Skip to main content

Advertisement

Log in

Prediction of Exposure–Response Relationships to Support First-in-Human Study Design

  • Review Article
  • Theme: Pharmacokinetic/Pharmadynamic Modeling and Simulation in Drug Discovery and Translational Research
  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

In drug development, phase 1 first-in-human studies represent a major milestone as the drug moves from preclinical discovery to clinical development activities. The safety of human subjects is paramount to the conduct of these studies and regulatory considerations guide activities. Forces of evolution on the pharmaceutical industry are re-shaping the first-in-human dose selection strategy. Namely, high attrition rates in part due to lack of efficacy have led to the re-organization of research and development organizations around the umbrella of translational research. Translational research strives to bring basic research advances into the clinic and support the reverse transfer of information to enhance compound selection strategies. Pharmacokinetic/pharmacodynamic (PK/PD) modeling holds a unique position in translational research by attempting to integrate diverse sets of information. PK/PD modeling has demonstrated utility in dose selection and trial design for later stages of drug development and is now being employed with greater prevalence in the translational research setting to manage risk (i.e., oncology and inflammation/immunology). Moving from empirical E max models to more mechanistic representations of the biological system, a higher fidelity of human predictions is expected. Strategies that have proven useful for PK predictions are being applied to PK/PD predictions. This review article examines examples of the application of PK/PD modeling in establishing target concentrations for supporting first-in-human study design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Kola I, Landis J. Can the pharmaceutical industry reduce attrition rates? Nat Rev Drug Discov. 2004;3:711–5.

    Article  PubMed  CAS  Google Scholar 

  2. Paul S, Mytelka D, Dunwiddie C, et al. How to improve R&D productivity: the pharmaceutical industry’s grand challenge. Nat Rev Drug Discov. 2010;9:203–14.

    PubMed  CAS  Google Scholar 

  3. Kaitin K. Deconstructing the drug development process: the new face of innovation. Clin Pharmacol Ther. 2010;87:356–61.

    Article  PubMed  CAS  Google Scholar 

  4. Severino ME, Dubose RF, Patterson SD. A strategic view on the use of pharmacodynamic biomarkers in early clinical drug development. IDrugs. 2006;9:849–53.

    PubMed  CAS  Google Scholar 

  5. Sultana SR, Marshall S, Davis J, Littman BH. (2007) Experiences with dose finding in patients in early drug development: the use of biomarkers in early decision making. Ernst Schering Research Foundation Workshop. 65–79.

  6. Lalonde RL, Kowalski KG, Hutmacher MM, et al. Model-based drug development. Clin Pharmacol Ther. 2007;82:21–32.

    Article  PubMed  CAS  Google Scholar 

  7. Horig H, Marincola E, Marincola FM. Obstacles and opportunities in translational research. Nat Med. 2005;11:705–8.

    Article  PubMed  CAS  Google Scholar 

  8. Littman BH, Di Mario L, Plebani M, Marincola FM. What’s next in translational medicine? Clin Sci. 2007;112:217–27.

    Article  PubMed  Google Scholar 

  9. Kelland LR. Of mice and men: values and liabilities of the athymic nude mouse model in anticancer drug development. Eur J Cancer. 2004;40:827–36.

    Article  PubMed  CAS  Google Scholar 

  10. Danhof M, Alvan G, Dahl SG, Kuhlmann J, Paintaud G. Mechanism-based pharmacokinetic-pharmacodynamic modeling—a new classification of biomarkers. Pharm Res. 2005;22:1432–7.

    Article  PubMed  CAS  Google Scholar 

  11. Holford NH. The target concentration approach to clinical drug development. Clin Pharmacokinet. 1995;29:287–91.

    Article  PubMed  CAS  Google Scholar 

  12. Chien JY, Friedrich S, Heathman MA, de Alwis DP, Sinha V. Pharmacokinetics/pharmacodynamics and the stages of drug development: role of modeling and simulation. AAPS J. 2005;7:E544–59.

    Article  PubMed  CAS  Google Scholar 

  13. Lowe PJ, Hijazi Y, Luttringer O, et al. On the anticipation of the human dose in first-in-man trials from preclinical and prior clinical information in early drug development. Xenobiotica. 2007;37:1331–54.

    Article  PubMed  CAS  Google Scholar 

  14. Agoram BM, Martin SW, van der Graaf PH. The role of mechanism-based pharmacokinetic-pharmacodynamic (PK-PD) modelling in translational research of biologics. Drug Discov Today. 2007;12:1018–24.

    Article  PubMed  CAS  Google Scholar 

  15. Gabrielsson J, Dolgos H, Gillberg PG, et al. Early integration of pharmacokinetic and dynamic reasoning is essential for optimal development of lead compounds: strategic considerations. Drug Discov Today. 2009;14:358–72.

    Article  PubMed  CAS  Google Scholar 

  16. Gabrielsson J, Green AR, Van der Graaf PH. Optimising in vivo pharmacology studies--Practical PKPD considerations. Journal of Pharmacological & Toxicological Methods 61:146–156.

  17. Muller PY, Milton M, Lloyd P, Sims J, Brennan FR. The minimum anticipated biological effect level (MABEL) for selection of first human dose in clinical trials with monoclonal antibodies. Curr Opin Biotechnol. 2009;20:722–9.

    Article  PubMed  CAS  Google Scholar 

  18. FDA. Estimating the maximum safe starting dose in initial clinical trials for therapeutics in adult healthy volunteers. Washington, DC: Guidance for Industry; 2005.

    Google Scholar 

  19. EMEA/CHMP. Guideline on strategies to identify and mitigate risks for first-in-human clinical trials with investigational medicinal agents. 2007.

  20. Gabrielsson J, Green AR. Quantitative pharmacology or pharmacokinetic pharmacodynamic integration should be a vital component in integrative pharmacology. J Pharmacol Exp Ther. 2009;331:767–74.

    Article  PubMed  CAS  Google Scholar 

  21. Obach RS, Baxter JG, Liston TE, et al. The prediction of human pharmacokinetic parameters from preclinical and in vitro metabolism data. J Pharmacol Exp Ther. 1997;283:46–58.

    PubMed  CAS  Google Scholar 

  22. Boxenbaum H. Interspecies scaling, allometry, physiological time, and the ground plan of pharmacokinetics. J Pharmacokinet Biopharm. 1982;10:201–27.

    Article  PubMed  CAS  Google Scholar 

  23. Boxenbaum H. Interspecies pharmacokinetic scaling and the evolutionary–comparative paradigm. Drug Metab Rev. 1984;15:1071–121.

    Article  PubMed  CAS  Google Scholar 

  24. Garg A, Balthasar JP. Physiologically-based pharmacokinetic (PBPK) model to predict IgG tissue kinetics in wild-type and FcRn-knockout mice. J Pharmacokinet Pharmacodyn. 2007;34:687–709.

    Article  PubMed  CAS  Google Scholar 

  25. Kawai R, Mathew D, Tanaka C, Rowland M. Physiologically based pharmacokinetics of cyclosporine A: extension to tissue distribution kinetics in rats and scale-up to human. J Pharmacol Exp Ther. 1998;287:457–68.

    PubMed  CAS  Google Scholar 

  26. Hosea NA, Collard WT, Cole S, et al. Prediction of human pharmacokinetics from preclinical information: comparative accuracy of quantitative prediction approaches. J Clin Pharmacol. 2009;49:513–33.

    Article  PubMed  CAS  Google Scholar 

  27. Wang W, Wang EQ, Balthasar JP. Monoclonal antibody pharmacokinetics and pharmacodynamics. Clin Pharmacol Ther. 2008;84:548–58.

    Article  PubMed  CAS  Google Scholar 

  28. Ling J, Zhou H, Jiao Q, DAvis H. Interspecies scaling of therapeutic monoclonal antibodies: initial look. Journal of Clinical Pharmacology. 2010.

  29. Dong J, Salinger D, Endres C, et al.(2010) Quantitative prediction of human pharmacokinetics for monoclonal antibodies: analysis of monkey as a single species for first-in-human prediction. Clinical Pharmacokinetics (in press).

  30. Levy G. Pharmacologic target-mediated drug disposition. Clin Pharmacol Ther. 1994;56:248–52.

    Article  PubMed  CAS  Google Scholar 

  31. Mager DE, Jusko WJ. General pharmacokinetic model for drugs exhibiting target-mediated drug disposition. J Pharmacokinet Pharmacodyn. 2001;28:507–32.

    Article  PubMed  CAS  Google Scholar 

  32. Mager DE. Target-mediated drug disposition and dynamics. Biochem Pharmacol. 2006;72:1–10.

    Article  PubMed  CAS  Google Scholar 

  33. Pendley C, Schantz A, Wagner C. Immunogenicity of therapeutic monoclonal antibodies. Curr Opin Mol Ther. 2003;5:172–9.

    PubMed  CAS  Google Scholar 

  34. Ponce R, Abad L, Amaravadi L, et al. Immunogenicity of biologically-derived therapeutics: assessment and interpretation of nonclinical safety studies. Regul Toxicol Pharmacol. 2009;54:164–82.

    Article  PubMed  CAS  Google Scholar 

  35. Dingemanse J, Appel-Dingemanse S. Integrated pharmacokinetics and pharmacodynamics in drug development. Clin Pharmacokinet. 2007;46:713–37.

    Article  PubMed  CAS  Google Scholar 

  36. Meno-Tetang GM, Lowe PJ. On the prediction of the human response: a recycled mechanistic pharmacokinetic/pharmacodynamic approach. Basic Clin Pharmacol Toxicol. 2005;96:182–92.

    Article  PubMed  CAS  Google Scholar 

  37. Danhof M, de Lange EC, Della Pasqua OE, Ploeger BA, Voskuyl RA. Mechanism-based pharmacokinetic-pharmacodynamic (PK-PD) modeling in translational drug research. Trends Pharmacol Sci. 2008;29:186–91.

    Article  PubMed  CAS  Google Scholar 

  38. Mager DE, Wyska E, Jusko WJ. Diversity of mechanism-based pharmacodynamic models. Drug Metab Dispos. 2003;31:510–8.

    Article  PubMed  CAS  Google Scholar 

  39. Lin JH. Tissue distribution and pharmacodynamics: a complicated relationship. Curr Drug Metab. 2006;7:39–65.

    Article  PubMed  CAS  Google Scholar 

  40. Abelo A, Andersson M, Holmberg AA, Karlsson MO. Application of a combined effect compartment and binding model for gastric acid inhibition of AR-HO47108: a potassium competitive acid blocker, and its active metabolite AR-HO47116 in the dog. Eur J Pharm Sci. 2006;29:91–101.

    Article  PubMed  CAS  Google Scholar 

  41. Sheiner LB, Stanski DR, Vozeh S, Miller RD, Ham J. Simultaneous modeling of pharmacokinetics and pharmacodynamics: application to d-tubocurarine. Clin Pharmacol Ther. 1979;25:358–71.

    PubMed  CAS  Google Scholar 

  42. Kalvass JC, Olson ER, Cassidy MP, Selley DE, Pollack GM. Pharmacokinetics and pharmacodynamics of seven opioids in P-glycoprotein-competent mice: assessment of unbound brain EC50, u and correlation of in vitro, preclinical, and clinical data. J Pharmacol Exp Ther. 2007;323:346–55.

    Article  PubMed  CAS  Google Scholar 

  43. Mordenti J, Thomsen K, Licko V, et al. Efficacy and concentration-response of murine anti-VEGF monoclonal antibody in tumor-bearing mice and extrapolation to humans. Toxicol Pathol. 1999;27:14–21.

    Article  PubMed  CAS  Google Scholar 

  44. Vugmeyster Y, Tian X, Szklut P, Kasaian M, Xu X. Pharmacokinetic and pharmacodynamic modeling of a humanized anti-IL-13 antibody in naive and Ascaris-challenged cynomolgus monkeys. Pharm Res. 2009;26:306–15.

    Article  PubMed  CAS  Google Scholar 

  45. Dayneka NL, Garg V, Jusko WJ. Comparison of four basic models of indirect pharmacodynamic responses. J Pharmacokinet Biopharm. 1993;21:457–78.

    Article  PubMed  CAS  Google Scholar 

  46. Sharma A, Jusko WJ. Characterization of four basic models of indirect pharmacodynamic responses. J Pharmacokinet Biopharm. 1996;24:611–35.

    Article  PubMed  CAS  Google Scholar 

  47. Jusko WJ. Pharmacodynamics of chemotherapeutic effects: dose-time-response relationships for phase-nonspecific agents. J Pharm Sci. 1971;60:892–5.

    Article  PubMed  CAS  Google Scholar 

  48. Simeoni M, Magni P, Cammia C, et al. Predictive pharmacokinetic-pharmacodynamic modeling of tumor growth kinetics in xenograft models after administration of anticancer agents. Cancer Res. 2004;64:1094–101.

    Article  PubMed  CAS  Google Scholar 

  49. Zuideveld KP, Van der Graaf PH, Peletier LA, Danhof M. Allometric scaling of pharmacodynamic responses: application to 5-Ht1A receptor mediated responses from rat to man. Pharm Res. 2007;24:2031–9.

    Article  PubMed  CAS  Google Scholar 

  50. Woo S, Jusko WJ. Interspecies comparisons of pharmacokinetics and pharmacodynamics of recombinant human erythropoietin. Drug Metab Dispos. 2007;35:1672–8.

    Article  PubMed  CAS  Google Scholar 

  51. Rocchetti M, Simeoni M, Pesenti E, De Nicolao G, Poggesi I. Predicting the active doses in humans from animal studies: a novel approach in oncology. Eur J Cancer. 2007;43:1862–8.

    Article  PubMed  CAS  Google Scholar 

  52. Yamazaki S, Skaptason J, Romero D, et al. Pharmacokinetic-pharmacodynamic modeling of biomarker response and tumor growth inhibition to an orally available cMet kinase inhibitor in human tumor xenograft mouse models. Drug Metab Dispos. 2008;36:1267–74.

    Article  PubMed  CAS  Google Scholar 

  53. Wong H, Belvin M, Herter S, et al. Pharmacodynamics of 2-[4-[(1E)-1-(hydroxyimino)-2, 3-dihydro-1 H-inden-5-yl]-3-(pyridine-4-yl)-1 H-pyrazol-1-yl]ethan-1-ol (GDC-0879), a potent and selective B-Raf kinase inhibitor: understanding relationships between systemic concentrations, phosphorylated mitogen-activated protein kinase 1 inhibition, and efficacy. J Pharmacol Exp Ther. 2009;329:360–7.

    Article  PubMed  CAS  Google Scholar 

  54. Tanaka C, O’Reilly T, Kovarik JM, et al. Identifying optimal biologic doses of everolimus (RAD001) in patients with cancer based on the modeling of preclinical and clinical pharmacokinetic and pharmacodynamic data. J Clin Oncol. 2008;26:1596–602.

    PubMed  CAS  Google Scholar 

  55. Tabernero J, Rojo F, Calvo E, et al. Dose- and schedule-dependent inhibition of the mammalian target of rapamycin pathway with everolimus: a phase I tumor pharmacodynamic study in patients with advanced solid tumors. J Clin Oncol. 2008;26:1603–10.

    Article  PubMed  CAS  Google Scholar 

  56. Putnam WS, Li J, Haggstrom J, et al. Use of quantitative pharmacology in the development of HAE1, a high-affinity anti-IgE monoclonal antibody. AAPS J. 2008;10:425–30.

    Article  PubMed  CAS  Google Scholar 

  57. Amore B, Gibbs J, Emery M. Application of in vivo animal models to characterize the pharmacokinetic and pharmacodynamic properties of drug candidates in discovery settings. Comb Chem High Throughput Screen. 2010;13:207–18.

    Article  PubMed  CAS  Google Scholar 

  58. Lee L, Sharma S, Morgan B, et al. Biomarkers for assessment of pharmacologic activity for a vascular endothelial growth factor (VEGF) receptor inhibitor, PTK787/ZK 222584 (PTK/ZK): translation of biological activity in a mouse melanoma metastasis model to phase I studies in patients with advanced colorectal cancer with liver metastases. Cancer Chemother Pharmacol. 2006;57:761–71.

    Article  PubMed  CAS  Google Scholar 

  59. Kim D, Wang L, Beconi M, et al. (2R)-4-oxo-4-[3-(trifluoromethyl)-5, 6-dihydro[1, 2, 4]triazolo[4, 3-a]pyrazin-7(8 H)-yl]-1-(2, 4, 5-trifluorophenyl)butan-2-amine: a potent, orally active dipeptidyl peptidase IV inhibitor for the treatment of type 2 diabetes. J Med Chem. 2005;48:141–51.

    Article  PubMed  CAS  Google Scholar 

  60. Kreilgaard M, Smith DG, Brennum LT, Sanchez C. Prediction of clinical response based on pharmacokinetic/pharmacodynamic models of 5-hydroxytryptamine reuptake inhibitors in mice. Br J Pharmacol. 2008;155:276–84.

    Article  PubMed  CAS  Google Scholar 

  61. Olsen CK, Brennum LT, Kreilgaard M. Using pharmacokinetic-pharmacodynamic modelling as a tool for prediction of therapeutic effective plasma levels of antipsychotics. Eur J Pharmacol. 2008;584:318–27.

    Article  PubMed  CAS  Google Scholar 

  62. Katsube T, Yano Y, Yamano Y, et al. Pharmacokinetic-pharmacodynamic modeling and simulation for bactericidal effect in an in vitro dynamic model. J Pharm Sci. 2008;97:4108–17.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John P. Gibbs.

Additional information

Guest Editors: Cheryl Li, Pratap Singh, and Anjaneya Chimalakonda

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gibbs, J.P. Prediction of Exposure–Response Relationships to Support First-in-Human Study Design. AAPS J 12, 750–758 (2010). https://doi.org/10.1208/s12248-010-9236-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12248-010-9236-7

Keywords

Navigation