Skip to main content
Log in

In Vivo Quantitative Prediction of the Effect of Gene Polymorphisms and Drug Interactions on Drug Exposure for CYP2C19 Substrates

The AAPS Journal Aims and scope Submit manuscript

Abstract

We present a unified quantitative approach to predict the in vivo alteration in drug exposure caused by either cytochrome P450 (CYP) gene polymorphisms or CYP-mediated drug–drug interactions (DDI). An application to drugs metabolized by CYP2C19 is presented. The metrics used is the ratio of altered drug area under the curve (AUC) to the AUC in extensive metabolizers with no mutation or no interaction. Data from 42 pharmacokinetic studies performed in CYP2C19 genetic subgroups and 18 DDI studies were used to estimate model parameters and predicted AUC ratios by using Bayesian approach. Pharmacogenetic information was used to estimate a parameter of the model which was then used to predict DDI. The method adequately predicted the AUC ratios published in the literature, with mean errors of −0.15 and −0.62 and mean absolute errors of 0.62 and 1.05 for genotype and DDI data, respectively. The approach provides quantitative prediction of the effect of five genotype variants and 10 inhibitors on the exposure to 25 CYP2C19 substrates, including a number of unobserved cases. A quantitative approach for predicting the effect of gene polymorphisms and drug interactions on drug exposure has been successfully applied for CYP2C19 substrates. This study shows that pharmacogenetic information can be used to predict DDI. This may have important implications for the development of personalized medicine and drug development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

REFERENCES

  1. Wilkinson GR. Drug metabolism and variability among patients in drug response. N Engl J Med. 2005;352(21):2211–21. doi:10.1056/NEJMra032424.

    Article  PubMed  CAS  Google Scholar 

  2. Ingelman-Sundberg M. Pharmacogenetics of cytochrome P450 and its applications in drug therapy: the past, present and future. Trends Pharmacol Sci. 2004;25(4):193–200. doi:10.1016/j.tips.2004.02.007.

    Article  PubMed  CAS  Google Scholar 

  3. Fahmi OA, Hurst S, Plowchalk D, Cook J, Guo F, Youdim K, et al. Comparison of different algorithms for predicting clinical drug–drug interactions, based on the use of CYP3A4 in vitro data: predictions of compounds as precipitants of interaction. Drug Metab Dispos. 2009;37(8):1658–66. doi:10.1124/dmd.108.026252.

    Article  PubMed  CAS  Google Scholar 

  4. Rostami-Hodjegan A, Tucker GT. Simulation and prediction of in vivo drug metabolism in human populations from in vitro data. Nat Rev Drug Discov. 2007;6(2):140–8. doi:10.1038/nrd2173.

    Article  PubMed  CAS  Google Scholar 

  5. Ohno Y, Hisaka A, Suzuki H. General framework for the quantitative prediction of CYP3A4-mediated oral drug interactions based on the AUC increase by coadministration of standard drugs. Clin Pharmacokinet. 2007;46(8):681–96.

    Article  PubMed  CAS  Google Scholar 

  6. Ohno Y, Hisaka A, Ueno M, Suzuki H. General framework for the prediction of oral drug interactions caused by CYP3A4 induction from in vivo information. Clin Pharmacokinet. 2008;47(10):669–80.

    Article  PubMed  CAS  Google Scholar 

  7. Tod M, Goutelle S, Clavel-Grabit F, Nicolas G, Charpiat B. Quantitative prediction of cytochrome P450 (CYP) 2D6-mediated drug interactions. Clin Pharmacokinet. 2011;50(8):519–30. doi:10.2165/11592620-000000000-00000.

    Article  PubMed  CAS  Google Scholar 

  8. US Food and Drug Administration. Guidance for industry. Clinical pharmacogenomics: premarketing evaluation in early phase clinical studies. http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/UCM243702.pdf (2011). Accessed 28 June 2012.

  9. Tod M, Goutelle S, Gagnieu MC. Genotype-based quantitative prediction of drug exposure for drugs metabolized by CYP2D6. Clin Pharmacol Ther. 2011;90(4):582–7. doi:10.1038/clpt.2011.147.

    Article  PubMed  CAS  Google Scholar 

  10. Tomalik-Scharte D, Lazar A, Fuhr U, Kirchheiner J. The clinical role of genetic polymorphisms in drug-metabolizing enzymes. Pharmacogenomics J. 2008;8(1):4–15. doi:10.1038/sj.tpj.6500462.

    Article  PubMed  CAS  Google Scholar 

  11. The Human Cytochrome P450 (CYP) Allele Nomenclature Database. http://www.cypalleles.ki.se/. Accessed 28 June 2012.

  12. Baldwin RM, Ohlsson S, Pedersen RS, Mwinyi J, Ingelman-Sundberg M, Eliasson E, et al. Increased omeprazole metabolism in carriers of the CYP2C19*17 allele; a pharmacokinetic study in healthy volunteers. Br J Clin Pharmacol. 2008;65(5):767–74. doi:10.1111/j.1365-2125.2008.03104.x.

    Article  PubMed  CAS  Google Scholar 

  13. Spiegelhalter D, Thomas A, Best N, Lunn D. Winbugs 1.4.3 user manual. Cambridge: MRC Biostatistics Unit IoPH. 2007.

  14. Congdon P. Bayesian statistical modelling. Chichester: Wiley; 2001.

    Google Scholar 

  15. Steimer W, Zopf K, von Amelunxen S, Pfeiffer H, Bachofer J, Popp J, et al. Allele-specific change of concentration and functional gene dose for the prediction of steady-state serum concentrations of amitriptyline and nortriptyline in CYP2C19 and CYP2D6 extensive and intermediate metabolizers. Clin Chem. 2004;50(9):1623–33. doi:10.1373/clinchem.2003.030825.

    Article  PubMed  CAS  Google Scholar 

  16. Fudio S, Borobia AM, Pinana E, Ramirez E, Tabares B, Guerra P, et al. Evaluation of the influence of sex and CYP2C19 and CYP2D6 polymorphisms in the disposition of citalopram. Eur J Pharmacol. 2010;626(2–3):200–4. doi:10.1016/j.ejphar.2009.10.007.

    Article  PubMed  CAS  Google Scholar 

  17. Yoo HD, Park SA, Cho HY, Lee YB. Influence of CYP3A and CYP2C19 genetic polymorphisms on the pharmacokinetics of cilostazol in healthy subjects. Clin Pharmacol Ther. 2009;86(3):281–4. doi:10.1038/clpt.2009.90.

    Article  PubMed  CAS  Google Scholar 

  18. Yokono A, Morita S, Someya T, Hirokane G, Okawa M, Shimoda K. The effect of CYP2C19 and CYP2D6 genotypes on the metabolism of clomipramine in Japanese psychiatric patients. J Clin Psychopharmacol. 2001;21(6):549–55.

    Article  PubMed  CAS  Google Scholar 

  19. Kim KA, Park PW, Hong SJ, Park JY. The effect of CYP2C19 polymorphism on the pharmacokinetics and pharmacodynamics of clopidogrel: a possible mechanism for clopidogrel resistance. Clin Pharmacol Ther. 2008;84(2):236–42. doi:10.1038/clpt.2008.20.

    Article  PubMed  CAS  Google Scholar 

  20. Qin XP, Xie HG, Wang W, He N, Huang SL, Xu ZH, et al. Effect of the gene dosage of CgammaP2C19 on diazepam metabolism in Chinese subjects. Clin Pharmacol Ther. 1999;66(6):642–6. doi:10.1016/S0009-9236(99)90075-9.

    PubMed  CAS  Google Scholar 

  21. Noehr-Jensen L, Zwisler ST, Larsen F, Sindrup SH, Damkier P, Nielsen F, et al. Impact of CYP2C19 phenotypes on escitalopram metabolism and an evaluation of pupillometry as a serotonergic biomarker. Eur J Clin Pharmacol. 2009;65(9):887–94. doi:10.1007/s00228-009-0657-0.

    Article  PubMed  CAS  Google Scholar 

  22. Liu ZQ, Cheng ZN, Huang SL, Chen XP, Ou-Yang DS, Jiang CH, et al. Effect of the CYP2C19 oxidation polymorphism on fluoxetine metabolism in Chinese healthy subjects. Br J Clin Pharmacol. 2001;52(1):96–9.

    Article  PubMed  CAS  Google Scholar 

  23. Shao H, Ren XM, Liu NF, Chen GM, Li WL, Zhai ZH, et al. Influence of CYP2C9 and CYP2C19 genetic polymorphisms on pharmacokinetics and pharmacodynamics of gliclazide in healthy Chinese Han volunteers. J Clin Pharm Ther. 2010;35(3):351–60. doi:10.1111/j.1365-2710.2009.01134.x.

    Article  PubMed  CAS  Google Scholar 

  24. Ieiri I, Kishimoto Y, Okochi H, Momiyama K, Morita T, Kitano M, et al. Comparison of the kinetic disposition of and serum gastrin change by lansoprazole versus rabeprazole during an 8-day dosing scheme in relation to CYP2C19 polymorphism. Eur J Clin Pharmacol. 2001;57(6–7):485–92.

    PubMed  CAS  Google Scholar 

  25. Miura M, Tada H, Yasui-Furukori N, Uno T, Sugawara K, Tateishi T, et al. Enantioselective disposition of lansoprazole in relation to CYP2C19 genotypes in the presence of fluvoxamine. Br J Clin Pharmacol. 2005;60(1):61–8. doi:10.1111/j.1365-2125.2005.02381.x.

    Article  PubMed  CAS  Google Scholar 

  26. Kobayashi K, Morita J, Chiba K, Wanibuchi A, Kimura M, Irie S, et al. Pharmacogenetic roles of CYP2C19 and CYP2B6 in the metabolism of R- and S-mephobarbital in humans. Pharmacogenetics. 2004;14(8):549–56.

    Article  PubMed  CAS  Google Scholar 

  27. Yu KS, Yim DS, Cho JY, Park SS, Park JY, Lee KH, et al. Effect of omeprazole on the pharmacokinetics of moclobemide according to the genetic polymorphism of CYP2C19. Clin Pharmacol Ther. 2001;69(4):266–73. doi:10.1067/mcp.2001.114231.

    Article  PubMed  CAS  Google Scholar 

  28. Damle BD, Uderman H, Biswas P, Crownover P, Lin C, Glue P. Influence of CYP2C19 polymorphism on the pharmacokinetics of nelfinavir and its active metabolite. Br J Clin Pharmacol. 2009;68(5):682–9. doi:10.1111/j.1365-2125.2009.03499.x.

    Article  PubMed  CAS  Google Scholar 

  29. Shirai N, Furuta T, Moriyama Y, Okochi H, Kobayashi K, Takashima M, et al. Effects of CYP2C19 genotypic differences in the metabolism of omeprazole and rabeprazole on intragastric pH. Aliment Pharmacol Ther. 2001;15(12):1929–37.

    Article  PubMed  CAS  Google Scholar 

  30. Hunfeld NG, Mathot RA, Touw DJ, van Schaik RH, Mulder PG, Franck PF, et al. Effect of CYP2C19*2 and *17 mutations on pharmacodynamics and kinetics of proton pump inhibitors in Caucasians. Br J Clin Pharmacol. 2008;65(5):752–60. doi:10.1111/j.1365-2125.2007.03094.x.

    Article  PubMed  CAS  Google Scholar 

  31. Li XQ, Bjorkman A, Andersson TB, Gustafsson LL, Masimirembwa CM. Identification of human cytochrome P(450)s that metabolise anti-parasitic drugs and predictions of in vivo drug hepatic clearance from in vitro data. Eur J Clin Pharmacol. 2003;59(5–6):429–42. doi:10.1007/s00228-003-0636-9.

    Article  PubMed  CAS  Google Scholar 

  32. Coller JK, Somogyi AA, Bochner F. Association between CYP2C19 genotype and proguanil oxidative polymorphism. Br J Clin Pharmacol. 1997;43(6):659–60.

    Article  PubMed  CAS  Google Scholar 

  33. Rudberg I, Hermann M, Refsum H, Molden E. Serum concentrations of sertraline and N-desmethyl sertraline in relation to CYP2C19 genotype in psychiatric patients. Eur J Clin Pharmacol. 2008;64(12):1181–8. doi:10.1007/s00228-008-0533-3.

    Article  PubMed  CAS  Google Scholar 

  34. Kim KA, Song WK, Park JY. Association of CYP2B6, CYP3A5, and CYP2C19 genetic polymorphisms with sibutramine pharmacokinetics in healthy Korean subjects. Clin Pharmacol Ther. 2009;86(5):511–8. doi:10.1038/clpt.2009.145.

    Article  PubMed  CAS  Google Scholar 

  35. Kirchheiner J, Muller G, Meineke I, Wernecke KD, Roots I, Brockmoller J. Effects of polymorphisms in CYP2D6, CYP2C9, and CYP2C19 on trimipramine pharmacokinetics. J Clin Psychopharmacol. 2003;23(5):459–66. doi:10.1097/01.jcp.0000088909.24613.92.

    Article  PubMed  CAS  Google Scholar 

  36. Scholz I, Oberwittler H, Riedel KD, Burhenne J, Weiss J, Haefeli WE, et al. Pharmacokinetics, metabolism and bioavailability of the triazole antifungal agent voriconazole in relation to CYP2C19 genotype. Br J Clin Pharmacol. 2009;68(6):906–15. doi:10.1111/j.1365-2125.2009.03534.x.

    Article  PubMed  CAS  Google Scholar 

  37. Yu BN, Chen GL, He N, Ouyang DS, Chen XP, Liu ZQ, et al. Pharmacokinetics of citalopram in relation to genetic polymorphism of CYP2C19. Drug Metab Dispos. 2003;31(10):1255–9. doi:10.1124/dmd.31.10.1255.

    Article  PubMed  CAS  Google Scholar 

  38. Ohlsson Rosenborg S, Mwinyi J, Andersson M, Baldwin RM, Pedersen RS, Sim SC, et al. Kinetics of omeprazole and escitalopram in relation to the CYP2C19*17 allele in healthy subjects. Eur J Clin Pharmacol. 2008;64(12):1175–9. doi:10.1007/s00228-008-0529-z.

    Article  PubMed  CAS  Google Scholar 

  39. Zhang Y, Si D, Chen X, Lin N, Guo Y, Zhou H, et al. Influence of CYP2C9 and CYP2C19 genetic polymorphisms on pharmacokinetics of gliclazide MR in Chinese subjects. Br J Clin Pharmacol. 2007;64(1):67–74. doi:10.1111/j.1365-2125.2007.02846.x.

    Article  PubMed  CAS  Google Scholar 

  40. Katsuki H, Nakamura C, Arimori K, Fujiyama S, Nakano M. Genetic polymorphism of CYP2C19 and lansoprazole pharmacokinetics in Japanese subjects. Eur J Clin Pharmacol. 1997;52(5):391–6.

    Article  PubMed  CAS  Google Scholar 

  41. Itagaki F, Homma M, Yuzawa K, Nishimura M, Naito S, Ueda N, et al. Effect of lansoprazole and rabeprazole on tacrolimus pharmacokinetics in healthy volunteers with CYP2C19 mutations. J Pharm Pharmacol. 2004;56(8):1055–9. doi:10.1211/0022357043914.

    Article  PubMed  CAS  Google Scholar 

  42. Qiao HL, Hu YR, Tian X, Jia LJ, Gao N, Zhang LR, et al. Pharmacokinetics of three proton pump inhibitors in Chinese subjects in relation to the CYP2C19 genotype. Eur J Clin Pharmacol. 2006;62(2):107–12. doi:10.1007/s00228-005-0063-1.

    Article  PubMed  CAS  Google Scholar 

  43. Zalloum I, Hakooz N, Arafat T. Genetic polymorphism of CYP2C19 in a Jordanian population: influence of allele frequencies of CYP2C19*1 and CYP2C19*2 on the pharmacokinetic profile of lansoprazole. Mol Biol Rep. 2012;39(4):4195–200. doi:10.1007/s11033-011-1204-5.

    Article  PubMed  CAS  Google Scholar 

  44. Sakai T, Aoyama N, Kita T, Sakaeda T, Nishiguchi K, Nishitora Y, et al. CYP2C19 genotype and pharmacokinetics of three proton pump inhibitors in healthy subjects. Pharm Res. 2001;18(6):721–7.

    Article  PubMed  CAS  Google Scholar 

  45. Chen BL, Chen Y, Tu JH, Li YL, Zhang W, Li Q, et al. Clopidogrel inhibits CYP2C19-dependent hydroxylation of omeprazole related to CYP2C19 genetic polymorphisms. J Clin Pharmacol. 2009;49(5):574–81. doi:10.1177/0091270009333016.

    Article  PubMed  CAS  Google Scholar 

  46. Uno T, Niioka T, Hayakari M, Yasui-Furukori N, Sugawara K, Tateishi T. Absolute bioavailability and metabolism of omeprazole in relation to CYP2C19 genotypes following single intravenous and oral administrations. Eur J Clin Pharmacol. 2007;63(2):143–9. doi:10.1007/s00228-006-0251-7.

    Article  PubMed  CAS  Google Scholar 

  47. Yasui-Furukori N, Takahata T, Nakagami T, Yoshiya G, Inoue Y, Kaneko S, et al. Different inhibitory effect of fluvoxamine on omeprazole metabolism between CYP2C19 genotypes. Br J Clin Pharmacol. 2004;57(4):487–94. doi:10.1111/j.1365-2125.2003.02047.x.

    Article  PubMed  CAS  Google Scholar 

  48. Cho JY, Yu KS, Jang IJ, Yang BH, Shin SG, Yim DS. Omeprazole hydroxylation is inhibited by a single dose of moclobemide in homozygotic EM genotype for CYP2C19. Br J Clin Pharmacol. 2002;53(4):393–7.

    Article  PubMed  CAS  Google Scholar 

  49. Hunfeld NG, Touw DJ, Mathot RA, Mulder PG, Van Schaik RH, Kuipers EJ, et al. A comparison of the acid-inhibitory effects of esomeprazole and pantoprazole in relation to pharmacokinetics and CYP2C19 polymorphism. Aliment Pharmacol Ther. 2010;31(1):150–9. doi:10.1111/j.1365-2036.2009.04150.x.

    Article  PubMed  CAS  Google Scholar 

  50. Niioka T, Uno T, Yasui-Furukori N, Shimizu M, Sugawara K, Tateishi T. Identification of the time-point which gives a plasma rabeprazole concentration that adequately reflects the area under the concentration–time curve. Eur J Clin Pharmacol. 2006;62(10):855–61. doi:10.1007/s00228-006-0184-1.

    Article  PubMed  CAS  Google Scholar 

  51. Horai Y, Kimura M, Furuie H, Matsuguma K, Irie S, Koga Y, et al. Pharmacodynamic effects and kinetic disposition of rabeprazole in relation to CYP2C19 genotypes. Aliment Pharmacol Ther. 2001;15(6):793–803.

    Article  PubMed  CAS  Google Scholar 

  52. Shimizu M, Uno T, Yasui-Furukori N, Sugawara K, Tateishi T. Effects of clarithromycin and verapamil on rabeprazole pharmacokinetics between CYP2C19 genotypes. Eur J Clin Pharmacol. 2006;62(8):597–603. doi:10.1007/s00228-006-0152-9.

    Article  PubMed  CAS  Google Scholar 

  53. Wang G, Lei HP, Li Z, Tan ZR, Guo D, Fan L, et al. The CYP2C19 ultra-rapid metabolizer genotype influences the pharmacokinetics of voriconazole in healthy male volunteers. Eur J Clin Pharmacol. 2009;65(3):281–5. doi:10.1007/s00228-008-0574-7.

    Article  PubMed  CAS  Google Scholar 

  54. Weiss J, Ten Hoevel MM, Burhenne J, Walter-Sack I, Hoffmann MM, Rengelshausen J, et al. CYP2C19 genotype is a major factor contributing to the highly variable pharmacokinetics of voriconazole. J Clin Pharmacol. 2009;49(2):196–204. doi:10.1177/0091270008327537.

    Article  PubMed  CAS  Google Scholar 

  55. Shi HY, Yan J, Zhu WH, Yang GP, Tan ZR, Wu WH, et al. Effects of erythromycin on voriconazole pharmacokinetics and association with CYP2C19 polymorphism. Eur J Clin Pharmacol. 2010;66(11):1131–6. doi:10.1007/s00228-010-0869-3.

    Article  PubMed  Google Scholar 

  56. Mikus G, Schowel V, Drzewinska M, Rengelshausen J, Ding R, Riedel KD, et al. Potent cytochrome P450 2C19 genotype-related interaction between voriconazole and the cytochrome P450 3A4 inhibitor ritonavir. Clin Pharmacol Ther. 2006;80(2):126–35. doi:10.1016/j.clpt.2006.04.004.

    Article  PubMed  CAS  Google Scholar 

  57. Martis S, Peter I, Hulot JS, Kornreich R, Desnick RJ, Scott SA. Multi-ethnic distribution of clinically relevant CYP2C genotypes and haplotypes. Pharmacogenomics J. 2012. doi:10.1038/tpj.2012.10.

  58. Saari TI, Laine K, Bertilsson L, Neuvonen PJ, Olkkola KT. Voriconazole and fluconazole increase the exposure to oral diazepam. Eur J Clin Pharmacol. 2007;63(10):941–9. doi:10.1007/s00228-007-0350-0.

    Article  PubMed  CAS  Google Scholar 

  59. Lemberger L, Rowe H, Bosomworth JC, Tenbarge JB, Bergstrom RF. The effect of fluoxetine on the pharmacokinetics and psychomotor responses of diazepam. Clin Pharmacol Ther. 1988;43(4):412–9.

    Article  PubMed  CAS  Google Scholar 

  60. Wood N, Tan K, Purkins L, Layton G, Hamlin J, Kleinermans D, et al. Effect of omeprazole on the steady-state pharmacokinetics of voriconazole. Br J Clin Pharmacol. 2003;56 Suppl 1:56–61.

    Article  PubMed  CAS  Google Scholar 

  61. Angiolillo DJ, Gibson CM, Cheng S, Ollier C, Nicolas O, Bergougnan L, et al. Differential effects of omeprazole and pantoprazole on the pharmacodynamics and pharmacokinetics of clopidogrel in healthy subjects: randomized, placebo-controlled, crossover comparison studies. Clin Pharmacol Ther. 2011;89(1):65–74. doi:10.1038/clpt.2010.219.

    Article  PubMed  CAS  Google Scholar 

  62. Tateishi T, Kumai T, Watanabe M, Nakura H, Tanaka M, Kobayashi S. Ticlopidine decreases the in vivo activity of CYP2C19 as measured by omeprazole metabolism. Br J Clin Pharmacol. 1999;47(4):454–7.

    Article  PubMed  CAS  Google Scholar 

  63. Bae JW, Jang CG, Lee SY. Effects of clopidogrel on the pharmacokinetics of sibutramine and its active metabolites. J Clin Pharmacol. 2011;51(12):1704–11. doi:10.1177/0091270010388651.

    Article  PubMed  CAS  Google Scholar 

  64. Kang BC, Yang CQ, Cho HK, Suh OK, Shin WG. Influence of fluconazole on the pharmacokinetics of omeprazole in healthy volunteers. Biopharm Drug Dispos. 2002;23(2):77–81.

    Article  PubMed  CAS  Google Scholar 

  65. Yasui-Furukori N, Saito M, Uno T, Takahata T, Sugawara K, Tateishi T. Effects of fluvoxamine on lansoprazole pharmacokinetics in relation to CYP2C19 genotypes. J Clin Pharmacol. 2004;44(11):1223–9. doi:10.1177/0091270004269015.

    Article  PubMed  CAS  Google Scholar 

  66. Uno T, Shimizu M, Yasui-Furukori N, Sugawara K, Tateishi T. Different effects of fluvoxamine on rabeprazole pharmacokinetics in relation to CYP2C19 genotype status. Br J Clin Pharmacol. 2006;61(3):309–14. doi:10.1111/j.1365-2125.2005.02556.x.

    Article  PubMed  CAS  Google Scholar 

  67. Perucca E, Gatti G, Cipolla G, Spina E, Barel S, Soback S, et al. Inhibition of diazepam metabolism by fluvoxamine: a pharmacokinetic study in normal volunteers. Clin Pharmacol Ther. 1994;56(5):471–6.

    Article  PubMed  CAS  Google Scholar 

  68. Fang AF, Damle BD, LaBadie RR, Crownover PH, Hewlett Jr D, Glue PW. Significant decrease in nelfinavir systemic exposure after omeprazole coadministration in healthy subjects. Pharmacotherapy. 2008;28(1):42–50. doi:10.1592/phco.28.1.42.

    Article  PubMed  Google Scholar 

  69. Caraco Y, Tateishi T, Wood AJ. Interethnic difference in omeprazole’s inhibition of diazepam metabolism. Clin Pharmacol Ther. 1995;58(1):62–72. doi:10.1016/0009-9236(95)90073-X.

    Article  PubMed  CAS  Google Scholar 

  70. Funck-Brentano C, Becquemont L, Lenevu A, Roux A, Jaillon P, Beaune P. Inhibition by omeprazole of proguanil metabolism: mechanism of the interaction in vitro and prediction of in vivo results from the in vitro experiments. J Pharmacol Exp Ther. 1997;280(2):730–8.

    PubMed  CAS  Google Scholar 

  71. Furuta T, Sugimoto M, Shirai N, Ishizaki T. CYP2C19 pharmacogenomics associated with therapy of Helicobacter pylori infection and gastro-esophageal reflux diseases with a proton pump inhibitor. Pharmacogenomics. 2007;8(9):1199–210. doi:10.2217/14622416.8.9.1199.

    Article  PubMed  CAS  Google Scholar 

  72. Zabalza M, Subirana I, Sala J, Lluis-Ganella C, Lucas G, Tomas M, et al. Meta-analyses of the association between cytochrome CYP2C19 loss- and gain-of-function polymorphisms and cardiovascular outcomes in patients with coronary artery disease treated with clopidogrel. Heart. 2012;98(2):100–8. doi:10.1136/hrt.2011.227652.

    Article  PubMed  CAS  Google Scholar 

  73. Kita T, Sakaeda T, Baba T, Aoyama N, Kakumoto M, Kurimoto Y, et al. Different contribution of CYP2C19 in the in vitro metabolism of three proton pump inhibitors. Biol Pharm Bull. 2003;26(3):386–90.

    Article  PubMed  CAS  Google Scholar 

  74. von Moltke LL, Greenblatt DJ, Giancarlo GM, Granda BW, Harmatz JS, Shader RI. Escitalopram (S-citalopram) and its metabolites in vitro: cytochromes mediating biotransformation, inhibitory effects, and comparison to R-citalopram. Drug Metab Dispos. 2001;29(8):1102–9.

    Google Scholar 

  75. Soars MG, Gelboin HV, Krausz KW, Riley RJ. A comparison of relative abundance, activity factor and inhibitory monoclonal antibody approaches in the characterization of human CYP enzymology. Br J Clin Pharmacol. 2003;55(2):175–81.

    Article  PubMed  CAS  Google Scholar 

  76. Venkatakrishnan K, von Moltke LL, Court MH, Harmatz JS, Crespi CL, Greenblatt DJ. Comparison between cytochrome P450 (CYP) content and relative activity approaches to scaling from cDNA-expressed CYPs to human liver microsomes: ratios of accessory proteins as sources of discrepancies between the approaches. Drug Metab Dispos. 2000;28(12):1493–504.

    PubMed  CAS  Google Scholar 

  77. Ito K, Brown HS, Houston JB. Database analyses for the prediction of in vivo drug–drug interactions from in vitro data. Br J Clin Pharmacol. 2004;57(4):473–86. doi:10.1111/j.1365-2125.2003.02041.x.

    Article  PubMed  CAS  Google Scholar 

  78. Obach RS, Walsky RL, Venkatakrishnan K, Gaman EA, Houston JB, Tremaine LM. The utility of in vitro cytochrome P450 inhibition data in the prediction of drug–drug interactions. J Pharmacol Exp Ther. 2006;316(1):336–48. doi:10.1124/jpet.105.093229.

    Article  PubMed  CAS  Google Scholar 

  79. Hung CC, Lin CJ, Chen CC, Chang CJ, Liou HH. Dosage recommendation of phenytoin for patients with epilepsy with different CYP2C9/CYP2C19 polymorphisms. Ther Drug Monit. 2004;26(5):534–40.

    Article  PubMed  CAS  Google Scholar 

  80. Wilkins JJ, Langdon G, McIlleron H, Pillai G, Smith PJ, Simonsson US. Variability in the population pharmacokinetics of isoniazid in South African tuberculosis patients. Br J Clin Pharmacol. 2011;72(1):51–62. doi:10.1111/j.1365-2125.2011.03940.x.

    Article  PubMed  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This study was not supported by any academic, company, or sponsor fund.

Conflict of Interest

The authors have no conflicts of interest that are relevant to the content of this study.

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to Sylvain Goutelle.

Additional information

The Genophar II Working Group members are Charlotte Castellan, Bruno Charpiat, François Gueyffier, Behrouz Kassaï, and Patrice Nony.

ELECTRONIC SUPPLEMENTARY MATERIALS

Below is the link to the electronic supplementary material.

ESM 1

(DOC 39 kb)

ESM 2

(DOC 3563 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goutelle, S., Bourguignon, L., Bleyzac, N. et al. In Vivo Quantitative Prediction of the Effect of Gene Polymorphisms and Drug Interactions on Drug Exposure for CYP2C19 Substrates. AAPS J 15, 415–426 (2013). https://doi.org/10.1208/s12248-012-9431-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12248-012-9431-9

KEY WORDS

Navigation