Skip to main content

Advertisement

Log in

Simulation of Monoclonal Antibody Pharmacokinetics in HumansUsing a Minimal Physiologically Based Model

  • Research Article
  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

Compared to small chemical molecules, monoclonal antibodies and Fc-containing derivatives (mAbs) have unique pharmacokinetic behaviour characterised by relatively poor cellular permeability, minimal renal filtration, binding to FcRn, target-mediated drug disposition, and disposition via lymph. A minimal physiologically based pharmacokinetic (PBPK) model to describe the pharmacokinetics of mAbs in humans was developed. Within the model, the body is divided into three physiological compartments; plasma, a single tissue compartment and lymph. The tissue compartment is further sub-divided into vascular, endothelial and interstitial spaces. The model simultaneously describes the levels of endogenous IgG and exogenous mAbs in each compartment and sub-compartment and, in particular, considers the competition of these two species for FcRn binding in the endothelial space. A Monte-Carlo sampling approach is used to simulate the concentrations of endogenous IgG and mAb in a human population. Existing targeted-mediated drug disposition (TMDD) models are coupled with the minimal PBPK model to provide a general platform for simulating the pharmacokinetics of therapeutic antibodies using primarily pre-clinical data inputs. The feasibility of utilising pre-clinical data to parameterise the model and to simulate the pharmacokinetics of adalimumab and an anti-ALK1 antibody (PF-03446962) in a population of individuals was investigated and results were compared to published clinical data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Dostalek M et al. Pharmacokinetics, pharmacodynamics and physiologically-based pharmacokinetic modelling of monoclonal antibodies. Clin Pharmacokinet. 2013;52(2):83–124.

    Article  CAS  PubMed  Google Scholar 

  2. Nestorov I. Whole body pharmacokinetic models. Clin Pharmacokinet. 2003;42(10):883–908.

    Article  CAS  PubMed  Google Scholar 

  3. Covell DG et al. Pharmacokinetics of monoclonal immunoglobulin G1, F(ab′)2, and Fab′ in mice. Cancer Res. 1986;46(8):3969–78.

    CAS  PubMed  Google Scholar 

  4. Baxter LT et al. Physiologically based pharmacokinetic model for specific and nonspecific monoclonal antibodies and fragments in normal tissues and human tumor xenografts in nude mice. Cancer Res. 1994;54(6):1517–28.

    CAS  PubMed  Google Scholar 

  5. Baxter LT, Zhu H, Mackensen DG, Butler WF, Jain RK. Biodistribution of monoclonal antibodies: scale-up from mouse to human using a physiologically based pharmacokinetic model. Cancer Res. 1995;55(20):12.

    Google Scholar 

  6. Rippe B, Haraldsson B. Transport of macromolecules across microvascular walls: the two-pore theory. Physiol Rev. 1994;74(1):163–219.

    CAS  PubMed  Google Scholar 

  7. Ferl GZ, Wu AM, DiStefano 3rd JJ. A predictive model of therapeutic monoclonal antibody dynamics and regulation by the neonatal Fc receptor (FcRn). Ann Biomed Eng. 2005;33(11):1640–52.

    Article  PubMed  Google Scholar 

  8. Garg A, Balthasar JP. Physiologically-based pharmacokinetic (PBPK) model to predict IgG tissue kinetics in wild-type and FcRn-knockout mice. J Pharmacokinet Pharmacodyn. 2007;34(5):687–709.

    Article  CAS  PubMed  Google Scholar 

  9. Ghetie V, Ward ES. FcRn: the MHC class I-related receptor that is more than an IgG transporter. Immunol Today. 1997;18(12):592–8.

    Article  CAS  PubMed  Google Scholar 

  10. Urva SR, Yang VC, Balthasar JP. Physiologically based pharmacokinetic model for T84.66: a monoclonal anti-CEA antibody. J Pharm Sci. 2010;99(3):1582–600.

    Article  CAS  PubMed  Google Scholar 

  11. Shah DK, Betts AM. Towards a platform PBPK model to characterize the plasma and tissue disposition of monoclonal antibodies in preclinical species and human. J Pharmacokinet Pharmacodyn. 2012;39(1):67–86.

    Article  CAS  PubMed  Google Scholar 

  12. Cao Y, Jusko WJ. Applications of minimal physiologically-based pharmacokinetic models. J Pharmacokinet Pharmacodyn. 2012;39(6):711–23.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Gallo JM et al. Pharmacokinetic model-predicted anticancer drug concentrations in human tumors. Clin Cancer Res. 2004;10(23):8048–58.

    Article  CAS  PubMed  Google Scholar 

  14. Rocci Jr ML et al. Prednisolone metabolism and excretion in the isolated perfused rat kidney. Drug Metab Dispos. 1981;9(3):177–82.

    CAS  PubMed  Google Scholar 

  15. Fronton L, Pilari S, Huisinga W. Monoclonal antibody disposition: a simplified PBPK model and its implications for the derivation and interpretation of classical compartment models. J Pharmacokinet Pharmacodyn. 2014;41(2):87–107.

    Article  CAS  PubMed  Google Scholar 

  16. Cao Y, Balthasar JP, Jusko WJ. Second-generation minimal physiologically-based pharmacokinetic model for monoclonal antibodies. J Pharmacokinet Pharmacodyn. 2013;40(5):597–607.

    Article  CAS  PubMed  Google Scholar 

  17. Jamei M, Dickinson GL, Rostami-Hodjegan A. A framework for assessing inter-individual variability in pharmacokinetics using virtual human populations and integrating general knowledge of physical chemistry, biology, anatomy, physiology and genetics: a tale of ‘bottom-up’ vs ‘top-down’ recognition of covariates. Drug Metab Pharmacokinet. 2009;24(1):53–75.

    Article  CAS  PubMed  Google Scholar 

  18. Jamei M et al. The Simcyp population-based ADME simulator. Expert Opin Drug Metab Toxicol. 2009;5(2):211–23.

    Article  CAS  PubMed  Google Scholar 

  19. Waldmann TA, Strober W. Metabolism of immunoglobulins. Prog Allergy. 1969;13:1–110.

    CAS  PubMed  Google Scholar 

  20. Waldmann TA, Terry WD. Familial hypercatabolic hypoproteinemia. A disorder of endogenous catabolism of albumin and immunoglobulin. J Clin Invest. 1990;86(6):2093–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Rostami-Hodjegan A. Physiologically based pharmacokinetics joined with in vitro-in vivo extrapolation of ADME: a marriage under the arch of systems pharmacology. Clin Pharmacol Ther. 2012;92(1):50–61.

    Article  CAS  PubMed  Google Scholar 

  22. Weisman MH et al. Efficacy, pharmacokinetic, and safety assessment of adalimumab, a fully human anti-tumor necrosis factor-alpha monoclonal antibody, in adults with rheumatoid arthritis receiving concomitant methotrexate: a pilot study. Clin Ther. 2003;25(6):1700–21.

    Article  CAS  PubMed  Google Scholar 

  23. den Broeder A et al. A single dose, placebo controlled study of the fully human anti-tumor necrosis factor-alpha antibody adalimumab (D2E7) in patients with rheumatoid arthritis. J Rheumatol. 2002;29(11):2288–98.

    Google Scholar 

  24. Luu KT et al. A model-based approach to predicting the human pharmacokinetics of a monoclonal antibody exhibiting target-mediated drug disposition. J Pharmacol Exp Ther. 2012;341(3):702–8.

    Article  CAS  PubMed  Google Scholar 

  25. Suzuki T et al. Importance of neonatal FcR in regulating the serum half-life of therapeutic proteins containing the Fc domain of human IgG1: a comparative study of the affinity of monoclonal antibodies and Fc-fusion proteins to human neonatal FcR. J Immunol. 2010;184(4):1968–76.

    Article  CAS  PubMed  Google Scholar 

  26. Kaymakcalan Z et al. Comparisons of affinities, avidities, and complement activation of adalimumab, infliximab, and etanercept in binding to soluble and membrane tumor necrosis factor. Clin Immunol. 2009;131(2):308–16.

    Article  CAS  PubMed  Google Scholar 

  27. Olszewski WL et al. Lymph draining from foot joints in rheumatoid arthritis provides insight into local cytokine and chemokine production and transport to lymph nodes. Arthritis Rheum. 2001;44(3):541–9.

    Article  CAS  PubMed  Google Scholar 

  28. Stepensky D. Local versus systemic anti-tumour necrosis factor-alpha effects of adalimumab in rheumatoid arthritis: pharmacokinetic modelling analysis of interaction between a soluble target and a drug. Clin Pharmacokinet. 2012;51(7):443–55.

    Article  CAS  PubMed  Google Scholar 

  29. Li L et al. Incorporating target shedding into a minimal PBPK-TMDD model for monoclonal antibodies. CPT Pharmacometrics Syst Pharmacol. 2014;3:e96.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Mager DE, Jusko WJ. General pharmacokinetic model for drugs exhibiting target-mediated drug disposition. J Pharmacokinet Pharmacodyn. 2001;28(6):507–32.

    Article  CAS  PubMed  Google Scholar 

  31. Granger DN, Taylor AE. Permeability of intestinal capillaries to endogenous macromolecules. Am J Physiol. 1980;238(4):H457–64.

    CAS  PubMed  Google Scholar 

  32. Stehle G et al. Plasma protein (albumin) catabolism by the tumor itself–implications for tumor metabolism and the genesis of cachexia. Crit Rev Oncol Hematol. 1997;26(2):77–100.

    Article  CAS  PubMed  Google Scholar 

  33. Logan R, Kong A, Krise JP. Evaluating the roles of autophagy and lysosomal trafficking defects in intracellular distribution-based drug-drug interactions involving lysosomes. J Pharm Sci. 2013;102(11):4173–80.

    CAS  PubMed  Google Scholar 

  34. Bain PG et al. Effects of intravenous immunoglobulin on muscle weakness and calcium-channel autoantibodies in the Lambert-Eaton myasthenic syndrome. Neurology. 1996;47(3):678–83.

    Article  CAS  PubMed  Google Scholar 

  35. Nestorov IA et al. Lumping of whole-body physiologically based pharmacokinetic models. J Pharmacokinet Biopharm. 1998;26(1):21–46.

    Article  CAS  PubMed  Google Scholar 

  36. Pilari S, Huisinga W. Lumping of physiologically-based pharmacokinetic models and a mechanistic derivation of classical compartmental models. J Pharmacokinet Pharmacodyn. 2010;37(4):365–405.

    Article  CAS  PubMed  Google Scholar 

  37. Richter W et al. Mechanistic determinants of biotherapeutics absorption following SC administration. AAPS J. 2012;14(3):559–570.

  38. Shah DK, Betts AM. Antibody biodistribution coefficients: inferring tissue concentrations of monoclonal antibodies based on the plasma concentrations in several preclinical species and human. MAbs. 2013;5(2).

  39. Brian Gurbaxani MD, Gardner IB. Are endosomal trafficking parameters better targets for improving mAb pharmacokinetics than FcRn binding affinity? Mol Immunol. 2013;56(4):660–74.

    Article  PubMed  Google Scholar 

  40. Haigler HT, McKanna JA, Cohen S. Rapid stimulation of pinocytosis in human carcinoma cells A-431 by epidermal growth factor. J Cell Biol. 1979;83(1):82–90.

    Article  CAS  PubMed  Google Scholar 

  41. Chen Y, Balthasar JP. Evaluation of a catenary PBPK model for predicting the in vivo disposition of mAbs engineered for high-affinity binding to FcRn. AAPS J. 2012;14(4):850–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Garg A. Investigation of the role of FcRn in the absorption, distribution, and elimination of monoclonal antibodies. In Department of Pharmaceutical Sciences. 2007. PhD. Faculty of the Graduate School of State University of New York at Buffalo.

  43. Chen N, Wang W, Faulty S, Fang Y, Lu P, Hamuro L, Hussain A, Prueksaritanant T. The impact of FcRn on tissue distribution of IgG1 in mice. In: AAPS, San 902 Diego, CA, USA; 2012.

  44. Bitonti AJ et al. Pulmonary delivery of an erythropoietin Fc fusion protein in non-human primates through an immunoglobulin transport pathway. Proc Natl Acad Sci U S A. 2004;101(26):9763–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Dall’Acqua WF et al. Increasing the affinity of a human IgG1 for the neonatal Fc receptor: biological consequences. J Immunol. 2002;169(9):5171–80.

    Article  PubMed  Google Scholar 

  46. Vegh A et al. FcRn overexpression in transgenic mice results in augmented APC activity and robust immune response with increased diversity of induced antibodies. PLoS One. 2012;7(4):e36286.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Morell A, Terry WD, Waldmann TA. Metabolic properties of IgG subclasses in man. J Clin Invest. 1970;49(4):673–80.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Guyton AC. Textbook of medical physiology. 11th ed. New York: Elsevier; 2006.

    Google Scholar 

Download references

Acknowledgments

We thank Professor Geoff Tucker (Simcyp Limited, A Certara Company, Blades Enterprise Centre, John Street, Sheffield S2 4SU, U.K.) for his thorough review of the manuscript and constructive comments.

Conflict of Interest

Linzhong Li, Iain Gardner, and Masoud Jamei are employees of Simcyp (a Certara company). Miroslav Dostalek was employed at Simcyp (a Certara company) at the time of work on minimal PBPK model. The findings and the conclusions in this report are those of the authors and do not necessarily represents the view of Simcyp (a Certara company) and F. Hoffmann-La Roche AG.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linzhong Li.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 285 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L., Gardner, I., Dostalek, M. et al. Simulation of Monoclonal Antibody Pharmacokinetics in HumansUsing a Minimal Physiologically Based Model. AAPS J 16, 1097–1109 (2014). https://doi.org/10.1208/s12248-014-9640-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12248-014-9640-5

KEY WORDS

Navigation