Skip to main content

Advertisement

Log in

Predicting Drug–Drug Interactions: An FDA Perspective

  • Regulatory Note
  • Theme: Towards Integrated ADME Prediction: Past, Present, and Future Directions
  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

Pharmacokinetic drug interactions can lead to serious adverse events, and the evaluation of a new molecular entity’s drug–drug interaction potential is an integral part of drug development and regulatory review prior to its market approval. Alteration of enzyme and/or transporter activities involved in the absorption, distribution, metabolism, or excretion of a new molecular entity by other concomitant drugs may lead to a change in exposure leading to altered response (safety or efficacy). Over the years, various in vitro methodologies have been developed to predict drug interaction potential in vivo. In vitro study has become a critical first step in the assessment of drug interactions. Well-executed in vitro studies can be used as a screening tool for the need for further in vivo assessment and can provide the basis for the design of subsequent in vivo drug interaction studies. Besides in vitro experiments, in silico modeling and simulation may also assist in the prediction of drug interactions. The recent FDA draft drug interaction guidance highlighted the in vitro models and criteria that may be used to guide further in vivo drug interaction studies and to construct informative labeling. This report summarizes critical elements in the in vitro evaluation of drug interaction potential during drug development and uses a case study to highlight the impact of in vitro information on drug labeling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Abbreviations

ADME:

Absorption, distribution, metabolism or excretion

AhR:

Aryl hydrocarbon receptor

BCRP:

Breast cancer resistance protein

CAR:

Constitutive androstane receptor

IND:

Investigational new drug

NDA:

New drug application

NME:

New molecular entity

OAT:

Organic anion transporter

OATP:

Organic anion transporting polypeptide

OCT:

Organic cation transporter

P-gp:

P-glycoprotein

UGT:

UDP-glucuronosyltransferase

References

  1. Huang SM, Temple R. Is this the drug or dose for you? Impact and consideration of ethnic factors in global drug development, regulatory review, and clinical practice. Clin Pharmacol Ther 2008;84(3):287–4.

    Article  PubMed  Google Scholar 

  2. Huang SM, Temple R, Throckmorton DC, Lesko LJ. Drug interaction studies: study design, data analysis, and implications for dosing and labeling. Clin Pharmacol Ther 2007;81(2):298–304.

    Article  PubMed  CAS  Google Scholar 

  3. Huang SM, Strong JM, Zhang L, Reynolds KS, Nallani S, Temple R, Abraham S, Al HS, Baweja RK, Burckart GJ, Chung S, Colangelo P, Frucht D, Green MD, Hepp P, Karnaukhova E, Ko HS, Lee JI, Marroum PJ, Norden JM, Qiu W, Rahman A, Sobel S, Stifano T, Thummel K, Wei XX, Yasuda S, Zheng JH, Zhao H, Lesko LJ. New era in drug interaction evaluation: US food and drug administration update on CYP enzymes, transporters, and the guidance process. J Clin Pharmacol 2008;48(6):662–70.

    Article  PubMed  CAS  Google Scholar 

  4. Guidance for Industry: Drug metabolism/drug interactions in the drug development process: studies in vitro. http://www.fda.gov/cder/guidance.

  5. In vivo drug metabolism/drug interaction studies—study design, data analysis, and recommendations for dosing and labeling. http://www.fda.gov/cder/guidance.

  6. Draft guidance for industry: drug interaction studies—study design, data analysis, and implications for dosing and labeling. http://www.fda.gov/cder/guidance/6695dft.pdf.

  7. CDER Drug Development and Drug Interactions website. http://www.fda.gov/cder/drug/drugInteractions/default.htm.

  8. Hosea NA, Miller GP, Guengerich FP. Elucidation of distinct ligand binding sites for cytochrome P450 3A4. Biochemistry 2000;39(20):5929–39.

    Article  PubMed  CAS  Google Scholar 

  9. Kenworthy KE, Bloomer JC, Clarke SE, Houston JB. CYP3A4 drug interactions: correlation of 10 in vitro probe substrates. Br J Clin Pharmacol 1999;48(5):716–27.

    Article  PubMed  CAS  Google Scholar 

  10. Venkatakrishnan K, Obach RS. Drug–drug interactions via mechanism-based cytochrome P450 inactivation: points to consider for risk assessment from in vitro data and clinical pharmacologic evaluation. Curr Drug Metab 2007;8(5):449–62.

    Article  PubMed  CAS  Google Scholar 

  11. Wandel C, Kim RB, Guengerich FP, Wood AJ. Mibefradil is a P-glycoprotein substrate and a potent inhibitor of both P-glycoprotein and CYP3A in vitro. Drug Metab Dispos 2000;28(8):895–98.

    PubMed  CAS  Google Scholar 

  12. FDA Talk Paper “ROCHE LABORATORIES ANNOUNCES WITHDRAWAL OF POSICOR FROM THE MARKET”. http://www.fda.gov/bbs/topics/ANSWERS/ANS00876.html (accessed 12-29-2008).

  13. Zhao P. The use of hepatocytes in evaluating time-dependent inactivation of P450 in vivo. Expert Opin Drug Metab Toxicol 2008;4(2):151–64.

    Article  PubMed  CAS  Google Scholar 

  14. Grime KH, Bird J, Ferguson D, Riley RJ. Mechanism-based inhibition of cytochrome P450 enzymes: an evaluation of early decision making in vitro approaches and drug–drug interaction prediction methods. Eur J Pharm Sci 2009;36:175–91.

    Article  PubMed  CAS  Google Scholar 

  15. Hewitt NJ, de Kanter R, LeCluyse E. Induction of drug metabolizing enzymes: a survey of in vitro methodologies and interpretations used in the pharmaceutical industry—do they comply with FDA recommendations? Chem Biol Interact 2007;168(1):51–65.

    Article  PubMed  CAS  Google Scholar 

  16. Fahmi OA, Boldt S, Kish M, Obach RS, Tremaine LM. Prediction of drug–drug interactions from in vitro induction data: application of the relative induction score approach using cryopreserved human hepatocytes. Drug Metab Dispos 2008;36(9):1971–4.

    Article  PubMed  CAS  Google Scholar 

  17. Faucette SR, Zhang TC, Moore R, Sueyoshi T, Omiecinski CJ, LeCluyse EL, Negishi M, Wang H. Relative activation of human pregnane X receptor versus constitutive androstane receptor defines distinct classes of CYP2B6 and CYP3A4 inducers. J Pharmacol Exp Ther 2007;320(1):72–80.

    Article  PubMed  CAS  Google Scholar 

  18. Hein DW, Doll MA, Fretland AJ, Leff MA, Webb SJ, Xiao GH, Devanaboyina US, Nangju NA, Feng Y. Molecular genetics and epidemiology of the NAT1 and NAT2 acetylation polymorphisms. Cancer Epidemiol Biomarkers Prev 2000;9(1):29–42.

    PubMed  CAS  Google Scholar 

  19. Aithal GP, Day CP. Nonsteroidal anti-inflammatory drug-induced hepatotoxicity. Clin Liver Dis 2007;11(3):563–75, vi-vii.

    Article  PubMed  Google Scholar 

  20. Hahn KK, Wolff JJ, Kolesar JM. Pharmacogenetics and irinotecan therapy. Am J Health Syst Pharm 2006;63(22):2211–7.

    Article  PubMed  CAS  Google Scholar 

  21. CAMPTOSAR Labeling. http://www.fda.gov/cder/foi/label/2006/020571s030lbl.pdf.

  22. Mackenzie PI, Bock KW, Burchell B, Guillemette C, Ikushiro S, Iyanagi T, Miners JO, Owens IS, Nebert DW. Nomenclature update for the mammalian UDP glycosyltransferase (UGT) gene superfamily. Pharmacogenet Genomics 2005;15(10):677–85.

    Article  PubMed  CAS  Google Scholar 

  23. Guidance for Industry: waiver of in vivo bioavailability and bioequivalence studies for immediate-release solid oral dosage forms based on a Biopharmaceutics Classification System. http://www.fda.gov/cder/guidance.

  24. Wu CY, Benet LZ. Predicting drug disposition via application of BCS: transport/absorption/ elimination interplay and development of a biopharmaceutics drug disposition classification system. Pharm Res 2005;22(1):11–23.

    Article  PubMed  CAS  Google Scholar 

  25. Zhang L, Zhang YD, Strong JM, Reynolds KS, Huang SM. A regulatory viewpoint on transporter-based drug interactions. Xenobiotica 2008;38(7–8):709–24.

    Article  PubMed  CAS  Google Scholar 

  26. Fenner K, Troutman M, Kempshall S, Cook J, Ware J, Smith D, Lee C. Drug–drug interactions mediated through P-glycoprotein: clinical relevance and in vitro–in vivo correlation using digoxin as a probe drug. Clin Pharmacol Ther 2009;85:173–81.

    Article  PubMed  CAS  Google Scholar 

  27. Simonson SG, Raza A, Martin PD, Mitchell PD, Jarcho JA, Brown CD, Windass AS, Schneck DW. Rosuvastatin pharmacokinetics in heart transplant recipients administered an antirejection regimen including cyclosporine. Clin Pharmacol Ther 2004;76(2):167–77.

    Article  PubMed  CAS  Google Scholar 

  28. Ho RH, Tirona RG, Leake BF, Glaeser H, Lee W, Lemke CJ, Wang Y, Kim RB. Drug and bile acid transporters in rosuvastatin hepatic uptake: function, expression, and pharmacogenetics. Gastroenterology 2006;130(6):1793–806.

    Article  PubMed  CAS  Google Scholar 

  29. Shu Y, Brown C, Castro RA, Shi RJ, Lin ET, Owen RP, Sheardown SA, Yue L, Burchard EG, Brett CM, Giacomini KM. Effect of genetic variation in the organic cation transporter 1, OCT1, on metformin pharmacokinetics. Clin Pharmacol Ther 2008;83(2):273–80.

    Article  PubMed  CAS  Google Scholar 

  30. Shu Y, Sheardown SA, Brown C, Owen RP, Zhang S, Castro RA, Ianculescu AG, Yue L, Lo JC, Burchard EG, Brett CM, Giacomini KM. Effect of genetic variation in the organic cation transporter 1 (OCT1) on metformin action. J Clin Invest 2007;117(5):1422–31.

    Article  PubMed  CAS  Google Scholar 

  31. Ito K, Brown HS, Houston JB. Database analyses for the prediction of in vivo drug–drug interactions from in vitro data. Br J Clin Pharmacol 2004;57(4):473–86.

    Article  PubMed  CAS  Google Scholar 

  32. Ito K, Iwatsubo T, Kanamitsu S, Nakajima Y, Sugiyama Y. Quantitative prediction of in vivo drug clearance and drug interactions from in vitro data on metabolism, together with binding and transport. Annu Rev Pharmacol Toxicol 1998;38:461–99.

    Article  PubMed  CAS  Google Scholar 

  33. Ito K, Chiba K, Horikawa M, Ishigami M, Mizuno N, Aoki J, Gotoh Y, Iwatsubo T, Kanamitsu S, Kato M, Kawahara I, Niinuma K, Nishino A, Sato N, Tsukamoto Y, Ueda K, Itoh T, Sugiyama Y. Which concentration of the inhibitor should be used to predict in vivo drug interactions from in vitro data? AAPS PharmSci 2002;4(4):E25.

    Article  PubMed  Google Scholar 

  34. Kanamitsu S, Ito K, Sugiyama Y. Quantitative prediction of in vivo drug–drug interactions from in vitro data based on physiological pharmacokinetics: use of maximum unbound concentration of inhibitor at the inlet to the liver. Pharm Res 2000;17(3):336–43.

    Article  PubMed  CAS  Google Scholar 

  35. Houston JB, Galetin A. Methods for predicting in vivo pharmacokinetics using data from in vitro assays. Curr Drug Metab 2008;9(9):940–51.

    Article  PubMed  CAS  Google Scholar 

  36. Kato M, Shitara Y, Sato H, Yoshisue K, Hirano M, Ikeda T, Sugiyama Y. The quantitative prediction of CYP-mediated drug interaction by physiologically based pharmacokinetic modeling. Pharm Res 2008;25(8):1891–901.

    Article  PubMed  CAS  Google Scholar 

  37. Yao C, Kunze KL, Kharasch ED, Wang Y, Trager WF, Ragueneau I, Levy RH. Fluvoxamine-theophylline interaction: gap between in vitro and in vivo inhibition constants toward cytochrome P4501A2. Clin Pharmacol Ther 2001;70(5):415–24.

    Article  PubMed  CAS  Google Scholar 

  38. Dickins M, van de Waterbeemd H. Simulation models for drug disposition and drug interactions. Drug Discovery Today: BIOSILICO 2004;2(1):38–45.

    Article  CAS  Google Scholar 

  39. McGinnity DF, Waters NJ, Tucker J, Riley RJ. Integrated in vitro analysis for the in vivo prediction of cytochrome P450-mediated drug–drug interactions. Drug Metab Dispos 2008;36(6):1126–34.

    Article  PubMed  CAS  Google Scholar 

  40. Obach RS, Walsky RL, Venkatakrishnan K, Gaman EA, Houston JB, Tremaine LM. The utility of in vitro cytochrome P450 inhibition data in the prediction of drug–drug interactions. J Pharmacol Exp Ther 2006;316(1):336–48.

    Article  PubMed  CAS  Google Scholar 

  41. Venkatakrishnan K, von Moltke LL, Obach RS, Greenblatt DJ. Drug metabolism and drug interactions: application and clinical value of in vitro models. Curr Drug Metab 2003;4(5):423–59.

    Article  PubMed  CAS  Google Scholar 

  42. Rostami-Hodjegan A, Tucker GT. Simulation and prediction of in vivo drug metabolism in human populations from in vitro data. Nat Rev Drug Discov 2007;6(2):140–48.

    Article  PubMed  CAS  Google Scholar 

  43. Youdim KA, Zayed A, Dickins M, Phipps A, Griffiths M, Darekar A, Hyland R, Fahmi O, Hurst S, Plowchalk DR, Cook J, Guo F, Obach RS. Application of CYP3A4 in vitro data to predict clinical drug–drug interactions; predictions of compounds as objects of interaction. Br J Clin Pharmacol 2008;65(5):680–92.

    Article  PubMed  CAS  Google Scholar 

  44. Chien JY, Lucksiri A, Ernest CS 2nd, Gorski JC, Wrighton SA, Hall SD. Stochastic prediction of CYP3A-mediated inhibition of midazolam clearance by ketoconazole. Drug Metab Dispos 2006;34(7):1208–19.

    Article  PubMed  CAS  Google Scholar 

  45. Vossen M, Sevestre M, Niederalt C, Jang IJ, Willmann S, Edginton AN. Dynamically simulating the interaction of midazolam and the CYP3A4 inhibitor itraconazole using individual coupled whole-body physiologically-based pharmacokinetic (WB-PBPK) models. Theor Biol Med Model 2007;4:13.

    Article  PubMed  Google Scholar 

  46. Yang J, Kjellsson M, Rostami-Hodjegan A, Tucker GT. The effects of dose staggering on metabolic drug–drug interactions. Eur J Pharm Sci 2003;20(2):223–32.

    Article  PubMed  CAS  Google Scholar 

  47. Zhao P, Ragueneau-Majlessi I, Zhang L, Strong JM, Reynolds KS, Levy RH, Thummel KE, Huang SM. Quantitative evaluation of pharmacokinetic inhibition of CYP3A substrates by ketoconazole: a simulation study. J Clin Pharmacol 2009;49(3):351–59.

    Article  PubMed  CAS  Google Scholar 

  48. Drug Information in Drugs@FDA (http://www.accessdata.fda.gov/scripts/cder/drugsatfda/index.cfm).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shiew-Mei Huang.

Additional information

Guest Editors: Lawrence X. Yu, Steven C. Sutton, and Michael B. Bolger

The opinions contained in this paper do not necessarily reflect the official views of the FDA.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, L., Zhang, Y.(., Zhao, P. et al. Predicting Drug–Drug Interactions: An FDA Perspective. AAPS J 11, 300–306 (2009). https://doi.org/10.1208/s12248-009-9106-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12248-009-9106-3

Key words

Navigation