 enzymes to drug metabolism in the early drug-discovery stage. Xenobiotica 2006;36:671–83.

    PubMed  CAS  Google Scholar 

  124. Kouzuki H, Suzuki H, Ito K, Ohashi R, Sugiyama Y. Contribution of sodium taurocholate co-transporting polypeptide to the uptake of its possible substrates into rat hepatocytes. J Pharmacol Exp Ther 1998;286:1043–50.

    PubMed  CAS  Google Scholar 

  125. Kouzuki H, Suzuki H, Ito K, Ohashi R, Sugiyama Y. Contribution of organic anion transporting polypeptide to uptake of its possible substrates into rat hepatocytes. J Pharmacol Exp Ther 1999;288:627–34.

    PubMed  CAS  Google Scholar 

  126. Hirano M, Maeda K, Shitara Y, Sugiyama Y. Contribution of OATP2 (OATP1B1) and OATP8 (OATP1B3) to the hepatic uptake of pitavastatin in humans. J Pharmacol Exp Ther 2004;311:139–46.

    PubMed  CAS  Google Scholar 

  127. Shimizu M, Fuse K, Okudaira K, Nishigaki R, Maeda K, Kusuhara H, et al. Contribution of OATP (organic anion-transporting polypeptide) family transporters to the hepatic uptake of fexofenadine in humans. Drug Metab Dispos 2005;33:1477–81.

    PubMed  CAS  Google Scholar 

  128. Shitara Y, Li AP, Kato Y, Lu C, Ito K, Itoh T, et al. Function of uptake transporters for taurocholate and estradiol 17beta-d-glucuronide in cryopreserved human hepatocytes. Drug Metab Pharmacokinet 2003;18:33–41.

    PubMed  CAS  Google Scholar 

  129. Bi YA, Kazolias D, Duignan DB. Use of cryopreserved human hepatocytes in sandwich culture to measure hepatobiliary transport. Drug Metab Dispos 2006;34:1658–65.

    PubMed  CAS  Google Scholar 

  130. Lu C, Li P, Gallegos R, Uttamsingh V, Xia CQ, Miwa GT, et al. Comparison of intrinsic clearance in liver microsomes and hepatocytes from rats and humans: evaluation of free fraction and uptake in hepatocytes. Drug Metab Dispos 2006;34:1600–5.

    PubMed  CAS  Google Scholar 

  131. Iwamoto K, Eaton DL, Klaassen CD. Uptake of morphine and nalorphine by isolated rat hepatocytes. J Pharmacol Exp Ther 1978;206:181–9.

    PubMed  CAS  Google Scholar 

  132. Schwarz LR, Burr R, Schwenk M, Pfaff E, Greim H. Uptake of taurocholic acid into isolated rat-liver cells. Eur J Biochem 1975;55:617–23.

    PubMed  CAS  Google Scholar 

  133. Yamazaki M, Akiyama S, Nishigaki R, Sugiyama Y. Uptake is the rate-limiting step in the overall hepatic elimination of pravastatin at steady-state in rats. Pharm Res 1996;13:1559–64.

    PubMed  CAS  Google Scholar 

  134. Olinga P, Merema M, Hof IH, Slooff MJ, Proost JH, Meijer DK, et al. Characterization of the uptake of rocuronium and digoxin in human hepatocytes: carrier specificity and comparison with in vivo data. J Pharmacol Exp Ther 1998;285:506–10.

    PubMed  CAS  Google Scholar 

  135. Soars MG, Grime K, Sproston JL, Webborn PJ, Riley RJ. Use of hepatocytes to assess the contribution of hepatic uptake to clearance in vivo. Drug Metab Dispos 2007;35:859–65.

    PubMed  CAS  Google Scholar 

  136. Jones HM, Houston JB. Substrate depletion approach for determining in vitro metabolic clearance: time dependencies in hepatocyte and microsomal incubations. Drug Metab Dispos 2004;32:973–82.

    PubMed  CAS  Google Scholar 

  137. Steinberg P, Fischer T, Kiulies S, Biefang K, Platt KL, Oesch F, et al. Drug metabolizing capacity of cryopreserved human, rat, and mouse liver parenchymal cells in suspension. Drug Metab Dispos 1999;27:1415–22.

    PubMed  CAS  Google Scholar 

  138. Reinoso RF, Telfer BA, Brennan BS, Rowland M. Uptake of teicoplanin by isolated rat hepatocytes: comparison with in vivo hepatic distribution. Drug Metab Dispos 2001;29:453–9.

    PubMed  CAS  Google Scholar 

  139. Paine SW, Parker AJ, Gardiner P, Webborn PJ, Riley RJ. Prediction of the pharmacokinetics of atorvastatin, cerivastatin, and indomethacin using kinetic models applied to isolated rat hepatocytes. Drug Metab Dispos 2008;36:1365–74.

    PubMed  CAS  Google Scholar 

  140. Poirier A, Lave T, Portmann R, Brun ME, Senner F, Kansy M, et al. Design, data analysis, and simulation of in vitro drug transport kinetic experiments using a mechanistic in vitro model. Drug Metab Dispos 2008;36:2434–44.

    PubMed  CAS  Google Scholar 

  141. Hirano M, Maeda K, Matsushima S, Nozaki Y, Kusuhara H, Sugiyama Y. Involvement of BCRP (ABCG2) in the biliary excretion of pitavastatin. Mol Pharmacol 2005;68:800–7.

    PubMed  CAS  Google Scholar 

  142. Matsushima S, Maeda K, Kondo C, Hirano M, Sasaki M, Suzuki H, et al. Identification of the hepatic efflux transporters of organic anions using double-transfected Madin-Darby canine kidney II cells expressing human organic anion-transporting polypeptide 1B1 (OATP1B1)/multidrug resistance-associated protein 2, OATP1B1/multidrug resistance 1, and OATP1B1/breast cancer resistance protein. J Pharmacol Exp Ther 2005;314:1059–67.

    PubMed  CAS  Google Scholar 

  143. Yamashiro W, Maeda K, Hirouchi M, Adachi Y, Hu Z, Sugiyama Y. Involvement of transporters in the hepatic uptake and biliary excretion of valsartan, a selective antagonist of the angiotensin II AT1-receptor, in humans. Drug Metab Dispos 2006;34:1247–54.

    PubMed  CAS  Google Scholar 

  144. Sasaki M, Suzuki H, Ito K, Abe T, Sugiyama Y. Transcellular transport of organic anions across a double-transfected Madin-Darby canine kidney II cell monolayer expressing both human organic anion-transporting polypeptide (OATP2/SLC21A6) and multidrug resistance-associated protein 2 (MRP2/ABCC2). J Biol Chem 2002;277:6497–503.

    PubMed  CAS  Google Scholar 

  145. Cui Y, Konig J, Keppler D. Vectorial transport by double-transfected cells expressing the human uptake transporter SLC21A8 and the apical export pump ABCC2. Mol Pharmacol 2001;60:934–43.

    PubMed  CAS  Google Scholar 

  146. Letschert K, Komatsu M, Hummel-Eisenbeiss J, Keppler D. Vectorial transport of the peptide CCK-8 by double-transfected MDCKII cells stably expressing the organic anion transporter OATP1B3 (OATP8) and the export pump ABCC2. J Pharmacol Exp Ther 2005;313:549–56.

    PubMed  CAS  Google Scholar 

  147. Kopplow K, Letschert K, Konig J, Walter B, Keppler D. Human hepatobiliary transport of organic anions analyzed by quadruple-transfected cells. Mol Pharmacol 2005;68:1031–8.

    PubMed  CAS  Google Scholar 

  148. Nies AT, Herrmann E, Brom M, Keppler D. Vectorial transport of the plant alkaloid berberine by double-transfected cells expressing the human organic cation transporter 1 (OCT1, SLC22A1) and the efflux pump MDR1 P-glycoprotein (ABCB1). Naunyn Schmiedebergs Arch Pharmacol 2008;376:449–61.

    PubMed  CAS  Google Scholar 

  149. Sasaki M, Suzuki H, Aoki J, Ito K, Meier PJ, Sugiyama Y. Prediction of in vivo biliary clearance from the in vitro transcellular transport of organic anions across a double-transfected Madin-Darby canine kidney II monolayer expressing both rat organic anion transporting polypeptide 4 and multidrug resistance associated protein 2. Mol Pharmacol 2004;66:450–9.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuichi Sugiyama.

Additional information

Guest Editors: Lawrence Yu, Steven C. Sutton, and Michael B. Bolger

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chiba, M., Ishii, Y. & Sugiyama, Y. Prediction of Hepatic Clearance in Human From In Vitro Data for Successful Drug Development. AAPS J 11, 262–276 (2009). https://doi.org/10.1208/s12248-009-9103-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12248-009-9103-6

Key words

Navigation