Skip to main content
Log in

Technical Pitfalls and Improvements for High-speed Screening and QSAR Analysis to Predict Inhibitors of the Human Bile Salt Export Pump (ABCB11/BSEP)

  • Mini-Review
  • Theme: Structure-Activity relationships for ABC Transporters
  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

Drug-induced hepatotoxicity is one of the major problems encountered in drug discovery and development. Selection of a candidate compound for pre-clinical studies in the drug discovery process is a critical step that can determine the speed and expenditure of clinical development. Because inhibition of human adenosine triphosphate-binding cassette transporter ABCB11 (SPGP/bile salt export pump) has severe consequences, which include intrahepatic cholestasis and hepatotoxicity, resulting from exposure to toxic xenobiotics or drug interactions, in vitro screening methods are necessary for quantifying and characterizing the inhibition of ABCB11. In line with such initiatives, we developed methods for in vitro high-speed screening and quantitative structure-activity relationship (QSAR) analysis to investigate the interaction of ABCB11 with a variety of compounds. We identified one set of chemical fragmentation codes closely linked with inhibition of ABCB11. Furthermore, the high-speed screening method enables us to analyze the kinetics of ABCB11-inhibition by test compounds and to distinguish competitive and non-competitive inhibitors. Troglitazone and novobiocin were found to be competitive inhibitors to taurocholate, whereas porphyrins were non-competitive inhibitors. Kinetics-based classification of inhibitors is considered important to improve the accuracy of our QSAR analysis. The present mini-review addresses technical pitfalls and improvements for high-speed screening and QSAR analysis in the ABCB11 inhibition study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Nathanson MH, Boyer JL. Mechanisms and regulation of bile secretion. Hepatology. 1991;14:551–66.

    Article  PubMed  CAS  Google Scholar 

  2. Trauner M, Boyer JL. Bile salt transporters: molecular characterization, function, and regulation. Physiol Rev. 2003;83:633–71.

    PubMed  CAS  Google Scholar 

  3. Kullak-Ublick GA, Stieger B, Meier PJ. Enterohepatic bile salt transporters in normal physiology and liver disease. Gastroenterology. 2004;126:322–42.

    Article  PubMed  CAS  Google Scholar 

  4. Carey MC, Small DM. The physical chemistry of cholesterol solubility in bile. Relationship to gallstone formation and dissolution in man. J Clin Invest. 1978;61:998–1026.

    Article  PubMed  CAS  Google Scholar 

  5. Higuchi H, Gores GJ. Bile acid regulation of hepatic physiology: IV. Bile acids and death receptors. Am J Physiol Gastrointest Liver Physiol. 2003;284:G734–8.

    PubMed  CAS  Google Scholar 

  6. Childs S, Yeh RL, Georges E, Ling V. Identification of a sister gene to P-glycoprotein. Cancer Res. 1995;55:2029–34.

    PubMed  CAS  Google Scholar 

  7. Gerloff T, Stieger B, Hagenbuch B, et al. The sister of P-glycoprotein represents the canalicular bile salt export pump of mammalian liver. J Biol Chem. 1998;273:10046–50.

    Article  PubMed  CAS  Google Scholar 

  8. Wang R, Salem M, Yousef IM, et al. Targeted inactivation of sister of P-glycoprotein gene (spgp) in mice results in nonprogressive but persistent intrahepatic cholestasis. Proc Natl Acad Sci U S A. 2001;98:2011–6.

    Article  PubMed  CAS  Google Scholar 

  9. Borst P, Elferink RO. Mammalian ABC transporters in health and disease. Annu Rev Biochem. 2002;71:537–92.

    Article  PubMed  CAS  Google Scholar 

  10. Strautnieks SS, Bull LN, Knisely AS, et al. A gene encoding a liver-specific ABC transporter is mutated in progressive familial intrahepatic cholestasis. Nat Genet. 1998;20:233–8.

    Article  PubMed  CAS  Google Scholar 

  11. Arrese M, Ananthanarayanan M. The bile salt export pump: molecular properties, function and regulation. Pflugers Arch. 2004;449:123–31.

    Article  PubMed  CAS  Google Scholar 

  12. Noe J, Stieger B, Meier PJ. Functional expression of the canalicular bile salt export pump of human liver. Gastroenterology. 2002;123:1659–66.

    Article  PubMed  CAS  Google Scholar 

  13. Wang L, Soroka CJ, Boyer JL. The role of bile salt export pump mutations in progressive familial intrahepatic cholestasis type II. J Clin Invest. 2002;110:965–72.

    PubMed  CAS  Google Scholar 

  14. Pauli-Magnus C, Lang T, Meier Y, et al. Sequence analysis of bile salt export pump (ABCB11) and multidrug resistance p-glycoprotein 3 (ABCB4, MDR3) in patients with intrahepatic cholestasis of pregnancy. Pharmacogenetics. 2004;14:91–102.

    Article  PubMed  CAS  Google Scholar 

  15. Funk C, Ponelle C, Scheuermann G, Pantze M. Cholestatic potential of troglitazone as a possible factor contributing to troglitazone-induced hepatotoxicity: in vivo and in vitro interaction at the canalicular bile salt export pump (Bsep) in the rat. Mol Pharmacol. 2001;59:627–35.

    PubMed  CAS  Google Scholar 

  16. Funk C, Pantze M, Jehle L, et al. Troglitazone-induced intrahepatic cholestasis by an interference with the hepatobiliary export of bile acids in male and female rats. Correlation with the gender difference in troglitazone sulfate formation and the inhibition of the canalicular bile salt export pump (Bsep) by troglitazone and troglitazone sulfate. Toxicology. 2001;167:83–98.

    Article  PubMed  CAS  Google Scholar 

  17. Fattinger K, Funk C, Pantze M, et al. The endothelin antagonist bosentan inhibits the canalicular bile salt export pump: a potential mechanism for hepatic adverse reactions. Clin Pharmacol Ther. 2001;69:223–31.

    Article  PubMed  CAS  Google Scholar 

  18. Wang P, Hammer DA, Granados RR. Binding and fusion of Autographa californica nucleopolyhedrovirus to cultured insect cells. J Gen Virol. 1997;78:3081–9.

    PubMed  CAS  Google Scholar 

  19. Blissard GW, Wenz JR. Baculovirus gp64 envelope glycoprotein is sufficient to mediate pH-dependent membrane fusion. J Virol. 1992;66:6829–35.

    PubMed  CAS  Google Scholar 

  20. Lanir LM, Volkman LE. Actin binding and nucleation by Autographa californica M nucleopolyhedrovirus. Virology. 1998;243:167–77.

    Article  Google Scholar 

  21. Whittaker GR, Helenius A. Nuclear import and export of viruses and virus genomes. Virology. 1998;246:1–23.

    Article  PubMed  CAS  Google Scholar 

  22. Elbein AD, Pan YT, Pastuszak I, Carroll D. New insights on trehalose: a multifunctional molecule. Glycobiology. 2003;13:17R–27.

    Article  PubMed  CAS  Google Scholar 

  23. Furuki T, Oku K, Sakurai M. Thermodynamic, hydration and structural characterization of alpha, alpha-trehalose. Front Biosci. 2009;14:3523–35.

    Article  PubMed  CAS  Google Scholar 

  24. Guo N, Puhlev I, Brown DR, et al. Trehalose expression confers desiccation tolerance on human cells. Nat Biotechnol. 2008;18:168–71.

    Google Scholar 

  25. Ishikawa T, Sakurai A, Kanamori Y, et al. High-speed screening of human ATP-binding cassette transporter function and genetic polymorphisms: new strategies in pharmacogenomics. Methods Enzymol. 2005;400:485–510.

    Article  PubMed  CAS  Google Scholar 

  26. Hirano H, Kurata A, Onishi Y, et al. High-speed screening and QSAR analysis of human ATP-binding cassette transporter ABCB11 (bile salt export pump) to predict drug-induced intrahepatic cholestasis. Mol Pharmacol. 2006;3:252–65.

    Article  CAS  Google Scholar 

  27. Saito H, Hirano H, Nakagawa H, et al. A new strategy of high-speed screening and quantitative structure-activity relationship analysis to evaluate human ATP-binding cassette transporter ABCG2-drug interactions. J Pharmacol Exp Ther. 2006;317:1114–24.

    Article  PubMed  CAS  Google Scholar 

  28. Sakurai A, Onishi Y, Hirano H, et al. Quantitative SAR analysis and molecular dynamic simulation to functionally validate nonsynonymous polymorphisms of human ABC transporter ABCB1. Biochemistry. 2007;46:7678–93.

    Article  PubMed  CAS  Google Scholar 

  29. Ishikawa T, Onishi Y, Hirano H, et al. Pharmacogenomics of drug transporters: a new approach to functional analysis of the genetic polymorphisms of ABCB1 (P-glycoprotein/MDR1). Biol Pharm Bull. 2004;27:939–48.

    Article  PubMed  CAS  Google Scholar 

  30. Ishikawa T, Hirano H, Onoshi Y, Sakurai A, Tarui S. Functional evaluation of ABCB1 (P-glycoprotein) polymorphisms: high-speed screening and structure-activity relationship analyses. Drug Metab Pharmacokinet. 2004;19:1–14.

    Article  PubMed  CAS  Google Scholar 

  31. Derwent T. World Patents Index, CPI Chemical Indexing Guidelines Indexing of Chemical and Pharmaceutical Patents. Available at: http://www.thomsonscientific.com/media/scpdf/chemical_index_guidelines.pdf

  32. Thomson Reuters. Glossary of Thomson Scientific terminology. Available at: http://scientific.thomson.com/support/patents/patinf/terms/

  33. Masubuchi Y. Metabolic and non-metabolic factors determining troglitazone hepatotoxicity: a review. Drug Metab Pharmacokinet. 2006;21:347–56.

    Article  PubMed  CAS  Google Scholar 

  34. Smith MT. Mechanisms of troglitazone hepatotoxicity. Chem Res Toxicol. 2003;16:679–87.

    Article  PubMed  CAS  Google Scholar 

  35. Park BK, Kitteringham NR, Maggs JL, Pirmohamed M, Williams DP. The role of metabolic activation in drug-induced hepatotoxicity. Annu Rev Pharmacol Toxicol. 2005;45:177–202.

    Article  PubMed  CAS  Google Scholar 

  36. Aller SG, Yu J, Ward A, Weng Y, Chittabonia ZR, Harrell PM, et al. Structure of P-glycoprotein reveals a molecular basis for poly-specific drug binding. Science. 2009;323:1718–22.

    Article  PubMed  CAS  Google Scholar 

  37. Osumi M, Yamada N, Kobori H, Taki A, Naito N, Baba M, et al. Cell wall formation in regenerating protoplasts of Schizosaccharomyces pombe: study by high resolution, low voltage scanning electron microscopy. J Electron Microsc (Tokyo). 1989;38:457–68.

    CAS  Google Scholar 

  38. Osumi M, Yamada N, Yaguchi H, Kobori H, Nagatani T, Sato M. Ultrahigh-resolution low-voltage SEM reveals ultrastructure of the glucan network formation from fission yeast protoplast. J Electron Microsc (Tokyo). 1995;44:198–206.

    CAS  Google Scholar 

Download references

Acknowledgements

The study carried out in the authors’ laboratory was supported, in part, by the NEDO International Joint Research Grant program “International standardization of functional analysis technology for genetic polymorphisms of drug transporters” and research grants (No. 18201041 and No. 19659136) from the Japanese Society for Promotion of Science (JSPS). Hikaru Saito is a JSPS fellow. Under the license agreement (license number 2235670436990) with the American Chemical Society, Figs. 2 and 3 as well as Table I in the present review article have been reproduced from our previous study (26) published in Molecular Pharmaceutics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshihisa Ishikawa.

Additional information

Guest Editor: Marilyn E. Morris

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saito, H., Osumi, M., Hirano, H. et al. Technical Pitfalls and Improvements for High-speed Screening and QSAR Analysis to Predict Inhibitors of the Human Bile Salt Export Pump (ABCB11/BSEP). AAPS J 11, 581–589 (2009). https://doi.org/10.1208/s12248-009-9137-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12248-009-9137-9

Key words

Navigation