Skip to main content
Log in

Proteases and lipoprotein receptors in Alzheimer's disease

  • Review Article
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Alzheimer's disease (AD) is the leading cause of senile dementia, and is a complex disorder. The pathological hallmarks of AD were discovered by Dr. Alois Alzheimer in 1907, and include deposits of amyloid or senile plaques and neurofibrillar tangles. Plaques are composed of a peptide, termed the Aß peptide, that is derived by proteolytic processing of the amyloid precursor protein (APP), while neurofibrillar tangles result from a hyperphosphorylation of the tau protein. Mechanisms associated with the formation of plaques and neurofibrillar tangles and their respective contributions to the disease process have been intensely investigated. Proteolytic processing of APP that results in the generation of the Aß peptide is now well understood and is influenced by several proteins. Recent evidence suggests that the Aß levels are carefully regulated, and several proteases play an important role in removing the Aß peptide. Finally, it is becoming apparent that several members of the LDL receptor family play important roles in the brain, and may modulate the course of AD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Tanzi R. E., Gusella, J. F., Watkins, P.C., et al. (1987) The amyloid β protein gene: cDNA cloning, mRNA distribution, and genetic linkage near the Alzheimer locus. Science 235, 880–994.

    PubMed  CAS  Google Scholar 

  2. Kang, J., Lemaire, H.-G., Unterbeck, A., et al. (1987) The precursor of Alzheimer's disease amyloid A4 protein resembles a cell surface receptor. Nature 325, 733–736.

    PubMed  CAS  Google Scholar 

  3. Muller-Hill, B. and Beyreuther, K. (1989) Molecular biology of Alzheimer's disease. Annu. Rev. Biochem. 58, 287–307.

    PubMed  CAS  Google Scholar 

  4. Hardy, J. and Selkoe, D. J. (2002) The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics. Science 297, 353–356.

    PubMed  CAS  Google Scholar 

  5. Goate, A. Chartier-Harlin, M.-C., and Mullan, M. (1991) Segregation of missense mutations in the amyloid precursor protein gene with familial Alzheimer's disease. Nature 349, 704–707.

    PubMed  CAS  Google Scholar 

  6. Sherrington, R., Rogaev, E. I., Liang, Y., et al. (1995) Cloning of a gene bearing missense mutations in early-onset familial Alzheimer's disease. Nature, 375, 754–760.

    PubMed  CAS  Google Scholar 

  7. Alzheimer's Disease Collaborative Group. (1995) The structure of the presenilin 1 (S182) gene and identification of six novel mutations in early onset AD families. NatureGenet. 11, 219–222.

    Google Scholar 

  8. Strittmatter, W. J., Saunders A. M., Schmechel, D., et al. (1993) Apolipoprotein E: high avidity binding to β-amyloid and increased frequency of type 4 allele in lateonset familial Alzheimer disease. Proc. Natl. Acad. Sci. USA 90, 1977–1981.

    PubMed  CAS  Google Scholar 

  9. Corder, E. H., Saunders, A. M., Strittmatter, W. J., et al. (1993) Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer's disease in late onset families. Science 261, 921–923.

    PubMed  CAS  Google Scholar 

  10. Nunan, J. and Small, D. H. (2002) Proteolytic processing of the amyloid-beta protein precursor of Alzheimer's disease. Essays Biochem. 38, 37–49.

    PubMed  CAS  Google Scholar 

  11. De Strooper, B. and Annaert, W. (2000) Proteolytic processing and cell biological functions of the amyloid precursor protein. J. Cell Sci. 113 (Pt. 11). 1857–1870.

    PubMed  Google Scholar 

  12. Sinha, S. and Lieberburg, I. (1999) Cellular mechanisms of beta-amyloid production and secretion. Proc. Natl. Acad. Sci USA 96 11049–11053.

    PubMed  CAS  Google Scholar 

  13. Selkoe, D. J. (1999) Translating cell biology into therapeutic advances in Alzheimer's disease. Nature 399, A23-A31.

    PubMed  CAS  Google Scholar 

  14. Glenner, G. G. and Wong, C. W. (1984) Alzheimer's disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem. Biophys. Res. Commun. 120, 885–890.

    PubMed  CAS  Google Scholar 

  15. Hyman, B. T., West, H. L., Rebeck, G. W., Lai, F., and Mann, D. M. A. (1995) Neuropathological changes in Down's syndrome hippocampal formation: effect of age and apolipoprotein E genotype. Arch. Neurol. 52, 373–378.

    PubMed  CAS  Google Scholar 

  16. Selkoe, D. J. (2001) Alzheimer's disease: genes, proteins, and therapy. Physiol. Rev. 81, 741–766.

    PubMed  CAS  Google Scholar 

  17. Wasco, W., Bupp, K., Magendantz, M., Gusella, J. F., Tanzi, R. E., and Solomon, F. (1992) Identification of a mouse brain cDNA that encodes a protein related to the Alzheimer disease-associated amyloid beta protein precursor. Proc. Natl. Acad. Sci. USA 89, 10,758–10,762.

    CAS  Google Scholar 

  18. Wasco, W., Gurubhagavatula, S., Paradis, M. D., et al. (1993) Isolation and characterization of APLP2 encoding a homologue of the Alzheimer's associated amyloid beta protein precursor. NatureGenet. 5, 95–100.

    CAS  Google Scholar 

  19. Slunt, H. H., Thinakaran, G., Von Koch, C., Lo, A. C., Tanzi, R. E., and Sisodia, S. S. (1994) Expression of a ubiquitous, cross-reactive homologue of the mouse beta-amyloid precursor protein (APP). J. Biol. Chem. 269, 2637–2644.

    PubMed  CAS  Google Scholar 

  20. Kamal, A., Almenar-Queralt, A., LeBlanc, J. F., Roberts, E. A., and Goldstein, L. S. (2001) Kinesin-mediated axonal transport of a membrane compartment containing beta-secretase and presenilin-1 requires APP. Nature 414, 643–648.

    PubMed  CAS  Google Scholar 

  21. Kamal, A., Stokin, G. B., Yang, Z., Xia, C. H., and Goldstein, L. S. (2000) Axonal transport of amyloid precursor protein is mediated by direct binding to the kinesin light chain subunit of kinesin-I. Neuron 28, 449–459.

    PubMed  CAS  Google Scholar 

  22. Zheng, H., Jiang, M., Trumbauer, M. E., et al. (1995) Beta-amyloid precursor protein-deficient mice show reactive gliosis and decreased locomotor activity. Cell 81, 525–531.

    PubMed  CAS  Google Scholar 

  23. Torroja, L., Packard, M., Gorczyca, M., White, K., and Budnik, V. (1999) The Drosophila betaamyloid precursor protein homolog promotes synapse differentiation at the neuromuscular junction. J. Neurosci. 19, 7793–7803.

    PubMed  CAS  Google Scholar 

  24. Steinbach, J. P., Muller, U., Leist, M., Li, Z. W., Nicotera, P., and Aguzzi, A. (1998) Hypersensitivity to seizures in beta-amyloid precursor protein deficient mice. Cell Death. Differ. 5, 858–866.

    PubMed  CAS  Google Scholar 

  25. Heber, S., Herms, J., Gajic, V., et al. (2000) Mice with combined gene knock-outs reveal essential and partially redundant functions of amyloid precursor protein family members. J. Neurosci. 20, 7951–7963.

    PubMed  CAS  Google Scholar 

  26. Cao, X. and Sudhof, T. C. (2001) A transcriptionally [correction of transcriptively] active complex of APP with Fe65 and histone acetyltransferase Tip60. Science 293, 115–120.

    PubMed  CAS  Google Scholar 

  27. De Strooper, B., Annaert, W., Cupers, P., et al. (1999) A presenilin-1-dependent gamma-secretase-like intracellular domain. Nature 398, 518–522.

    PubMed  Google Scholar 

  28. Ni, C. Y., Murphy, M. P., Golde, T. E., and Carpenter, G. (2001) Gamma-secretase cleavage and nuclear localization of ErbB-4 receptor tyrosine kinase. Science 294 2179–2181.

    PubMed  CAS  Google Scholar 

  29. Marambaud, P., Shioi, J., Serban, G., et al. (2002) A presenilin-1/gamma-secretase cleavage releases the E-cadherin intracellular domain and regulates disassembly of adherens junctions. EMBO J. 21, 1948–1956.

    PubMed  CAS  Google Scholar 

  30. Lammich, S., Okochi, M., Takeda, M., et al. (2002) Presenilin-dependent intramembrane proteolysis of CD44 leads to the liberation of its intracellular domain and the secretion of an Abeta-like peptide. J. Biol. Chem. 277, 44,754–44,759.

    CAS  Google Scholar 

  31. May, P., Reddy, Y. K., and Herz, J. (2002) Proteolytic processing of LRP mediates regulated release of its intracellular domain. J. Biol. Chem. 277, 18,736–18,743.

    CAS  Google Scholar 

  32. Esch, F. S., Keim, P. S., Beattie, E. C., et al. (1990) Cleavage of amyloid beta peptide during constitutive processing of its precursor. Science 248, 1122–1124.

    PubMed  CAS  Google Scholar 

  33. Baek, S. H., Ohgi, K. A., Rose, D. W., Koo, E. H., Glass, C. K., and Rosenfeld, M. G. (2002) Exchange of N-CoR corepressor and Tip60 coactivator complexes links gene expression by NF-kappaB and beta-amyloid precursor protein. Cell 110, 55–67.

    PubMed  CAS  Google Scholar 

  34. Esler, W. P. and Wolfe, M. S. (2001) A portrait of Alzheimer secretases—new features and familiar faces. Science 293, 1449–1454.

    PubMed  CAS  Google Scholar 

  35. Buxbaum, J. D., Koo, E. H., and Greengard, P. (1993) Protein phosphorylation inhibits production of Alzheimer amyloid beta/A4 peptide. Proc. Natl. Acad. Sci. USA 90, 9195–9198.

    PubMed  CAS  Google Scholar 

  36. Buxbaum, J. D., Liu, K. N., Luo, Y., et al. (1998) Evidence that tumor necrosis factor alpha converting enzyme is involved in regulated alphasecretase cleavage of the Alzheimer amyloid protein precursor. J. Biol. Chem. 273, 27,765–27,767.

    CAS  Google Scholar 

  37. Lammich, S., Kojro, E., Postina, R., et al. (1999) Constitutive and regulated alpha-secretase cleavage of Alzheimer's amyloid precursor protein by a disintegrin metalloprotease. Proc. Natl. Acad. Sci. USA 96, 3922–3927.

    PubMed  CAS  Google Scholar 

  38. Kajkowski, E. M., Lo, C. F., Ning, X., et al. (2001) Beta-amyloid peptide-induced apoptosis regulated by a novel protein containing a g protein activation module. J. Biol. Chem. 276, 18,748–18,756.

    CAS  Google Scholar 

  39. Pakaski, M., Farkas, Z., Kasa, P., Jr., et al. (1998) Vulnerability of small GABAergic neurons to human beta-amyloid pentapeptide. Brain Res. 796, 239–246.

    PubMed  CAS  Google Scholar 

  40. Vassar, R., Bennett, B. D., Babu-Khan, S., et al. (1999) Beta-secretase cleavage of Alzheimer's amyloid precursor protein by the transmembrane aspartic protease BACE [see comments]. Science 286, 735–741.

    PubMed  CAS  Google Scholar 

  41. Sinha, S., Anderson, J. P., Barbour, R., et al. (1999) Purification and cloning of amyloid precursor protein beta-secretase from human brain. Nature 402, 537–540.

    PubMed  CAS  Google Scholar 

  42. Roberds, S. L., Anderson, J., Basi, G., et al. (2001) BACE knockout mice are healthy despite lacking the primary {beta}-secretase activity in brain: implications for Alzheimer's disease therapeutics. Hum. Mol. Genet. 10, 1317–1324.

    PubMed  CAS  Google Scholar 

  43. De Strooper, B. (2003) Aph-1, Pen-2, and nicastrin with presenilin generate an active gamma-secretase comple. Neuron 38, 9–12.

    PubMed  Google Scholar 

  44. Sherrington, R., Rogaev, E. I., Liang, Y., et al. (1995) Cloning of a gene bearing missense mutations in early-onset familial Alzheimer's disease [see comments]. Nature 375, 754–760.

    PubMed  CAS  Google Scholar 

  45. Levy-Lahad, E., Wasco, W., Poorkaj, P., et al. (1995) Candidate gene for the dhromosome 1 familial Alzheimer's disease locus [see comments]. Science 269, 973–977.

    PubMed  CAS  Google Scholar 

  46. Rogaev, E. I., Sherrington, R., Rogaeva, E. A., et al. (1995) Familial Alzheimer's disease in kindreds with missense mutations in a gene on chromosome 1 related to the Alzheimer's disease type 3 gene. Nature 376, 775–778.

    PubMed  CAS  Google Scholar 

  47. De Strooper, B., Saftig, P., Craessaerts, K., et al. (1998) Deficiency of presenilin-1 inhibits the normal cleavage of amyloid precursor protein. Nature 391, 387–390.

    PubMed  Google Scholar 

  48. Herreman, A., Serneels, L., Annaert, W., Collen, D., Schoonjans, L., and De Strooper, B. (2000) Total inactivation of gamma-secretase activity in presenilin-deficient embryonic stem cells. Nature Cell Biol. 2, 461–462.

    PubMed  CAS  Google Scholar 

  49. Zhang, Z., Nadeau, P., Song, W., et al. (2000) Presenilins are required for gamma-secretase cleavage of beta-APP and transmembrane cleavage of Notch-1. Nature Cell Biol. 2, 463–465.

    PubMed  CAS  Google Scholar 

  50. Yu, G., Nishimura, M., Arawaka, S., et al. (2000) Nicastrin modulates presenilin-mediated notch/glp-1 signal transduction and betaAPP processing. Nature 407, 48–54.

    PubMed  CAS  Google Scholar 

  51. Edbauer, D., Winkler, E., Haass, C., and Steiner, H. (2002) Presenilin and nicastrin regulate each other and determine amyloid beta-peptide production via complex formation. Proc. Natl. Acad. Sci. USA 99, 8666–8671.

    PubMed  CAS  Google Scholar 

  52. Goutte, C., Tsunozaki, M., Hale, V. A., and Priess, J. R. (2002) APH-1 is a multipass membrane protein essential for the Notch signaling pathway in Caenorhabditis elegans embryos. Proc. Natl. Acad. Sci. USA 99, 775–779.

    PubMed  CAS  Google Scholar 

  53. Francis, R., McGrath, G., Zhang, J., et al. (2002) Aph-1 and pen-2 are required for Notch pathway signaling, gamma-secretase cleavage of betaAPP, and presenilin protein accumulation. Dev. Cell 3, 85–97.

    PubMed  CAS  Google Scholar 

  54. Kimberly, W. T., LaVoie, M. J., Ostaszewski, B. L., Ye, W., Wolfe, M. S., and Selkoe, D. J. (2003) Gamma-secretase is a membrane protein complex comprised of presenilin, nicastrin, Aph-1, and Pen-2. Proc. Natl. Acad. Sci. USA 100, 6382–6387.

    PubMed  CAS  Google Scholar 

  55. Takasugi, N., Tomita, T., Hayashi, I., et al. (2003) The role of presenilin cofactors in the gamma-secretase complex. Nature 422, 438–441.

    PubMed  CAS  Google Scholar 

  56. Edbauer, D., Winkler, E., Regula, J. T., Pesold, B., Steiner, H., and Haass, C. (2003) Reconstitution of gamma-secretase activity. Nature Cell Biol. 5, 486–488.

    PubMed  CAS  Google Scholar 

  57. Mori, H., Takio, K., Ogawara, M., and Selkoe, D. J. (1992) Mass spectrometry of purified amyloid beta protein in Alzheimer's disease. J. Biol. Chem. 267, 17,082–17,086.

    CAS  Google Scholar 

  58. Miller, D. L., Papayannopoulos, I. A., Styles, J. et al. (1993) Peptide compositions of the cerebrovascular and senile plaque core amyloid deposits of Alzheimer's disease. Arch. Biochem. Biophys. 301, 41–52.

    PubMed  CAS  Google Scholar 

  59. Roher, A. E., Lowenson, J. D., Clarke, S. et al. (1993) beta-amyloid-(1–42) is a major component of cerebrovascular amyloid deposits: implications for the pathology of Alzheimer disease. Proc. Natl. Acad. Sci. USA 90, 10,836–10,840.

    CAS  Google Scholar 

  60. Jarrett, J. T., Berger, E. P., and Lansbury, P. T., Jr. (1993) The carboxy terminus of the beta amyloid protein is critical for the seeding of amyloid formation: implications for the pathogenesis of Alzheimer's disease. Biochemistry 32, 4693–4697.

    PubMed  CAS  Google Scholar 

  61. Harper, J. D., Wong, S. S., Lieber, C. M., and Lansbury, P. T. (1997) Observation of metastable Abeta amyloid protofibrils by atomic force microscopy. Chem. Biol. 4, 119–125.

    PubMed  CAS  Google Scholar 

  62. Walsh, D. M., Lomakin, A., Benedek, G. B., Condron, M. M., and Teplow, D. B. (1997) Amyloid beta-protein fibrillogenesis. Detection of a protofibrillar intermediate. J. Biol. Chem. 272, 22,364–22,372.

    CAS  Google Scholar 

  63. Walsh, D. M., Klyubin, I., Fadeeva, J. V., et al. (2002) Naturally secreted oligomers of amyloid beta protein potently inhibit hippocampal long-term potentiation in vivo. Nature 416, 535–539.

    PubMed  CAS  Google Scholar 

  64. Kayed, R., Head, E., Thompson, J. L., et al. (2003) Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis. Science 300, 486–489.

    PubMed  CAS  Google Scholar 

  65. Irizarry, M. C., Soriano, F., McNamara, M., et al. (1997) Abeta deposition is associated with neuropil changes, but not with overt neuronal loss in the human amyloid precursor protein V717F (PDAPP) transgenic mouse. J. Neurosci. 17, 7053–7059.

    PubMed  CAS  Google Scholar 

  66. Hutton, M., Lendon, C. L., Rizzu, P., et al. (1998) Association of missense and 5′-splicesite mutations in tau with the inherited dementia FTDP-17. Nature 393, 702–705.

    PubMed  CAS  Google Scholar 

  67. Dumanchin, C., Camuzat, A., Campion, D., et al. (1998) Segregation of a missense mutation in the microtubule-associated protein tau gene with familial frontotemporal dementia and parkinsonism. Hum. Mol. Genet. 7, 1825–1829.

    PubMed  CAS  Google Scholar 

  68. Rizzu, P., Van Swieten, J. C., Joosse, M. et al. (1999) High prevalence of mutations in the microtubule-associated protein tau in a population study of frontotemporal dementia in the Netherlands. Am. J. Hum. Genet. 64, 414–421.

    PubMed  CAS  Google Scholar 

  69. Lewis, J., McGowan, E., Rockwood, J., et al. (2002) Neurofibrillary tangles, amyotrophy and progressive motor disturbance in mice expressing mutant (P301L) tau protein. Nature Genet. 25, 402–405.

    Google Scholar 

  70. Lewis, J., Dickson, D. W., Lin, W. L., et al. (2001) Enhanced neurofibrillary degeneration in transgenic mice expressing mutant tau and APP. Science 293, 1487–1491.

    PubMed  CAS  Google Scholar 

  71. Gotz, J., Chen, F., van Dorpe, J., and Nitsch, R. M. (2001) Formation of neurofibrillary tangles in P301l tau transgenic mice induced by Abeta 42 fibrils. Science 293, 1491–1495.

    PubMed  CAS  Google Scholar 

  72. Spillantini, M. G., Sicuteri, F., Salmon, S., and Malfroy, B. (1990) Characterization of endopeptidase 3.4.24.11 (“enkephalinase”) activity in human plasma and cerebrospinal fluid. Biochem. Pharmacol. 39, 1353–1356.

    PubMed  CAS  Google Scholar 

  73. Akiyama, H., Kondo, H., Ikeda, K., Kato, M., and McGeer, P. L. (2001) Immunohistochemical localization of neprilysin in the human cerebral cortex: inverse association with vulnerability to amyloid beta-protein (Abeta) deposition. Brain Res. 902, 277–281.

    PubMed  CAS  Google Scholar 

  74. Carpentier, M., Robitaille, Y., DesGroseillers, L., Boileau, G., and Marcinkiewicz, M. (2002) Declining expression of neprilysin in Alzheimer disease vasculature: possible involvement in cerebral amyloid angiopathy. J. Neuropathol. Exp. Neurol. 61, 849–856.

    PubMed  CAS  Google Scholar 

  75. Fukami, S., Watanabe, K., Iwata, N., et al. (2002) Abeta-degrading endopeptidase, neprilysin, in mouse brain: synaptic and axonal localization inversely correlating with Abeta pathology. Neurosci. Res. 43, 39–56.

    PubMed  CAS  Google Scholar 

  76. Lu, B., Gerard, N. P., Kolakowski, L. F., Jr., et al. (1995) Neutral endopeptidase modulation of septic shock. J. Exp. Med. 181, 2271–2275.

    PubMed  CAS  Google Scholar 

  77. Shirotani, K., Tsubuki, S., Iwata, N., et al. (2001) Neprilysin degrades both amyloid beta peptides 1–40 and 1–42 most rapidly and efficiently among thiorphan- and phosphoramidon-sensitive endopeptidases. J. Biol. Chem. 276, 21,895–21,901.

    CAS  Google Scholar 

  78. Takaki, Y., Iwata, N., Tsubuki, S., et al. (2000) Biochemical identification of the neutral endopeptidase family member responsible for the catabolism of amyloid beta peptide in the brain. J. Biochem. (Tokyo) 128, 897–902.

    CAS  Google Scholar 

  79. Howell, S., Nalbantoglu, J., and Crine, P. (1995) Neutral endopeptidase can hydrolyze beta-amyloid(1–40) but shows no effect on beta-amyloid precursor protein metabolism. Peptides 16, 647–652.

    PubMed  CAS  Google Scholar 

  80. Hama, E., Shirotani, K., Masumoto, H., Sekine-Aizawa, Y., Aizawa, H., and Saido, T. C. (2001) Clearance of extracellular and cell-associated amyloid beta peptide through viral expression of neprilysin in primary neurons. J. Biochem. (Tokyo) 130, 721–726.

    CAS  Google Scholar 

  81. Sudoh, S., Frosch, M. P., and Wolf, B. A. (2002) Differential effects of proteases involved in intracellular degradation of amyloid beta-protein between detergent-soluble and-insoluble pools in CHO-695 cells. Biochemistry 41, 1091–1099.

    PubMed  CAS  Google Scholar 

  82. Iwata, N., Tsubuki, S., Takaki, Y., et al. (2000) Identification of the major Abeta1-42-degrading catabolic pathway in brain parenchyma: suppression leads to biochemical and pathological deposition. Nature Med. 6, 143–150.

    PubMed  CAS  Google Scholar 

  83. Iwata, N., Tsubuki, S., Takaki, Y., et al. (2001) Metabolic regulation of brain Abeta by neprilysin. Science 292, 1550–1552.

    PubMed  CAS  Google Scholar 

  84. Yasojima, K., McGeer, E. G., and McGeer, P. L. (2001) Relationship between beta amyloid peptide generating molecules and neprilysin in Alzheimer disease and normal brain. Brain Res. 919, 115–121.

    PubMed  CAS  Google Scholar 

  85. Yasojima, K., Akiyama, H., McGeer, E. G., and McGeer, P. L. (2001) Reduced neprilysin in high plaque areas of Alzheimer brain: a possible relationship to deficient degradation of beta-amyloid peptide. Neurosci. Lett. 297, 97–100.

    PubMed  CAS  Google Scholar 

  86. Iwata, N., Takaki, Y., Fukami, S., Tsubuki, S., and Saido, T. C. (2002) Region-specific reduction of A beta-degrading endopeptidase, neprilysin, in mouse hippocampus upon aging. J. Neurosci. Res. 70, 493–500.

    PubMed  CAS  Google Scholar 

  87. Qiu, W. Q., Ye, Z., Kholodenko, D., Seubert, P., and Selkoe, D. J. (1997) Degradation of amyloid beta-protein by a metalloprotease secreted by microglia and other neural and non-neural cells. J. Biol. Chem. 272, 6641–6646.

    PubMed  CAS  Google Scholar 

  88. Qiu, W. Q., Walsh, D. M., Ye, Z., et al. (1998) Insulin-degrading enzyme regulates extracellular levels of amyloid beta-protein by degradation. J. Biol. Chem. 273, 32,730–32,738.

    CAS  Google Scholar 

  89. Mukherjee, A., Song, E., Kihiko-Ehmann, M. et al. (2000) Insulysin hydrolyzes amyloid beta peptides to products that are neither neurotoxic nor deposit on amyloid plaques. J. Neurosci. 20, 8745–8749.

    PubMed  CAS  Google Scholar 

  90. Chesneau, V., Vekrellis, K., Rosner, M. R., and Selkoe, D. J. (2000) Purified recombinant insulin-degrading enzyme degrades amyloid beta-protein but does not promote its oligomerization. Biochem. J. 351, (Pt. 2), 509–516.

    PubMed  CAS  Google Scholar 

  91. Miller, B. C., Eckman, E. A., Sambamurti, K., et al. (2003) Amyloid-beta peptide levels in brain are inversely correlated with insulysin activity levels in vivo. Proc. Natl. Acad. Sci. USA 100, 6221–6226.

    PubMed  CAS  Google Scholar 

  92. Farris, W., Mansourian, S., Chang, Y., et al. (2003) Insulin-degrading enzyme regulates the levels of insulin, amyloid beta-protein, and the beta-amyloid precursor protein intracellular domain in vivo. Proc. Natl. Acad. Sci. USA 100, 4162–4167.

    PubMed  CAS  Google Scholar 

  93. Perez, A., Morelli, L., Cresto, J. C., and Castano, E. M. (2000) Degradation of soluble amyloid beta-peptides 1–40, 1–42, and the Dutch variant 1–40Q by insulin degrading enzyme from Alzheimer disease and control brains. Neurochem. Res. 25, 247–255.

    PubMed  CAS  Google Scholar 

  94. Xu, D., Emoto, N., Giaid, A., et al. (1994) ECE-1: a membrane-bound metalloprotease that catalyzes the proteolytic activation of big endothelin-1. Cell 78, 473–485.

    PubMed  CAS  Google Scholar 

  95. Barnes, K., Walkden, B. J., Wilkinson, T. C., and Turner, A. J. (1997) Expression of endothelin-converting enzyme in both neuroblastoma and glial cell lines and its localization in rat hippocampus. J. Neurochem. 68, 570–577.

    Article  PubMed  CAS  Google Scholar 

  96. Johnson, G. D., Stevenson, T., and Ahn, K. (1999) Hydrolysis of peptide hormones by endothelin-converting enzyme-1. A comparison with neprilysin. J. Biol. Chem. 274, 4053–4058.

    PubMed  CAS  Google Scholar 

  97. Hoang, M. V. and Turner, A. J. (1997) Novel activity of endothelin-converting enzyme: hydrolysis of bradykinin. Biochem. J. 327(Pt. 1), 23–26.

    PubMed  CAS  Google Scholar 

  98. Eckman, E. A., Reed, D. K., and Eckman, C. B. (2001) Degradation of the Alzheimer's amyloid beta peptide by endothelin-converting enzyme. J. Biol. Chem. 276, 24,540–24,548.

    CAS  Google Scholar 

  99. Bugge, T. H., Kombrinck, K. W., Flick, M. J., Daugherty, C. C., Danton, M. J., and Degen, J. L. (1996) Loss of fibrinogen rescues mice from the pleiotropic effects of plasminogen deficiency. Cell 87, 709–719.

    PubMed  CAS  Google Scholar 

  100. Tsirka, S. E., Rogove, A. D., Bugge, T. H., Degen, J. L., and Strickland, S. (1997) An extracellular proteolytic cascade promotes neuronal degeneration in the mouse hippocampus. J. Neurosci. 17, 543–552.

    PubMed  CAS  Google Scholar 

  101. Van Nostrand, W. E. and Porter, M. (1999) Plasmin cleavage of the amyloid beta-protein: alteration of secondary structure and stimulation of tissue plasminogen activator activity. Biochemistry 38, 11,570–11,576.

    Google Scholar 

  102. Tucker, H. M., Kihiko, M., Caldwell, J. N., et al. (2000) The plasmin system is induced by and degrades amyloid-beta aggregates. J. Neurosci. 20, 3937–3946.

    PubMed  CAS  Google Scholar 

  103. Qian, Z., Gilbert, M. E., Colicos, M. A., Kandel, E. R., and Kuhl, D. (1993) Tissue-plasminogen activator is induced as an immediate-early gene during seizure, kindling and long-term potentiation. Nature 361, 453–457.

    PubMed  CAS  Google Scholar 

  104. Seeds, N. W., Williams, B. L., and Bickford, P. C. (1995) Tissue plasminogen activator induction in Purkinje neurons after cerebellar motor learning. Science 270, 1992–1994.

    PubMed  CAS  Google Scholar 

  105. Pawlak, R., Magarinos, A. M., Melchor, J., McEwen, B., and Strickland, S. (2003) Tissue plasminogen activator in the amygdala is critical for stress-induced anxiety-like behavior. Nature Neurosci. 6, 168–174.

    PubMed  CAS  Google Scholar 

  106. Frey, U., Muller, M., and Kuhl, D. (1996) A different form of long-lasting potentiation revealed in tissue plasminogen activator mutant mice. J. Neurosci. 16, 2057–2063.

    PubMed  CAS  Google Scholar 

  107. Huang, Y. Y., Bach, M. E., Lipp, H. P. et al. (1996) Mice lacking the gene encoding tissue-type plasminogen activator show a selective interference with late-phase long-term potentiation in both Schaffer collateral and mossy fiber pathways. Proc. Natl. Acad. Sci. USA 93, 8699–8704.

    PubMed  CAS  Google Scholar 

  108. Zhuo, M., Holtzman, D. M., Li, Y., et al. (2000) Role of tissue plasminogen activator receptor LRP in hippocampal long-term potentiation. J. Neurosci. 20, 542–549.

    PubMed  CAS  Google Scholar 

  109. Tucker, H. M., Kihiko-Ehmann, M., Wright, S., Rydel, R. E., and Estus, S. (2000) Tissue plasminogen activator requires plasminogen to modulate amyloid-beta neurotoxicity and deposition. J. Neurochem. 75, 2172–2177.

    PubMed  CAS  Google Scholar 

  110. Tucker, H. M., Kihiko-Ehmann, M. and Estus, S. (2002) Urokinase-type plasminogen activator inhibits amyloid-beta neurotoxicity and fibrillogenesis via plasminogen. J. Neurosci. Res. 70, 249–255.

    PubMed  CAS  Google Scholar 

  111. Ledesma, M. D., Da, Silva, J. S., Crassaerts, K., Delacourte, A., De Strooper, B., and Dotti, C. G. (2000) Brain plasmin enhances APP alphacleavage and Abeta degradation and is reduced in Alzheimer's disease brains. EMBO Rep. 1, 530–535.

    PubMed  CAS  Google Scholar 

  112. Kingston, I. B., Castro, M. J., and Anderson, S. (1995) In vitro stimulation of tissue-type plasminogen activator by Alzheimer amyloidbeta peptide analogues. Nature Med. 1, 138–142.

    PubMed  CAS  Google Scholar 

  113. Wnendt, S., Wetzels, I., and Gunzler, W. A. (1997) Amyloid beta peptides stimulate tissue-type plasminogen activator but not recombinant prourokinset. Thromb. Res. 85, 217–224.

    PubMed  CAS  Google Scholar 

  114. Roher, A. E., Kasunic, T. C., Woods, A. S., Cotter, R. J., Ball, M. J., and Fridman, R. (1994) Proteolysis of A beta peptide from Alzheimer disease brain by gelatinase A. Biochem. Biophys. Res. Commun. 205, 1755–1761.

    PubMed  CAS  Google Scholar 

  115. Beckstrom, J. R., Lim, G. P., Cullen, M. J., and Tokes, Z. A. (1996) Matrix metalloproteinase-9 (MMP-9) is synthesized in neurons of the human hippocampus and is capable of degrading the amyloid-beta peptide (1–40). J. Neurosci. 16, 7910–7919.

    Google Scholar 

  116. Hu, J., Igarashi, A., Kamata, M., and Nakagawa, H. (2001) Angiotensin-converting enzyme degrades Alzheimer amyloid betapeptide (A beta): retards A beta aggregation, deposition, fibril formation; and inhibits cytotoxicity. J. Biol. Chem. 276, 47,863–47,868.

    CAS  Google Scholar 

  117. Healy, D. P. and Orlowski, M. (1992) Immunocytochemical localization of endopeptidase 24.15 in rat brain. Brain Res. 571, 121–128.

    PubMed  CAS  Google Scholar 

  118. Yamin, R., Malgeri, E. G., Sloane, J. A., McGraw, W. T., and Abraham, C. R. (1999) Metalloendopeptidase EC 3.4.24.15 is necessary for Alzheimer's amyloid-beta peptide degradation. J. Biol. Chem. 274, 18,777–18,784.

    CAS  Google Scholar 

  119. Ichai, C., Chevallier, N., Delaere, P., et al. (1994) Influence of region-specific alterations of neuropeptidase content on the catabolic fates of neuropeptides in Alzheimer's disease. J. Neurochem. 62, 645–655.

    Article  PubMed  CAS  Google Scholar 

  120. Blacker, D., Wilcox, M. A., Laird, N. M., et al. (1998) alpha-2 macroglobulin is genetically associated with Alzheimer disease. Nature Genet. 19, 357–360.

    PubMed  CAS  Google Scholar 

  121. Du, Y., Ni, B., Glinn, M., et al. (1997) alpha2-Macroglobulin as a beta-amyloid peptide-binding plasma protein. J. Neurochem. 69, 299–305.

    Article  PubMed  CAS  Google Scholar 

  122. Narita, M., Holtzman, D. M., Schwartz, A. L., and Bu, G. J. (1997) α2-Macroglobulin complexes with and mediates the endocytosis of β-amyloid peptide via cell surface low-density lipoprotein recepter-related protein. J. Neurochem. 69, 1904–1911.

    Article  PubMed  CAS  Google Scholar 

  123. Hughes, S. R., Khorkova, O., Goyal, S., et al. (1998) Alpha2-macroglobulin associates with beta-amyloid peptide and prevents fibril formation. Proc. Natl. Acad. Sci. USA 95, 3275–3280.

    PubMed  CAS  Google Scholar 

  124. Lauer, D., Reichenbach, A., and Birkenmeier, G. (2001) Alpha 2-macroglobulin-mediated degradation of amyloid beta 1–42: a mechanism to enhance amyloid beta catabolism. Exp. Neurol. 167, 385–392.

    PubMed  CAS  Google Scholar 

  125. Qiu, W. Q., Borth, W., Ye, Z., Haass, C., Teplow, D. B., and Selkoe, D. J. (1996) Degradation of amyloid beta-protein by a serine protease-alpha2-macroglobulin complex. J. Biol. Chem. 271, 8443–8451.

    PubMed  CAS  Google Scholar 

  126. Gettins, P. G. (2002) Serpin structure, mechanism, and function. Chem. Rev. 102, 4751–4804.

    PubMed  CAS  Google Scholar 

  127. Hastings, G. A., Coleman, T. A., Haudenschild, C. C., et al. (1997) Neuroserpin, a brain-associated inhibitor of tissue plasminogen activator is localized primarily in neurons. Implications for the regulation of motor learning and neuronal survival. J. Biol. Chem. 272, 33,062–33,067.

    CAS  Google Scholar 

  128. Krueger, S. R., Ghisu, G. P., Cinelli, P., et al. (1997) Expression of neuroserpin, an inhibitor of tissue plasminogen activator, in the developing and adult nervous system of the mouse. J. Neurosci. 17, 8984–8996.

    PubMed  CAS  Google Scholar 

  129. Sappino, A. P., Madani, R., Huarte, J., et al. (1993) Extracellular proteolysis in the adult murine brain. J. Clin. Invest. 92, 679–685.

    PubMed  CAS  Google Scholar 

  130. Tsirka, S. E., Gualandris, A., Amaral, D. G., and Strickland, S. (1995) Excitotoxin-induced neuronal degeneration and seizure are mediated by tissue plasminogen activator. Nature 377, 340–344.

    PubMed  CAS  Google Scholar 

  131. Gualandris, A., Jones, T. E., Strickland, S., and Tsirka, S. E. (1996) Membrane depolarization induces calcium-dependent secretion of tissue plasminogen activator. J. Neurosci. 16, 2220–2225.

    PubMed  CAS  Google Scholar 

  132. Madani, R., Kozlov, S., Akhmedov, A., et al. (2003) Impaired explorative behavior and neophobia in genetically modiffied mice lacking or overexpressing the extracellular serine protease inhibitor neuroserpin. Mol. Cell. Neurosci. 23, 473–494.

    PubMed  CAS  Google Scholar 

  133. Davis, R. L., Shrimpton, A. E., Holohan, P. D. et al. (1999) Familial dementia caused by polymerization of mutant neuroserpin. Nature 401, 376–379.

    PubMed  CAS  Google Scholar 

  134. Davis, R. L., Holohan, P. D., Shrimpton, A. E. et al. (1999) Familial encephalopathy with neuroserpin inclusion bodies. Am. J. Pathol. 155, 1901–1913.

    PubMed  CAS  Google Scholar 

  135. Belorgey, D., Crowther, D. C., Mahadeva, R., and Lomas, D. A. (2002) Mutant neuroserpin (S49P) that causes familial encephalopathy with neuroserpin inclusion bodies is a poor proteinase inhibitor and readily forms polymers in vitro. J. Biol. Chem. 277, 17,367–17,373.

    CAS  Google Scholar 

  136. Briand, C., Kozlov, S. V., Sonderegger, P., and Grutter, M. G. (2001) Crystal structure of neuroserpin: a neuronal seprin involved in a conformational disease. FEBS Lett. 505, 18–22.

    PubMed  CAS  Google Scholar 

  137. Luthi, A., Van der, P. H., Botteri, F. M., et al. (1997) Endogenous serine protease inhibitor modulates epileptic activity and hippocampal long-term potentiation. J. Neurosci. 17, 4688–4699.

    PubMed  CAS  Google Scholar 

  138. Meins, M., Piosik, P., Schaeren-Wiemers, N., et al. (2001) Progressive neuronal and motor dysfunction in mice overexpressing the serine protease inhibitor protease nexin-1 in postmitotic neurons. J. Neurosci. 21, 8830–8841.

    PubMed  CAS  Google Scholar 

  139. Blacker, D., Haines, J. L., Rodes, L., et al. (1997) ApoE-4 and age at onset of Alzheimer's disease: the NIMH genetics initiative. Neurology 48, 139–147.

    PubMed  CAS  Google Scholar 

  140. Nathan, B. P., Bellosta, S., Sanan, D. A., Weisgraber, K. H., Mahley, R. W., and Pitas, R. E. (1994) Differential effects of apolipoproteins E3 and E4 on neuronal growth in vitro. Science 264, 850–852.

    PubMed  CAS  Google Scholar 

  141. LaDu, M. J., Falduto, M. T., Manelli, A. M., Reardon, C. A., Getz, G. S., and Frail, D. E. (1994) Isoform-specific binding of apolipoprotein E to β-amyloid. J. Biol. Chem. 269, 23,403–23,406.

    CAS  Google Scholar 

  142. Evans, K. C., Berger, E. P., Cho, C.-G., Weisgraber, K. H., and Lansbury, P. T., Jr. (1995) Apolipoprotein E is a kinetic but not a thermodynamic inhibitor of amyloid formation: implications for the pathogenesis and treatment of Alzheimer disease. Proc. Natl. Acad. Sci. USA 92, 763–767.

    PubMed  CAS  Google Scholar 

  143. Bales, K. R., Verina, T., Cummins, D. J., et al. (1999) Apolipoprotein E is essential for amyloid deposition in the APP(V717F) transgenic mouse model of Alzheimer's disease. Proc. Natl. Acad. Sci. USA 96, 15,233–15,238.

    CAS  Google Scholar 

  144. Holtzman, D. M., Bales, K. R., Wu, S., et al. (1999) Expression of human apolipoprotein E reduces amyloid-beta deposition in a mouse model of Alzheimer's disease. J. Clin. Invest. 103, R15-R21.

    PubMed  CAS  Google Scholar 

  145. Holtzman, D. M., Bales, K. R., Tenkova, T., et al. (2000) Apolipoprotein E isoform-dependent amyloid deposition and neuritic degeneration in a mouse model of Alzheimer's disease. Proc. Natl. Acad. Sci. USA 97, 2892–2897.

    PubMed  CAS  Google Scholar 

  146. Kivipelto, M., Helkala, E. L., Hanninen, T., et al. (2001) Midlife vascular risk factors and latelife mild cognitive impairment: a populationbased study. Neurology 56, 1683–1689.

    PubMed  CAS  Google Scholar 

  147. Wolozin, B., Kellman, W., Ruosseau, P., Celesia, G. G., and Siegel, G. (2000) Decreased prevalence of Alzheimer disease associated with 3-hydroxy-3-methyglutaryl coenzyme A reductase inhibitors. Arch. Neurol. 57, 1439–1443.

    PubMed  CAS  Google Scholar 

  148. Jick, H., Zornberg, G. L., Jick, S. S., Seshadri, S., and Drachman, D. A. (2000) Statins and the risk of dementia. Lancet 356, 1627–1631.

    PubMed  CAS  Google Scholar 

  149. Bodovitz, S. and Klein, W. L. (1996) Cholesterol modulates α-secretase cleavage of amyloid precursor proteins. J. Biol. Chem. 271, 4436–4440.

    PubMed  CAS  Google Scholar 

  150. Galbete, J. L., Martin, T. R., Peressini, E., Modena, P., Bianchi, R., and Forloni, G. (2000) Cholesterol decreases secretion of the secreted form of amyloid precursor protein by interfering with glycosylation in the protein secretory pathway. Biochem. J. 348(Pt. 2), 307–313.

    PubMed  CAS  Google Scholar 

  151. Racchi, M., Baetta, R., Salvietti, N., et al. (1997) Secretory processing of amyloid precursor protein is inhibited by increase in cellular cholesterol content. Biochem. J. 322, 893–898.

    PubMed  CAS  Google Scholar 

  152. Kojro, E., Gimpl, G., Lammich, S., Marz, W., and Fahrenholz, F. (2001) Low cholesterol stimulates the nonamyloidogenic pathway by its effect on the alpha-secretase ADAM 10. Proc. Natl. Acad. Sci. USA 98, 5815–5820.

    PubMed  CAS  Google Scholar 

  153. Puglielli, L., Konopka, G., Pack-Chung, E., et al. (2001) Acyl-coenzyme A: cholesterol acyltransferase modulates the generation of the amyloid beta-peptide. Nature Cell Biol. 3, 905–912.

    PubMed  CAS  Google Scholar 

  154. Willnow, T. E., Orth, K., and Herz, J. (1994) Molecular dissection of ligand binding sites on the low density lipoprotein receptor-related Proteins. J. Biol. Chem. 269, 15,827–15,832.

    CAS  Google Scholar 

  155. Obermoeller-McCormick, L. M., Li, Y., Osaka, H., Fitzgerald, D. J., Schwartz, A. L., and Bu, G. (2001) Dissection of receptor folding and ligand-binding property with functional minireceptors of LDL receptor-related protein. J. Cell Sci. 114, 899–908.

    PubMed  CAS  Google Scholar 

  156. Neels, J. G., van Den Berg, B. M., Lookene, Olivecrona, G., Pannekoek, H., and Van Zonneveld, A. J. (1999) The second and fourth cluster of class A cysteine-rich repeats of the low density lipoprotein receptor-related protein share ligand-binding properties. J. Biol. Chem. 274, 31,305–31,311.

    CAS  Google Scholar 

  157. Mikhailenko, I., Battey, F. D., Migliorini, M., et al. (2001) Recognition of alpha 2-macroglobulin by the low density lipoprotein recepor-related protein requires the cooperation of two ligand binding cluster regions. J. Biol. Chem. 276, 39,484–39,491.

    CAS  Google Scholar 

  158. Rudenko, G., Henry, L., Henderson, K., et al. (2002) Structure of the LDL receptor extracellular domain at endosoma pH. Science 298, 2353–2358.

    PubMed  CAS  Google Scholar 

  159. Gotthardt, M., Trommsdorff, M., Nevitt, M. F., et al. (2000) Interactions of the low density lipoprotein receptor gene family with cytosolic adaptor and scaffold proteins suggest diverse biological functions in cellular communication and signal transduction. J. Biol. Chem. 275, 25616–25624.

    PubMed  CAS  Google Scholar 

  160. Trommsdorff, M., Borg, J. P., Margolis, B., and Herz, J. (1998) Interaction of cytosolic adaptor proteins with neuronal apolipoprotein E receptors and the amyloid precursor protein. J. Biol. Chem. 273, 33,556–33,560.

    CAS  Google Scholar 

  161. Brown, S. D., Twells, R. C., Hey, P. J., et al. (1998) Isolation and characterization of LRP6, a novel member of the low density lipoprotein receptor gene family. Biochem. Biophys. Res. Commun. 248, 879–888.

    PubMed  CAS  Google Scholar 

  162. Hey, P. J., Twells, R. C., Phillips, M. S., et al. (1998) Cloning of a novel member of the lowdensity lipoprotein receptor family. Gene 216, 103–111.

    PubMed  CAS  Google Scholar 

  163. Ashcom, J. D., Tiller, S. E., Dickerson, K., Cravens, J. L., Argraves, W. S., and Strickland, D. K. (1990) The human α2-macroglobulin receptor: identification of a 420-kD cell surface glycoprotein specific for the activated conformation of α2-macroglobulin. J. Cell. Biol. 110, 1041–1048.

    PubMed  CAS  Google Scholar 

  164. Jensen, P. H., Moestrup, S. K., and Gliemann, J. (1989) Purification of the human placental α2-macroglobulin receptor. FEBS. Lett. 255, 275–280.

    PubMed  CAS  Google Scholar 

  165. Strickland, D. K., Ashcom, J. D., Williams, S., et al. (1991) Primary structure of α2-macroglobulin receptor-associated protein. Human homologue of a Heymann nephritis antigen. J. Biol. Chem. 266, 13,364–13,369.

    CAS  Google Scholar 

  166. Furukawa, T., Ozawa, M., Huang, R.-P., and Muramatsu, T. (1990) A heparin binding protein whose expression increases during differentiation of embryonal carcinoma cells to parietal endoderm cells: cDNA cloning and sequence analysis. J. Biochem. 108, 297–302.

    PubMed  CAS  Google Scholar 

  167. Pietromonaco, S., Kerjaschki, D., Binder, S., Ullrich, R., and Farquhar, M. G. (1990) Molecular cloning of a cDNA encoding a major pathogenic domain of the Heymann nephritis antigen gp330. Proc. Natl. Acad. Sci. USA 87, 1811–1815.

    PubMed  CAS  Google Scholar 

  168. Bu, G., Rennke, S., and Geuze, H. J. (1997) ERD2 proteins mediate ER retention of the HNEL signal of LRP's receptor-associated protein (RAP). J. Cell Sci. 110, 65–73.

    PubMed  CAS  Google Scholar 

  169. Mikhailenko, I., Considine, W., Argraves, K. M., Loukinov, D., Hyman, B. T., and Strickland, D. K. (1999) Functional domains of the very low density lipoprotein receptor: molecular analysis of lignand binding and acid-dependent ligand dissociation mechanisms. J. Cell Sci. 112, 3269–3281.

    PubMed  CAS  Google Scholar 

  170. Andersen, O. M., Christensen, L. L., Christensen, P. A., et al. (2000) Identification of the minimal functional unit in the low density lipoprotein receptor-related protein for binding the receptor-associated protein (RAP). A conserved acidic residue in the complement-type repeats is important for recognition of RAP. J. Biol. Chem. 275, 21,017–21,024.

    CAS  Google Scholar 

  171. Williams, S. E., Ashcom, J. D., Argraves, W. S., and Strickland, D. K. (1992) A novel mechanism for controlling the activity of α2-macroglobulin receptor/low density lipoprotein receptor-related protein. Multiple regulatory sites for 39-kDa receptor-associated protein. J. Biol. Chem. 267, 9035–9040.

    PubMed  CAS  Google Scholar 

  172. Herz, J., Goldstein, J. L., Strickland, D. K., Ho, Y. K., and Brown, M. S. (1991) 39-kDa protein modulates binding of ligands to low density lipoprotein receptor-related protein/α2-macroglobulin receptor. J. Biol. Chem. 266, 21,232–21,238.

    CAS  Google Scholar 

  173. Kounnas, M. Z., Argraves, W. S., and Strickland, D. K. (1992) The 39-kDa receptor associated protein interacts with two members of the low density lipoprotein receptor family, α2-macroglobulin receptor and glycoprotein 330. J. Biol. Chem. 267, 21,162–21,166.

    CAS  Google Scholar 

  174. Battey, F., Gåfvels, M. E., Fitzgerald, D. J., et al. (1994) The 39 kDa receptor associated protein regulates ligand binding by the very low density lipoprotein receptor. J. Biol. Chem. 269, 23,268–23,273.

    CAS  Google Scholar 

  175. Moestrup, S. K. and Gliemann, J. (1991) Analysis of ligand recognition by the purified alpha 2-macroglobulin receptor (low density lipoprotein receptor-related protein). Evidence that high affinity of alpha 2-macroglobulin-proteinase complex is achieved by binding to adjacent receptors. J. Biol. Chem. 266, 14,011–14,017.

    CAS  Google Scholar 

  176. Horn, I. R., van den Berg, B. M. M., van der Meijden, P. Z., Pannekoek, H., and van Zonneveld, A.-J. (1997) Molecular analysis of ligand binding to the second cluster of complement-type repeats for the low density lipoprotein receptor-related protein: evidence for an allosteric component in receptor-associated protein mediated inhibition of ligand binding. J. Biol. Chem. 272, 13,608–13,613.

    CAS  Google Scholar 

  177. Biemesderfer, D., Dekan, G., Aronson, P. S., and Farquhar, M. G. (1993) Biosynthesis of the gp330/44-kDa Heymann nephritis antigenic complex: assembly takes place in the ER. Am. J. Physiol. 264, F1011-F1020.

    PubMed  CAS  Google Scholar 

  178. Bu, G., Geuze, H. J., Strous, G. J., and Schwartz, A. L. (1995) 39 kDa receptor-associated protein is an ER resident protein and molecular chaperone for LDL receptor-related protein. EMBO J. 14, 2269–2280.

    PubMed  CAS  Google Scholar 

  179. Willnow, T. E., Rohlmann, A., Horton, J., et al. (1996) RAP, a specialized chaperone, prevents ligand-induced ER retention and degradation of LDL receptor-related endocytic receptors. EMBO J. 15, 2632–2639.

    PubMed  CAS  Google Scholar 

  180. Willnow, T.E., Armstrong, S. A., Hammer, R. E., and Herz, J. (1995) Functional expression of low density lipoprotein receptor-related protein is controlled by receptro-associated protein in vivo. Proc. Natl. Acad. Sci. USA 92, 4537–4541.

    PubMed  CAS  Google Scholar 

  181. Culi, J. and Mann, R. S. (2003) Boca, an endoplasmic reticulum protein required for wingless signaling and trafficking of LDL receptor family members in Drosophila. Cell 112, 343–354.

    PubMed  CAS  Google Scholar 

  182. Hsieh, J. C., Lee, L., Zhang, L., et al. (2003) Mesd encodes an LRP5/6 chaperone essential for Specification of mouse embryonic polarity. Cell 112, 355–367.

    PubMed  CAS  Google Scholar 

  183. Ulery, P. G. and Strickland, D. K. (2000) LRP in Alzheimer's disease: friend or foe? J. Clin. Invest. 106, 1077–1079.

    PubMed  CAS  Google Scholar 

  184. Kounnas, M. Z., Moir, R. D., Rebeck, G. W., et al. (1995) LDL receptor-related protein, a multifunctional apoE receptor, binds secreted β-amyloid precursor protein and mediates its degradation. Cell 82, 331–340.

    PubMed  CAS  Google Scholar 

  185. Koo, E. H. and Squazzo, S. L. (1994) Evidence that production and release of amyloid beta-protein involves the endocytic pathway. J. Biol. Chem. 269, 17,386–17,389.

    CAS  Google Scholar 

  186. Knauer, M. F., Orlando, R. A., and Glabe, C. G. (1996) Cell surface APP751 forms complexes with protease nexin 2 ligands and is internalized via the low density lipoprotein receptor-related protein (LRP). Brain Res. 740, 6–14.

    PubMed  CAS  Google Scholar 

  187. Ulery, P. G., Beers, J., Mikhailenko, I., et al. (2000) Modulation of beta-amyloid precursor protein processing by the low density lipoprotein receptor-related protein (LRP). Evidence that lrp contributes to the pathogenesis of Alzheimer's disease. J. Biol. Chem. 275, 7410–7415.

    PubMed  CAS  Google Scholar 

  188. Fitzgerald, D. J., Fryling, C. M., Zdanovsky, A., et al. (1995) Pseudomonas exotoxin-mediated selection yields cells with altered expression of low-density lipoprotein receptor-related protein. J. Cell. Biol. 129, 1533–1541.

    PubMed  CAS  Google Scholar 

  189. Kinoshita, A., Whelan, C. M., Smith, C. J., et al. (2001) Demonstration by fluorescence resonance energy transfer of two sites of interaction between the low-density lipoprotein receptor-related protein and the amyloid precursor protein: role of the intracellular adapter protein Fe65. J. Neurosci. 21, 8354–8361.

    PubMed  CAS  Google Scholar 

  190. Pietrzik, C. U., Busse, T., Merriam, D. E., Weggen, S., and Koo, E. H. (2002) The cytoplasmic domain of the LDL receptor-related protein regulates multiple steps in APP processing. EMBO J. 21, 5691–5700.

    PubMed  CAS  Google Scholar 

  191. Loukinova, E., Ranganathan, S., Kuznetsov, S., et al. (2002) PDGF-induced tyrosine phosphorylation of the LDL receptor-related protein (LRP): evidence for integrated co-receptor function between LRP and the PDGF receptor. J. Biol. Chem. 277, 15,499–15,506.

    CAS  Google Scholar 

  192. Haass, C., Schlossmacher, M. G., Hung, A. Y., et al. (1992) Amyloid beta-peptide is produced by cultured cells during normal metabolism. Nature 359, 322–325.

    PubMed  CAS  Google Scholar 

  193. Matsubara, E., Frangione, B., and Ghiso, J. (1995) Characterization of apolipoprotein J-Alzheimer's A beta interaction. J. Biol. Chem. 270, 7563–7567.

    PubMed  CAS  Google Scholar 

  194. Fabrizi, C., Businaro, R., Lauro, G. M., and Fumagalli, L. (2001) Role of alpha2-macroglobulin in regulating amyloid beta-protein neurotoxicity: protective or detrimental factor? J. Neurochem. 78, 406–412.

    PubMed  CAS  Google Scholar 

  195. Zlokovic, B. V., Martel, C. L., Matsubara, E., et al. (1996) Glycoprotein 330/megalin: probable role in receptor-mediated transport of apolipoprotein J alone and in a complex with Alzheimer disease amyloid beta at the blood-brain and blood-cerebrospinal fluid barriers. Proc. Natl. Acad. Sci. USA 93, 4229–4234.

    PubMed  CAS  Google Scholar 

  196. Hammad, S. M., Ranganathan, S., Loukinova, E., Twal, W. O., and Argraves, W. S. (1997) Interaction of apolipoprotein J-amyloid beta-peptide complex with low density lipoprotein receptor-related protein-2/megalin. A mechanism to prevent pathological accumulation of amyloid beta-peptide. J. Biol. Chem. 272, 18,644–18,649.

    CAS  Google Scholar 

  197. Shibata, M., Yamada, S., Kumar, S. R., et al. (2000) Clearance of Alzheimer's amyloid-ss(1–40) peptide from brain by LDL receptor-related protein-1 at the blood-brain barrier. J. Clin. Invest. 106, 1489–1499.

    PubMed  CAS  Google Scholar 

  198. Kang, D. E., Pietrzik, C. U., Baum, L., et al. (2000) Modulation of amyloid beta-protein clearance and Alzheimer's disease suscepbility by the LDL receptor-related protein pathway. J. Clin. Invest. 106, 1159–1166.

    PubMed  CAS  Google Scholar 

  199. Kang, D. E., Saitoh, T., Chen, X., et al. (1997) Genetic association of the low-density lipoprotein receptor- related protein gene (LRP), an apolipoprotein E receptor, with late-onset Alzheimer's disease. Neurology 49, 56–61.

    PubMed  CAS  Google Scholar 

  200. Baum, L., Chen, L., Ng, H. K., et al. (1998) Low density lipoprotein receptor related protein gene exon 3 polymorphism association with Alzheimer's disease in Chinese. Neurosci. Lett. 247, 33–36.

    PubMed  CAS  Google Scholar 

  201. Hollenbach, E., Ackermann, S., Hyman, B. T., and Rebeck, G. W. (1998) Confirmation of an association between a polymorphism in exon 3 of the low-density lipoprotein receptor-related protein gene and Alzheimer's disease. Neurology 50, 1905–1907.

    PubMed  CAS  Google Scholar 

  202. Van Uden, E., Mallory, M., Veinbergs, I., Alford, M., Rockenstein, E., and Masliah, E. (2002) Increased extracellular amyloid deposition and neurodegeneration in human amyloid precursor protein transgenic mice deficient in receptor-associated protein. J. Neurosci. 22, 9298–9304.

    PubMed  Google Scholar 

  203. Yamamoto, T., Davis, G. C., Brown, M. S., et al. (1984) The human LDL receptor: a cysteine-rich protein with multiple Alu sequences in its mRNA. Cell 39, 27–38.

    PubMed  CAS  Google Scholar 

  204. Brown, M. S. and Goldstein, J. L. (1986) A receptor-mediated pathway for cholesterol homeostasis. Science 232, 34–47.

    PubMed  CAS  Google Scholar 

  205. Goldstein, J. L. and Brown, M. S. (1977) The low-density lipoprotein pathway and its relation to atherosclerosis. Annu. Rev. Biochem. 46, 897–930.

    PubMed  CAS  Google Scholar 

  206. Rebeck, G. W., Reiter, J. S., Strickland, D. K., and Hyman, B. T. (1993) Apolipoprotein E in sporadic Alzheimer's disease: allelic variation and receptor interactions. Neuron 11, 575–580.

    PubMed  CAS  Google Scholar 

  207. Takahashi, S., Kawarabayasi, Y., Nakai, T., Sakai, J., and Yamamoto, T. (1992) Rabbit very low density lipoprotein receptor: a low density lipoprotein receptor-like protein with distinct ligand specificity. Proc. Natl. Acad. Sci. USA 89, 9252–9256.

    PubMed  CAS  Google Scholar 

  208. Sakai, J., Hoshino, A., Takahashi, S., et al. (1994) Structure, chromosome location, and expression of the human very low density lipoprotein receptor gene. J. Biol. Chem. 269, 2173–2182.

    PubMed  CAS  Google Scholar 

  209. Wyne, K. L., Pathak, K., Seabra, M. C., and Hobbs, H. H. (1996) Expression of the VLDL receptor in endothelial cells. Arteriosclerosis Thromb. Vasc. Biol. 16, 407–415.

    CAS  Google Scholar 

  210. Argraves, K. M., Kozarsky, K. F., Fallon, J. T., Harpel, P. C., and Strickland, D. K. (1997) The atherogenic lipoprotein Lp(a) is internalized and degraded in a process mediated by the VLDL receptor. J. Clin. Invest. 100, 2170–2181.

    PubMed  CAS  Google Scholar 

  211. Multhaupt, H. A. B., Gafvels, M. E., Kariko, K., et al. (1996) Expression of very low density lipoprotein receptor in the vascular wall: analysis of human tissues by in situ hybridization and immunohistochemistry. Am. J. Pathol. 148, 1985–1997.

    PubMed  CAS  Google Scholar 

  212. Frykman, P. K., Brown, M. S., Yamamoto, T., Goldstein, J. L., and Herz, J. (1995) Normal plasma lipoproteins and fertility in gene-targeted mice homozygous for a disruption in the gene encoding very low density lipoprotein receptor. Proc. Natl. Acad. Sci. USA 92, 8453–8457.

    PubMed  CAS  Google Scholar 

  213. Yagyu, H., Lutz, E. P., Kako, Y., et al. (2002) VLDL receptor deficient mice have reduced lipoprotein lipase activity: possible causes of hypertriglyceridemia and reduced body mass with VLDL receptor deficiency. J. Biol. Chem. 277, 10,037–10,043.

    CAS  Google Scholar 

  214. Trommsdorff, M., Gotthardt, M., Hiesberger, T., et al. (1999) Reeler/Disabled-like disruption of neuronal migration in knockout mice lacking the VLDL receptor and ApoE receptor 2. Cell 97, 689–701.

    PubMed  CAS  Google Scholar 

  215. Hembrough, T. A., Ruiz, J. F., Papathanassiu, A. E., Green, S. J., and Strickland, D. K. (2001) Tissue factor pathway inhibitor inhibits endothelial cell proliferation via association with the very low density lipoprotein receptor. J. Biol. Chem. 276, 12,241–12,248.

    CAS  Google Scholar 

  216. Kim, D. H., Iijima, H., Goto, K., et al. (1996) Human apolipoprotein E receptor 2—a novel lipoprotein receptor of the low density lipoprotein receptor family predominantly expressed in brain. J. Biol. Chem. 271, 8373–8380.

    PubMed  CAS  Google Scholar 

  217. Novak, S., Hiesberger, T., Schneider, W. J., and Nimpf, J. (1996) A new low density lipoprotein receptor homologue with 8 ligand binding repeats in brain of chicken and mouse. J. Biol. Chem. 271, 11,732–11,736.

    CAS  Google Scholar 

  218. Stockinger, W., Hengstschlager-Ottnad, E., Novak, S., et al. (1998) The low density lipoprotein receptor gene family. Differential expression of two alpha2-macroglobulin receptors in the brain. J. Biol. Chem. 273, 32,213–32,221.

    CAS  Google Scholar 

  219. Hiesberger, T., Trommsdorff, M., Howell, B. W., et al. (1999) Direct binding of Reelin to VLDL receptor and ApoE receptor 2 induces tyrosine phosphorylation of disabled-1 and modulates tau phosphorylation. Neuron 24, 481–489.

    PubMed  CAS  Google Scholar 

  220. D'Arcangelo, G., Homayouni, R., Keshvara, L., Rice, D. S., Sheldon, M., and Curran, T. (1999) Reelin is a ligand for lipoprotein receptors. Neuron 24, 471–479.

    PubMed  Google Scholar 

  221. Herz, J., Hamann, U., Rogne, S., Myklebost, O., Gausepohl, H., and Stanley, K. K. (1988) Surface location and high affinity for calcium of a 500 kDa liver membrane protein closely related to the LDL-receptor suggest a physiological role as lipoprotein receptor. EMBO J. 7, 4119–4127.

    PubMed  CAS  Google Scholar 

  222. Kounnas, M. Z., Haudenschild, C. C., Strickland, D. K., and Argraves, W. S. (1994) Immunological localization of glycoprotein 330, low density lipoprotein receptor related protein and 39 kDa receptor Associated Protein in Embryonic Mouse Tissue. In Vivo 8, 343–352.

    PubMed  CAS  Google Scholar 

  223. Zheng, G., Bachinsky, D. R., Stamenkovic, I., et al. (1994) Organ distribution in rats of two members of the low-density lipoprotein receptor gene family, gp330 and LRP/alpa 2MR, and the receptor-associated protein (RAP). J. Histochem. Cytochem. 42, 531–542.

    PubMed  CAS  Google Scholar 

  224. Moestrup, S. K., Kaltoft, K., Petersen, C. M., Pedersen, S., Gliemann, J., and Christensen, E. I. (1990) Immunocytochemical identification of the human a2M receptor in monocytes and fibroblasts: monoclonal antibodies define the receptor as a monocyte differentiation antigen. Exp. Cell Res. 190, 195–203.

    PubMed  CAS  Google Scholar 

  225. Wolf, B. B., Lopes, M. B. S., VandenBerg, S. R., and Gonias, S. L. (1992) Characterization and immunohistochemical localization of α2-macroglobulin receptor (low-density lipoprotein receptor-related protein) in human brain. Am. J. Pathol. 141, 37–42.

    PubMed  CAS  Google Scholar 

  226. Kowal, R. C., Herz, J., Weisgraber, K. H., Mahley, R. W., Brown, M. S., and Goldstein, J. L. (1990) Opposing effects of apolipoproteins E and C on lipoprotein binding to LDL receptor related protein. J. Biol. Chem. 265, 10,771–10,779.

    CAS  Google Scholar 

  227. Beisiegel, U., Weber, W., Ihrke, G., Herz, J., and Stanley, K. K. (1989) The LDL-receptor related protein, LRP, is an apolipoprotein E binding protein. Nature 341, 162–164.

    PubMed  CAS  Google Scholar 

  228. Willnow, T. E., Sheng, Z., Ishibashi, S., and Herz, J. (1994) Inhibition of hepatic chylomicron remnant uptake by gene transfer of a receptor antagonist. Science 264, 1471–1474.

    PubMed  CAS  Google Scholar 

  229. Rohlmann, A., Gotthardt, M., Hammer, R. E., and Herz, J. (1998) Inducible inactivation of hepatic LRP gene by cre-mediated recombination confirms role of LRP in clearance of chylomicron remnants. J. Clin. Invest. 101, 689–695.

    Article  PubMed  CAS  Google Scholar 

  230. Strickland, D. K., Ashcom, J. D., Williams, S., Burgess, W. H., Migliorini, M., and Argraves, W. S. (1990) Sequence identity between the α2-macroglobulin receptor and low density lipoprotein receptor-related protein suggests that this molecule is a multifunctional receptor. J. Biol. Chem. 265, 17,401–17,404.

    CAS  Google Scholar 

  231. Moestrup, S. K. and Gliemann, J. (1989) Purification of the rat hepatic α2-macroglobulin receptor as an approximately 440 kDa single chain polypeptide. J. Biol. Chem. 264, 15,574–15,577.

    CAS  Google Scholar 

  232. Kristensen, T., Moestrup, S. K., Gliemann, J., Bendtsen, L., Sand, O., and Sottrup-Jensen, L. (1990) Evidence that the newly closed LRP is the α2M receptor. FEBS Lett. 276, 151–155.

    PubMed  CAS  Google Scholar 

  233. Strickland, D. K., Gonias, S. L., and Arraves, W. S. (2002) Diverse roles for the LDL receptor family. Trends Endocrinol. Metab. 13, 66–74.

    PubMed  CAS  Google Scholar 

  234. Herz, J. and Strickland, D. K. (2001) LRP: a multifunctional scavenger and signaling receptor. J. Clin Invest. 108, 779–784.

    PubMed  CAS  Google Scholar 

  235. Kounnas M. Z., Henkin, J., Argraves, W. S., and Strickland, D. K. (1993) Low density lipoprotein receptor-related α2-macroglobulin receptor mediates cellular uptake of pro-urokinase. J. Biol. Chem. 268, 21,862–21,867.

    CAS  Google Scholar 

  236. Bu, G., Williams, S., Strickland, D. K., and Schwartz A. L. (1992) Low density lipoprotein receptor-related α2-macroglobulin receptor is an hepatic receptor for tissue-type plasminogen activator. Proc. Natl. Acad. Sci. USA 89, 7427–7431.

    PubMed  CAS  Google Scholar 

  237. Hahn-Dantona, E., Ruiz, J. F., Bornstein, P., and Strickland, D. K. (2001) The low density lipoprotein receptor-related protein modulates levels of matrix metalloproteinase 9 (MMP-9) by mediating its cellular catabolism. J. Biol. Chem. 276, 15,498–15,503.

    CAS  Google Scholar 

  238. Barmina, O. Y., Walling, H. W., Fiacco, G. J., et al. (1999) Collagenase-3 binds to a specific receptor and requires the low density lipoprotein receptor-related protein for internalization. J. Biol. Chem. 274, 30,087–30,093.

    CAS  Google Scholar 

  239. Yang, Z., Strikland, D. K., and Bornstein, P. (2000) Extracellular MMP2 levels are regulated by the LRP scavenger receptor and thrombospondin 2. J. Biol. Chem. 276, 8403–8408.

    PubMed  Google Scholar 

  240. Nykjær, A., Petersen, C. M., Moller, B., et al. (1992) Purified α2-macroglobulin receptor/LDL receptor-related protein binds urokinase plasminogen activator inhibitor type-1 complex. Evidence that the α2-macroglobulin receptor mediates cellular degradation of urokinase receptor-bound complexes. J. Biol. Chem. 267, 14,543–14,546.

    Google Scholar 

  241. Orth, K., Madison, E. L., Gething, M.-J., Sambrook, J. F., and Herz, J. (1992) Complexes of tissue-type plasminogen actiator and its serpin inhibitor plasminogen-activator inhibitor type 1 are internalized by means of the low density lipoprotein receptor-related protein/α2-macroglobulin receptor. Proc. Natl. Acad. Sci. USA 89, 7422–7426.

    PubMed  CAS  Google Scholar 

  242. Kounnas, M. Z., Church, F. C., Argraves, W. S., and Strickland, D. K. (1996) Cellular internalization and degradation of antithrombin III-thrombin, heparin cofactor II-thrombin, and α1-antitrypsin-trypsin complexes is mediated by the low density lipoprotein receptor-related protein. J. Biol. Chem. 271, 6523–6529.

    PubMed  CAS  Google Scholar 

  243. Storm, D., Herz, J., Trinder, P., and Loos, M. (1997) C1 inhibitor-C1s complexes are internalized and degraded by the low density lipoprotein receptor-related protein. J. Biol. Chem. 272, 31,043–31,050.

    CAS  Google Scholar 

  244. Herz, J., Clouthier, D. E., and Hammer, R. E. (1992) LDL receptor-related protein internalizes and degrades uPA-PAI-1 complexes and is essential for embryo implantation. Cell 71, 411–421.

    PubMed  CAS  Google Scholar 

  245. Boucher, P., Gotthardt, M., Li W. P., Anderson, R. G. W., and Herz, J. (2003) LRP: role in vascular wall integrity and protection from atherosclerosis. Science 329.

  246. Boucher, P., Liu, P., Gotthardt M., Hiesberger T., Anderson, R. G., and Herz, J. (2002) Platelet-derived growth factor mediates tyrosine phosphorylation of the cytoplasmic domain of the low density lipoprotein receptor-related protein in caveolae. J. Biol. Chem. 277, 15,507–15,513.

    CAS  Google Scholar 

  247. Liu, C. X., Musco, S., Lisitsina, N. M., Forgacs, E., Minna, J. D., and Lisitsyn, N. A. (2000) LRP-DIT, a putative endocytic receptor gene, is frequently inactivated in non-small cell lung cancer cell lines. Cancer Res. 60, 1961–1967.

    PubMed  CAS  Google Scholar 

  248. Liu C. X., Musco, S., Lisitsina, N. M., Yaklichkin, S. Y., and Lisitsyn, N. A. (2000) Genomic organization of a new candidate tumor suppressor gene, LRP1B. Genomics 69, 271–274.

    PubMed  CAS  Google Scholar 

  249. Liu, C. X., Li, Y., Obermoeller-McCormick, L. M., Schwartz, A. L., and Bu, G. (2001) The putative tumor suppressor Irp1b, a novel member of the low density lipoprotein (Idl) receptor family, exhibits both overlapping and distinct properties with the ldl receptor-related protein. J. Biol. Chem. 276, 28,889–28,896.

    CAS  Google Scholar 

  250. Saito, A., Pietromonaco, S., Loo, A. K. C., and Farquhar, M. G. (1994) Complete cloning and sequencing of rat gp330/“megalin,” a distinctive member of the low density lipoprotein receptor gene family. Proc. Natl. Acad. Sci. USA 91, 9725–9729.

    PubMed  CAS  Google Scholar 

  251. Hjälm, G., Murray, E., Crumley, G., et al. (1996) Cloning and sequencing of human gp330, a Ca2+-binding receptor with potential intracellular signaling properties. Eur. J. Biochem. 239, 132–137.

    PubMed  Google Scholar 

  252. Nykjaer, A., Dragun, D., Walther, D., et al. (1999) An endocytic pathway essential for renal uptake and activation of the steroid 25-(OH) vitamin D3. Cell 96, 507–515.

    PubMed  CAS  Google Scholar 

  253. Willnow, T. E., Hilpert, J., Armstrong, S. A., et al. (1996) Defective forebrain developmet in mice lacking gp330/megalin. Proc. Natl. Acad. Sci. USA 93, 8460–8464.

    PubMed  CAS  Google Scholar 

  254. Sousa, M. M., Norden, A. G., Jacobsen, C., et al. (2000) Evidence for the role of megalin in renal uptake of transthyretin. J. Biol. Chem. 275, 38,176–38,181.

    CAS  Google Scholar 

  255. Marino, M., Zheng, G., Chiovato, L., et al. (2000) Role of megalin (gp330) in transcytosis of thyroglobulin by thyroid cells. A novel function in the control of thyroid hormone release. J. Biol. Chem. 275, 7125–7137.

    PubMed  CAS  Google Scholar 

  256. Nielsen, R., Sorensen, B. S., Birn, H., Christensen, E. I., and Nexo, E. (2001) Transcellular transport of vitamin B(12) in LLC-PK1 renal proximal tubule cells. J. Am. Soc. Nephrol. 12, 1099–1106.

    PubMed  CAS  Google Scholar 

  257. Marino, M., Andrews, D., Brown, D., and McCluskey, R. T. (2001) Transcytosis of retinolbinding protein across renal proximal tubule cells after megalin (gp 330)-mediated endocytosis J. Am. Soc. Nephrol. 12 637–648.

    PubMed  CAS  Google Scholar 

  258. Ishii, H., Kim, D. H., Fujita, T., Endo, Y., Saeki, S., and Yamamoto, T. T. (1998) cDNA cloning of a new low-density lipoprotein receptor-related protein and mapping of its gene (LRP3) to chromosome bands 19q12-q13.2. Genomics 51, 132–135.

    PubMed  CAS  Google Scholar 

  259. Tomita, Y., Kim, D. H., Magoori, K., Fujino, T., and Yamamoto, T. T. (1998) A novel low-density lipoprotein receptor-related protein with type II membrane protein-like structure is abundant in heart. J. Biochem. (Tokyo) 124, 784–789.

    CAS  Google Scholar 

  260. Kim, D. H., Inagaki, Y., Suzuki, T., et al. (1998) A new low density lipoprotein receptor belated protein, LRP5, is expressed in hepatocytes and adrenal cortex, and recognizes apolipoprotein E. J. Biochem. (Tokyo) 124, 1072–1076.

    CAS  Google Scholar 

  261. Wehrli, M., Dougan, S. T., Caldwell, K., et al. (2000) Arrow encodes an LDL-receptor-related protein essential for Wingless signalling. Nature 407, 527–530.

    PubMed  CAS  Google Scholar 

  262. Wodarz, A. and Nusse, R. (1998) Mechanisms of Wnt signaling in development. Annu. Rev. Cell Dev. Biol. 14, 59–88.

    PubMed  CAS  Google Scholar 

  263. Bhanot, P., Brink, M., Samos, C. H., et al. (1996) A new member of the frizzled family from Drosophila function as a Wingless receptor. Nature 382, 225–230.

    PubMed  CAS  Google Scholar 

  264. He, X., Saint-Jeannet, J. P., Wang, Y., Nathans, J., Dawid, I., and Varmus, H. (1997) A member of the Frizzled protein family mediating axis induction by Wnt-5A. Science 275, 1652–1654.

    PubMed  CAS  Google Scholar 

  265. Bhat, K. M. (1998) frizzled and frizzled 2 play a partially redundant role in wingless signaling and have similar requirements to wingless in neurogenesis. Cell 95, 1027–1036.

    PubMed  CAS  Google Scholar 

  266. Little, R. D., Carulli, J. P., Del Mastro, R. G., et al. (2002) A mutation in the LDL receptor-related protein 5 gene results in the autosomal dominant high-bone-mass trait. Am. J. Hum. Genet. 70, 11–19.

    PubMed  CAS  Google Scholar 

  267. Gong, Y., Slee, R. B., Fukai, N., et al. (2001) LDL receptor-related protein 5 (LRP5) affects bone accural and eye development. Cell 107, 513–523.

    PubMed  CAS  Google Scholar 

  268. Fujino, T., Asaba, H., Kang, M. J., et al. (2003) Low-density lipoprotein receptor-related protein 5 (LRP5) is essential for normal cholesterol metabolism and glucose-induced insulin secretion. Proc. Natl. Acad. Sci. USA 100 229–234.

    PubMed  CAS  Google Scholar 

  269. Magoori, K., Kang, M. J., Iwasaki, M. I., et al. (2002) Severe hypercholesterolemia, impaired fat tolerance and advanced atherosclerosis in mice lacking both LDL recetor-related protein 5 (LRP5) and apolipoprotein E. J. Biol. Chem. 278, 11331–11336.

    PubMed  Google Scholar 

  270. Jacobsen, L., Madsen, P., Moestrup, S. K., et al. (1996) Molecular characterization of a novel human hybrid-type receptor that binds the alpha2-macroglobulin receptor-associated protein. J. Biol. Chem. 271, 31,379–31,383.

    CAS  Google Scholar 

  271. Yamazaki, H., Bujo, H., and Saito, Y. (1997) A novel member of the LDL receptor gene family with eleven binding repeat is structurally related to neural adhesion molecules and a yeast vacuolar protein sorting receptor. J. Atherosclerosis Thromb 4, 20–26.

    CAS  Google Scholar 

  272. Kanaki, T., Bujo, H., Hirayama S., et al. (1998) Developmental regulation of LR11 expression in murine brain. DNA Cell Biol. 17, 647–657.

    Article  PubMed  CAS  Google Scholar 

  273. Motoi, Y., Aizawa, T., Haga, S., Nakamura, S., Namba, Y., and Ikeda, K. (1999) Neuronal localization of a novel mosaic apolipoprotein E receptor, LR11, in rat and human brain. Brain Res. 833, 209–215.

    PubMed  CAS  Google Scholar 

  274. Jacobsen, L., Madsen, P., Jacobsen, C., Nielsen, M. S., Gliemann, J., and Petersen, C. M. (2001) Activation and functional characterization of the mosaic receptor SorLA/LR11. J. Biol. Chem. 276, 22,788–22,796.

    CAS  Google Scholar 

  275. Hampe, W., Riedel, I. B., Litzel, J., Bader, C. O., Franke, I., and Schaller, H. C. (2000) Ectodomain shedding, translocation and synthesis of SorLA are stimulated by its ligand head activator. J. Cell Sci. 113, 4475–4485.

    PubMed  CAS  Google Scholar 

  276. Sugiyama, T., Kumagai, H., Morikawa, Y., et al. (2000) A novel low-density lipoprotein receptor-related protein mediating cellular uptake of apolipoprotein E-enriched beta-VLDL in vitro. Biochemistry 39, 15,817–15,825.

    CAS  Google Scholar 

  277. Falconer, D. S. (1956) Two new mutants “trembler” and “reeler,” with neurological actions in the house mouse. J. Genet. 50, 192–201.

    Google Scholar 

  278. D'Arcangelo, G., Miao, G. G., Chen, S. C., Soares, H. D., Morgan, J. I., and Curran, T. (1995) A protein related to extracellular matrix proteins deleted in the mouse mutant reeler. Nature 374, 719–723.

    PubMed  Google Scholar 

  279. Sweet, H. O., Bronson, R. T., Johnson, K. R., Cook, S. A., and Davisson, M. T. (1996) Scrambler, a new neurological mutation of the mouse with abnormalities of neuronal migration. Mamm. Genome 7, 798–802.

    PubMed  CAS  Google Scholar 

  280. Goldowitz, D., Cushing, R. C., Laywell, E., et al. (1997) Cerebellar disorganization characteristic of reeler in scrambler mutant mice despite presence of reelin. J. Neurosci. 17, 8767–8777.

    PubMed  CAS  Google Scholar 

  281. Gonzalez, J. L., Russo, C. J., Goldwitz, D., Sweet, H. O., Davisson, M. T., and Walsh, C. A. (1997) Birthdate and cell marker analysis of scrambler: a novel mutation affecting cortical development with a reeler-like phenotype. J. Neurosci. 17, 9204–9211.

    PubMed  CAS  Google Scholar 

  282. Yoneshima, H., Nagata, E., Matsumoto, M., et al. (1997) A novel neurological mutant mouse, yotari, which exhibits reeler-like phenotype but expresses CR-50 antigen/reelin Neurosci. Res. 29 217–223.

    PubMed  CAS  Google Scholar 

  283. Sheldon, M., Rice, D. S., D'Arcangelo, G., et al. (1997) Scrambler and yotari disrupt the disabled gene and produce a reeler-like phenotype in mice. Nature 389, 730–733.

    PubMed  CAS  Google Scholar 

  284. Ware, M. L., Fox, J. W., Gonzalez, J. L., et al. (1997) Aberrant splicing of a mouse disabled homolog, mdab1, in the scrambler mouse. Neuron 19, 239–249.

    PubMed  CAS  Google Scholar 

  285. Rice, D. S., Sheldon, M., D'Arcangelo, G., Nakajima, K., Goldowitz, D., and Curran, T. (1998) Disabled-1 acts downstream of Reelin in a signaling pathway that controls laminar organization in the mammalian brain. Development 125, 3719–3729.

    PubMed  CAS  Google Scholar 

  286. Howell, B. W., Lanier L. M., Frank, R., Gertler, F. B., and Cooper, J. A. (1999) The disabled 1 phosphotyrosine-binding domain binds to the internalization signals of transmembrane glycoproteins and to phospholipids. Mol. Cell. Biol. 19, 5179–5188.

    PubMed  CAS  Google Scholar 

  287. Bock, H. H. and Herz, J. (2003) Reelin activates SRC family tyrosine kinases in neurons. Curr. Biol. 13, 18–26.

    PubMed  CAS  Google Scholar 

  288. Anton, E. S., Kreidberg, J. A., and Rakic, P. (1999) Distinct functions of alpha3 and alpha(v) integrin receptors in neuronal migration and laminar organization of the cerebral cortex. Neuron 22, 277–289.

    PubMed  CAS  Google Scholar 

  289. Dulabon, L., Olson, E. C., Taglienti, M. G., et al. (2000) Reelin binds alpha3beta1 integrin and inhibits neuronal migration. Neuron 27, 33–44.

    PubMed  CAS  Google Scholar 

  290. Beffert, U., Morfini, G., Bock, H. H., Reyna, H., Brady, S. T., and Herz, J. (2002) Reelin-mediated signaling locally regulates protein kinase B/Akt and glycogen synthase kinase 3beta. J. Biol. Chem. 277, 49,958–49,964.

    CAS  Google Scholar 

  291. Ohkubo, N., Lee, Y. D., Morishima, A., et al. (2003) Apolipoprotein E and Reelin ligands modulate tau phosphorylation through an apolipoprotein E receptor/disable-1/glycogen synthase kinase-3beta cascade. FASEB J. 17, 295–297.

    PubMed  CAS  Google Scholar 

  292. Herz, J. and Beffert, U. (2000) Apolipoprotein E receptors: linking brain development and Alzheimer's disease. NatureRev. Neurosci. 1, 51–58.

    CAS  Google Scholar 

  293. Springer, T. A. (1998) An extracellular beta-propeller module predicted in lipoprotein and scavenger receptors, tyrosine kinases, epidermal growth factor precursor, and extracellular matrix components. J. Mol. Biol. 283, 837–862.

    PubMed  CAS  Google Scholar 

  294. Jeon, H., Meng, W., Takagi J., Eck, M. J., Springer, T. A., and Blacklow, S. C. (2001) Implications for familial hypercholesterolemia from the structure of the LDL receptor YWTD-EGF domain pair. Nature Struct. Biol 8, 499–504.

    PubMed  CAS  Google Scholar 

  295. Garcia, C. K., Wilund, K., Arca, M., et al. (2001) Autosomal recessive hypercholesterolemia caused by mutations in a putative LDL receptor adaptor protein Science 292, 1394–1398.

    PubMed  CAS  Google Scholar 

  296. Eden, E. R., Patel, D. D., Sun, X. M., et al (2002) Restoration of LDL receptor function in cells from patients with autosomal recessive hypercholesterolemia by retroviral expression of ARH1. J. Clin. Invest. 110, 1695–1702.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Makarova, A., Williams, S.E. & Strickland, D.K. Proteases and lipoprotein receptors in Alzheimer's disease. Cell Biochem Biophys 41, 139–178 (2004). https://doi.org/10.1385/CBB:41:1:139

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/CBB:41:1:139

Index Entries

Navigation