Skip to main content
Log in

Benefits and Risks of Deferiprone in Iron Overload in Thalassaemia and Other Conditions

Comparison of Epidemiological and Therapeutic Aspects with Deferoxamine

  • Review Article
  • Published:
Drug Safety Aims and scope Submit manuscript

Abstract

Deferiprone is the only orally active iron-chelating drug to be used therapeutically in conditions of transfusional iron overload. It is an orphan drug designed and developed primarily by academic initiatives for the treatment of iron overload in thalassaemia, which is endemic in the Mediterranean, Middle East and South East Asia and is considered an orphan disease in the European Union and North America. Deferiprone has been used in several other iron or other metal imbalance conditions and has prospects of wider clinical applications.

Deferiprone has high affinity for iron and interacts with almost all the iron pools at the molecular, cellular, tissue and organ levels. Doses of 50–120 mg/kg/day appear to be effective in bringing patients to negative iron balance. It increases urinary iron excretion, which mainly depends on the iron load of patients and the dose of the drug. It decreases serum ferritin levels and reduces the liver and heart iron content in the majority of chronically transfused iron loaded patients at doses >80 mg/kg/day. It is metabolised to a glucuronide conjugate and cleared through the urine in the metabolised and a non-metabolised form, usually of a 3 deferiprone: 1 iron complex, which gives the characteristic red colour urine. Peak serum levels of deferiprone are observed within 1 hour of its oral administration and clearance from blood is within 6 hours. There is variation among patients in iron excretion, the metabolism and pharmacokinetics of deferiprone.

Deferiprone has been used in more than 7500 patients aged from 2–85 years in >50 countries, in some cases daily for >14 years. All the adverse effects of deferiprone are considered reversible, controllable and manageable. These include agranulocytosis with frequency of about 0.6%, neutropenia 6%, musculoskeletal and joint pains 15%, gastrointestinal complains 6% and zinc deficiency 1%. Discontinuation of the drug is recommended for patients developing agranulocytosis.

Deferiprone is of similar therapeutic index to subcutaneous deferoxamine but is more effective in iron removal from the heart, which is the target organ of iron toxicity and mortality in iron-loaded thalassaemia patients. Deferiprone is much less expensive to produce than deferoxamine. Combination therapy of deferoxamine and deferiprone has been used in patients not complying with subcutaneous deferoxamine or experiencing toxicity or not excreting sufficient amounts of iron with use of either drug alone. New oral iron-chelating drugs are being developed, but even if successful these are likely to be more expensive than deferiprone and are not likely to become available in the next 5–8 years. About 25% of treated thalassaemia patients in Europe and more than 50% in India are using deferiprone. For most thalassaemia patients worldwide who are not at present receiving any form of chelation therapy the choice is between deferiprone and fatal iron toxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Table I
Table II
Table III
Fig. 3
Fig. 4
Table IV
Fig. 5
Table V
Table VI

Similar content being viewed by others

References

  1. Thomson AM, Rogers JT, Leedman PJ. Iron-regulatory proteins, iron-responsive elements and ferritin mRNA translation. Int J Biochem Cell Biol 1999; 31: 1139–52

    Article  PubMed  CAS  Google Scholar 

  2. Richardson DR, Ponka P. The molecular mechanisms of the metabolism and transport of iron in normal and neoplastic cells. Biochim Biophys Acta 1997; 1331: 1–40

    Article  PubMed  CAS  Google Scholar 

  3. World Health Organisation. Community control of hereditary anaemias WHO Bull 1983; 61: 63–80

  4. Modell B, Berdoukas V. The clinical approach to thalassaemia. London: Grune and Stratton, 1984

    Google Scholar 

  5. Weatherall DJ, Glegg JB. The Thalassaemia syndromes. 3rd ed. Oxford: Blackwell Scientific Publications, 1981

    Google Scholar 

  6. Agarwal MB. Living with thalassaemia. Bombay: Bhalani Book Depot, 1986: 240

  7. Ringborn A. Chemical analysis. In: Elving PJ, Kolthoff IM, editors. Complexation in analytical chemistry. New York: Interscience Pub, 1963: 1–374

  8. Anderson WF, Hiller MC, editors. Development of iron chelators for clinical use. Bethesda, USA: National Institute of Health, 1975: 1–277

    Google Scholar 

  9. Martell AE, Anderson WF, Badman DG, editors. Development of iron chelators for clinical use. Amsterdam: Elsevier, 1980: 1–311

    Google Scholar 

  10. Kontoghiorghes GJ, editor. Oral chelation in the treatment of thalassaemia and other diseases. Drugs Today (Barc) 1992; 28Suppl. A: 1–187

    Google Scholar 

  11. Kontoghiorghes GJ. Design, properties and effective use of the oral chelator L1 and other α-ketohydroxypyridines in the treatment of transfusional iron overload in thalassaemia. Ann N Y Acad Sci 1990; 612: 339–50

    Article  PubMed  CAS  Google Scholar 

  12. Kontoghiorghes GJ. Comparative efficacy and toxicity of desferrioxamine, deferiprone and other iron and aluminium chelating drugs. Toxicol Lett 1995; 80: 1–18

    Article  PubMed  CAS  Google Scholar 

  13. Barman Balfour JA, Foster RH. Deferiprone: a review of its clinical potential in iron overload in β-thalassaemia major and other transfusion dependent diseases. Drugs 1999; 58(3): 553–78

    Article  PubMed  CAS  Google Scholar 

  14. Kontoghiorghes GJ, Pattichi K, Hadjigavriel M, et al. Transfusional iron overload and chelation therapy with deferoxamine and deferiprone (L1). Transfus Sci 2000; 23: 211–23

    Article  PubMed  CAS  Google Scholar 

  15. Kontoghiorghes GJ. Clinical use, therapeutic aspects and future potential of deferiprone in thalassaemia and other conditions of iron and other metal toxicity. Drugs Today (Barc) 2001; 37: 23–35

    Article  CAS  Google Scholar 

  16. Addis A, Loebstein R, Koren G, et al. Meta-analytic review of the clinical effectiveness of oral deferiprone (L1). Eur J Clin Pharmacol 1999; 55: 1–6

    Article  PubMed  CAS  Google Scholar 

  17. Porter JB. A risk benefit assessment of iron chelation therapy. Drug Saf 1997; 17(6): 407–21

    Article  PubMed  CAS  Google Scholar 

  18. Brown EB. Thalassaemia. Prog Clin Biol Res 1983; 121: 33–42

    Google Scholar 

  19. Kontoghiorghes GJ. Present status and future prospects of oral iron chelation therapy in thalassaemia and other diseases. Indian J Paediatr 1993; 60: 485–507

    Article  CAS  Google Scholar 

  20. Zurlo MG, De Stefano P, Borgna-Pignatti C, et al. Survival and causes of death in thalassaemia major. Lancet 1989; II: 27–9

    Article  Google Scholar 

  21. Modell B, Khan M, Darlison M. Survival in beta thalassaemia major in the UK: data from the UK thalassaemia register. Lancet 2000; 355: 2051–2

    Article  PubMed  CAS  Google Scholar 

  22. Kontoghiorghes GJ, Agarwal MB, Grady RW, et al. Deferiprone for thalassaemia. Lancet 2000; 356: 428–9

    Article  PubMed  CAS  Google Scholar 

  23. Kontoghiorghes GJ. New concepts of iron and aluminium chelation therapy with oral L1 (deferiprone) and other chelators. Analyst 1995; 120: 845–51

    Article  PubMed  CAS  Google Scholar 

  24. Donfrancesco A, Deb G, Domicini C, et al. Deferoxamine, cyclophosphamide, etoposide, carboplatin and thotepa (D-CECaT): a new cytoreductive chelation-chemotherapy regimen in patients with advanced neuroblastoma. Am J Clin Oncol 1992; 15: 319–22

    Article  PubMed  CAS  Google Scholar 

  25. Georgiou NA, Van der Bruggen J, Oudshoorn M, et al. Combining iron chelators with the nucleoside analog didanosine in anti-HIV therapy. Transfus Sci 2000; 23: 249–50

    Article  PubMed  CAS  Google Scholar 

  26. Blatt J, Taylor S, Kontoghiorghes GJ. Comparison of antineuroblastoma activity of desferrioxamine with that of oral iron chelators. Cancer Res 1989; 49: 2925–7

    PubMed  CAS  Google Scholar 

  27. Kontoghiorghes GJ, Piga A, Hoffbrand AV. Cytotoxic and DNA inhibitory effects of iron chelators on human leukaemic cell lines. Haematol Oncol 1986; 4: 195–204

    Article  CAS  Google Scholar 

  28. Simonart T, Boelaert JR, Mosselmans R, et al. Antiproliferative and apoptotic effects of iron chelators on human cervical carcinoma cells. Gynecol Oncol 2002; 85: 95–102

    Article  PubMed  CAS  Google Scholar 

  29. Hanauske-Abel HM, McCaffrey TA, Grady R. Protein hydroxylation inhibitors for fibroproliferative disorders. World Patent WO 9622021

  30. Weinberg ED. Iron depletion: a defence against intracellular infection and neoplasm. Life Sci 1992; 50: 1289–97

    Article  PubMed  CAS  Google Scholar 

  31. Kontoghiorghes GJ, Weinberg ED. Iron: mammalian defence systems, mechanisms of disease and chelation therapy approaches. Blood Rev 1995; 9: 33–46

    Article  PubMed  CAS  Google Scholar 

  32. Douvas SG, May MH, Kolnagou A, et al. Effects on mycobacterium avium replication in normal human macrophages by deferiprone (L1) and other iron chelators. Possible implications on toxicity. Arzneimittel Forschung 2002; 52: 45–52

    PubMed  CAS  Google Scholar 

  33. Brock JH, Liceaga J, Kontoghiotghes GJ. The effect of synthetic iron chelators on bacterial growth in human serum. FEMS Microbiol Immunol 1988; 47: 55–60

    Article  CAS  Google Scholar 

  34. Lesic B, Foulon J, Carniel E. Comparison of the effects of deferiprone versus deferoxamine on growth and virulence of Yersinia enterocolitica. Antimicrob Agents Chemother 2002; 46: 1741–5

    Article  PubMed  CAS  Google Scholar 

  35. Heppner DG, Hallaway PE, Kontoghiorghes GJ, et al. Antimalarial properties of orally active iron chelators. Blood 1988; 72: 358–61

    PubMed  CAS  Google Scholar 

  36. Mastrandrea S, Carvajal JL, Kaeda JS, et al. Growth inhibition of Plasmodium Falciparum by orally active iron chelators. Drugs Today (Barc) 1992; 28Suppl. A: 25–7

    CAS  Google Scholar 

  37. Gordeuk VR, Thuma PE, Brittenham GM, et al. Iron chelation with desferrioxamine B in adults with asymptomatic P. Falciparum parasitemia. Blood 1992; 79: 308–12

    PubMed  CAS  Google Scholar 

  38. Mohanty D, Ghosh K, Pathare AV, et al. Deferiprone (L1) as an adjuvant therapy for Plasmodium falciparum malaria. Indian J Med Res 2002; 115: 17–21

    PubMed  CAS  Google Scholar 

  39. Kontoghiorghes GJ. Chelators affecting iron absorption in mice. Arzneimittel Forschung 1990; 40: 1332–5

    PubMed  CAS  Google Scholar 

  40. Vreugdenhil G, Kontoghiorghes GJ, Van Eijk HG, et al. Impaired erythropoietin responsiveness to the anemia in rheumatoid arthritis: a possible inverse relationship with iron stores and effects of the oral iron chelator 1,2-dimethyl-3-hydroxypyrid-4-one. Clin Exp Rheumatol 1991; 9: 35–40

    PubMed  CAS  Google Scholar 

  41. Giordano N, Fioravanti A, Sancasciani S, et al. Increased storage of iron and anaemia in rheumatoid arthritis: usefulness of desferrioxamine. BMJ 1984; 289: 961–2

    Article  PubMed  CAS  Google Scholar 

  42. Vreughtenhil G, Kontoghiorghes GJ, Van Eijk, et al. Efficacy and safety of the oral chelator L1 in anaemic rheumatoid arthritis patients. Lancet 1989; II: 1398–9

    Article  Google Scholar 

  43. Lodi R, Hart PE, Rajagopalana B, et al. Antioxidant treatment improves in vivo cardiac and skeletal muscle bioenergetics in patients with Friedreich’s ataxia. Ann Neurol 2001; 49: 590–6

    Article  PubMed  CAS  Google Scholar 

  44. Koeppen AH, Dickson AC. Iron in the Hallervorden-Spatz syndrome. Pediatr Neurol 2001; 25: 148–55

    Article  PubMed  CAS  Google Scholar 

  45. Van der Kraaij AMM, Van Eijk HG, Koster JF. Prevention of postischemic cardiac injury by the orally active iron chelator 1,2-dimethyl-3—hydroxy-4-pyridone (L1) and the antioxidant (+)-cyanidanol-3. Circulation 1989; 80: 158–64

    Article  PubMed  Google Scholar 

  46. Korkina LG, Afanas’ev IB, Deeva IB, et al. Free radical status of blood of patients with iron overload: the effect of chelating treatment. Drugs Today (Barc) 1992; 28Suppl. A: 137–41

    Google Scholar 

  47. Kontoghiorghes GJ, Bunce T, Bruckdorfer KR. Differentiation of the therapeutic and toxicological effects of iron and copper chelating drugs in relation to free radical toxicity. Toxicol Lett 1995; 78: 48–9

    Google Scholar 

  48. Korkina L, De Luca C, Deeva I, et al. L1 effects on reactive oxygen (ROS) and nitrogen species (RNS) release, haemoglobin oxidation, low molecular weight antioxidants, and antioxidant enzyme activities in red and white blood cells of thalassaemic patients. Transfus Sci 2000; 23: 253–4

    Article  PubMed  CAS  Google Scholar 

  49. Moridani MY, O’Brien PJ. Iron complexes of deferiprone and dietary plant catechols as cytoprotective superoxide radical scavengers. Biochem Pharmacol 2001; 62: 1579–85

    Article  PubMed  CAS  Google Scholar 

  50. Matthews AJ, Vercellotti GM, Menchaca HJ, et al. Iron and atherosclerosis: inhibition by the iron chelator deferiprone (L1). J Surg Res 1997; 73: 35–40

    Article  PubMed  CAS  Google Scholar 

  51. Arthur AS, Fergus AH, Lanzino G, et al. Systemic administration of the iron chelator deferiprone attenuates subarachnoid hemorrhage-induced cerebral vasospasm in the rabbit. Neurosurgery 1997; 41: 1385–91

    Article  PubMed  CAS  Google Scholar 

  52. Eybl V, Kotyzova D, Kolek M, et al. The influence of deferiprone (L1) and deferoxamine on iron and essential element tissue level and parameters of oxidative status in dietary iron-loaded mice. Toxicol Lett 2002; 128: 169–75

    Article  PubMed  CAS  Google Scholar 

  53. Jeremy JY, Kontoghiorghes GJ, Hoffbrand AV, et al. The iron chelators desferrioxamine and 1-alkyl-methyl-3-hydroxypyrid-4-ones inhibit vascular prostacyclin synthesis in vitro. Biochem J 1988; 254: 239–44

    PubMed  CAS  Google Scholar 

  54. Barradas MA, Jeremy J, Kontoghiorghes GJ, et al. Iron chelators inhibit human platelet aggregation, thromboxane A synthesis and lipoxygenase activity. FEBS Lett 1989; 245: 105–9

    Article  PubMed  CAS  Google Scholar 

  55. Koning J, Palmer P, Franks GR, et al. Cardioxane-ICRF 187: towards anticancer drug specificity through selective toxicity reduction. Cancer Treat Rev 1991; 18: 1–19

    Article  PubMed  CAS  Google Scholar 

  56. Speyer JL, Green MD, Kramer E, et al. Protective effect of the bispiperazinedione ICRF-187 against doxorubicin-induced cardiac toxicity in women with advanced breast cancer. N Engl J Med 1988; 319: 745–52

    Article  PubMed  CAS  Google Scholar 

  57. Barnabe N, Zastre JA, Venkataram S, et al. Deferiprone protects against doxorubicin-induced myocyte cytotoxicity. Free Radic Biol Med 2002; 33: 266–75

    Article  PubMed  CAS  Google Scholar 

  58. Halliwell B, Gutteridge JMC, Cross CE. Free radicals, antioxidants and human disease: where are we now? J Lab Clin Med 1992; 119: 598–620

    PubMed  CAS  Google Scholar 

  59. Eybl V, Caisova D, Koutensky J, et al. Influence of iron chelators: 1,2-dialkyl-3-hydroxypyridin-4-ones on the lipid peroxidation and glutathione levels in the liver in mice. Arch Toxicol Suppl 1991; 14: 185–7

    Article  PubMed  CAS  Google Scholar 

  60. McLachlan CDR, Dalton AJ, Kruch TPA, et al. Intramuscular desferioxamine in patients with Alzheimer’s disease. Lancet 1991; I: 1304–8

    Article  Google Scholar 

  61. Taylor DM, Kontoghiorghes GJ. Mobilisation of plutonium and iron from transferrin and ferritin by hydroxypyridone chelators. Inorg Chim Acta 1986; 125: L35–8

    Article  CAS  Google Scholar 

  62. Eybl V, Svihovcova P, Koutensky J, et al. Interaction of L1, L1NAll and deferoxamine with gallium in vivo. Drugs Today (Barc) 1992; 29Suppl. A: 173–5

    Google Scholar 

  63. Edwards DS, Christopher ER, Poirier MJ. Technetium-99m complexes with N-substituted 3-hydroxy-4-pridinones. World Patent WO 9310822

  64. Niendorf HP, Alhassan A, Balzer TH, et al. Safety and risk of Gadolinium-DTPA: extended clinical experience after more than 5,000,000 applications. In: Felix R, Heshiki A, Hosten N, et al., editors. Gadopentetate dimeglumine (Gd-DTPA) Magnevist monograph. Oxford: Blackwell Science Pub, 1994: 21–31

    Google Scholar 

  65. Elorriaga R, Fernandez Martin JL, Menendez Fraga P, et al. Aluminium removal: short and long term preliminary results with L1 in rats. Drugs Today (Barc) 1992; 28Suppl. A: 177–82

    CAS  Google Scholar 

  66. Kontoghiorghes GJ, Barr J, Baillod RA. Studies of aluminium mobilisation in renal dialysis patients using the oral chelator 1,2-dimethyl-3-hydroxypyrid-4-one. Arzneimittel Forschung 1994; 44: 522–6

    PubMed  CAS  Google Scholar 

  67. Pashalidis I, Kontoghiorghes GJ. Molecular factors affecting the complex formation between deferiprone (L1) ans Cu(II): possible implications on efficacy and toxicity. Arzneimittel Forschung 2001; 51: 998–1003

    PubMed  CAS  Google Scholar 

  68. Volf V, Kontoghiorghes GJ. Retention of injected plutonium and americium in mice and rats after oral treatment with DTPA, desferrioxamine and alpha-ketohydroxypyridines. Drugs Today (Barc) 1992; 28Suppl. A: 169–72

    CAS  Google Scholar 

  69. Pashalidis I, Kontoghiorghes GJ. Effective complex formation in the interaction of I,2-dimethyl-3-hydroxypyrid-4-one (deferiprone or L1) with uranium (VI). J Radioanalyt Nucl Chem 1999; 242: 181–4

    Article  CAS  Google Scholar 

  70. Martell AE, Motekaitis RJ, Clarke ET, et al. Comparison of the drugs used for the treatment of iron overload with drugs that have the potential for the same purpose. Drugs Today (Barc) 1992; 28Suppl. A: 11–8

    CAS  Google Scholar 

  71. Llach F, Felsenfeld AJ, Coleman MK, et al. The natural course of dialysis osteomalaghia. Kidney Int 1986; 29: 74–9

    Google Scholar 

  72. Sedman AB, Klein LG, Merrit RJ, et al. Evidence of aluminium loading in infants receiving intravenous therapy. N Engl J Med 1985; 312: 1337–43

    Article  PubMed  CAS  Google Scholar 

  73. Edwardson JA, Ferrier IN, McArthur FK, et al. Alzheimer’s disease and the aluminium hypothesis. In: Nicolini M, Zatta PF, Corain B, editors. Aluminium in chemistry, biology and medicine. New York: Raven Press, 1992: 85–96

    Google Scholar 

  74. Kurtzman NA, editor. Toxicity from aluminium and iron: recognition, treatment and prevention. Semin Nephrol 1986; 6Suppl. 1: 1–41

    Google Scholar 

  75. Van Cutsem J, Boelaert JR. Effects of deferoxamine, feroxamine and iron on experimental mucormycosis (zygomycosis). Kidney Int 1989; 36: 1061–8

    Article  PubMed  Google Scholar 

  76. Mehta J, Singhal S, Revanker R, et al. Fatal systemic lupus erythematosus in patient taking oral iron chelator L1 [letter]. Lancet 1991; I: 298

    Article  Google Scholar 

  77. Berdoukas V. Antinuclear antibodies in patients taking L1 [letter]. Lancet 1991; I: 672

    Article  Google Scholar 

  78. Olivieri NF, Koren G, Freedman M, et al. Rarity of systemic lupus erythematosus after oral iron chelator L1. Lancet 1991; I: 924

    Article  Google Scholar 

  79. Berdoukas V, Bentley P, Frost H, et al. Toxicity of oral iron chelator L1 [letter]. Lancet 1993; 341: 1088

    Article  PubMed  CAS  Google Scholar 

  80. Hershko C. Development of oral iron chelator L1. Lancet 1993; 343: 1088–9

    Article  Google Scholar 

  81. Kontoghiorghes GJ, Agarwal MB, Tondury P, et al. Future of oral iron chelator deferiprone (L1). Lancet 1993; I: 1479–80

    Article  Google Scholar 

  82. Kontoghiorghes GJ. Misinformation about deferiprone (L1) [letter]. Lancet 1993; II: 250

    Article  Google Scholar 

  83. Kontoghiorghes GJ, Nasseri-Sina P, Goddard JG, et al. Safety of iron chelator L1. Lancet 1989; II: 457–8

    Article  Google Scholar 

  84. Olivieri NF, Brittenham GM, Mclaren C, et al. Long term safety and effectiveness of iron chelation therapy with deferiprone for thalassaemia major. N Engl J Med 1998; 339: 417–23

    Article  PubMed  CAS  Google Scholar 

  85. Kowdly KV, Kaplan MM. Iron chelation therapy with oral deferiprone: toxicity or lack of efficacy. N Engl J Med 1998; 339: 468–9

    Article  Google Scholar 

  86. Pippard MJ, Weatherall DJ. Deferiprone for thalassaemia. Lancet 2001; 356: 1444–5

    Article  Google Scholar 

  87. Agarwal MB. Oral iron chelation: a review with special emphasis on Indian work on deferiprone (L1). Indian J. Pediatr 1993; 60: 509–16

    Article  PubMed  CAS  Google Scholar 

  88. Cohen A, Galanello R, Piga A, et al. A multi-centre safety trial of the oral iron chelator deferiprone. Ann N Y Acad Sci 1998; 850: 466–8

    Article  Google Scholar 

  89. Cohen AR, Galanello R, Piga A, et al. Safety profile of the oral iron chelator deferiprone: a multicentre study. Br J Haematol 2000; 108: 305–12

    Article  PubMed  CAS  Google Scholar 

  90. Kontoghiorghes GJ, Agarwal MB, Tondury P, et al. Deferiprone or fatal iron toxic effects? Lancet 2001; 357: 882–3

    Article  PubMed  CAS  Google Scholar 

  91. Kontoghiorghes GJ. The design of orally active iron chelators for the treatment of thalassaemia [PhD thesis]. Colchester, UK: University of Essex, 1982: 1–243

    Google Scholar 

  92. Kontoghiorghes GJ. Method of synthesis of 1,2-dimethyl-3-hydroxypyrid-4-one. Greek patent 1003358. 2000

    Google Scholar 

  93. Sansville EA, Pelsach J, Horwitz SB. Effects of chelating agents and metal ions on the degradation of DNA by bleomycin. Biochemistry 1976; 17: 2740–6

    Article  Google Scholar 

  94. Hannekens CH, Buring JE, Peto PR. Antioxidant vitamins — benefits not yet proved. N Engl J Med 1994; 330: 1080–1

    Article  Google Scholar 

  95. Kontoghiorghes GJ, Aldouri MA, Hoffbrand AV, et al. Effective chelation of iron in β-thalassaemia with the oral chelator 1,2-dimethyl-3-hydroxypyrid-4-one. BMJ 1987; 295: 1509–12

    Article  PubMed  CAS  Google Scholar 

  96. Pippard MJ, Jackson MJ, Hoffman K, et al. Iron chelation using subcutaneous infusion of diethylene triamine penta-acetic acid (DTPA). Scand J Haematol 1986; 36: 466–72

    Article  PubMed  CAS  Google Scholar 

  97. Pippard MJ, Callender ST, Finch CA. Ferrioxamine excretion in iron loaded man. Blood 1982; 60: 288–94

    PubMed  CAS  Google Scholar 

  98. Kontoghiorghes GJ, Bartlett AN, Hoffbrand AV, et al. Long term trial with the oral chelator 1,2-dimethyl-3-hydroxypyrid-4-one (L1). (I) Iron chelation and metabolic studies. Br J Haematol 1990; 76: 295–300

    Article  PubMed  CAS  Google Scholar 

  99. Olivieri NF, Koren G, Matsuii D, et al. Reduction of tissue iron stores and normalisation of serum ferritin during treatment with the oral iron chelator L1 in thalassaemia intermedia. Blood 1992; 79: 2741–8

    PubMed  CAS  Google Scholar 

  100. Anderson LJ, Wonke B, Prescott E, et al. Comparison of effects of oral deferiprone and subcutaneous desferrioxamine on myocardial iron concentrations and ventricular function in betathalassaemia. Lancet 2002; 360: 516–20

    Article  PubMed  CAS  Google Scholar 

  101. Angellucci E, Brittenham GM, McLaren CE, et al. Hepatic iron concentration and total body iron stores in thalassaemia major. N Engl J Med 2000; 343: 327–31

    Article  Google Scholar 

  102. Nielsen P, Fischer R, Engelhardt R, et al. Liver iron stores in patients with secondary haemochromatosis under iron chelation therapy with deferoxamine or deferiprone. Br J Haematol 1995; 91: 827–33

    Article  PubMed  CAS  Google Scholar 

  103. Mavrogeni SI, Gotsis ED, Markussis V, et al. T2 relaxation time study of iron overload in β-thalassaemia. MAGMA 1998; 6: 7–12

    PubMed  CAS  Google Scholar 

  104. Anderson LJ, Holden S, Davis B, et al. Cardiovascular T2-star (T2*) magnetic resonance for the early diagnosis of myocardial iron overload. Eur Heart J 2001; 22: 2171–9

    Article  PubMed  CAS  Google Scholar 

  105. Breuer W, Hershko C, Cabantchik ZI. The importance of nontransferrin bound iron in disorders of iron metabolism. Transfus Sci 2000; 23: 185–92

    Article  PubMed  CAS  Google Scholar 

  106. Kontoghiorghes GJ, Bartlett AN, Sheppard L, et al. Oral iron chelation therapy with deferiprone (L1): monitoring of biochemical, drug and iron excretion changes. Arzneimittel Forschung 1955; 45: 65–9

    Google Scholar 

  107. Kontoghiorghes GJ. Iron chelation in biochemistry and medicine. In: Rice-Evans C, editor. Free radicals, oxidant stress and drug action. London: Rechelieu Press, 1982: 277–303

    Google Scholar 

  108. Sheppard L, Kontoghiorghes GJ. Competition between deferiprone, desferrioxamine and other chelators for iron and the effect of other metals. Arzheimittel Forschung 1993; 43: 659–63

    CAS  Google Scholar 

  109. De Virgilis S, Cognia M, Turco MP, et al. Depletion of trace elements and acute occular toxicity induced by desferrioxamine in patients with thalassaemia. Arch Dis Child 1988; 63: 250–5

    Article  Google Scholar 

  110. Al-Refai FN, Wonke B, Wickens DG, et al. Zinc concentration in patients with iron overload receiving oral iron chelator 1,2-dimethyl-3-hydroxypyrid-4-one or desferrioxamine. J Clin Pathol 1994; 47: 657–60

    Article  Google Scholar 

  111. Kontoghiorghes GJ, Sheppard L, Chambers S. New synthetic approach and iron chelation studies of 1-alkyl-2-methyl-3-hydroxypyrid-4-ones. Arzneimittel Forschung 1987; 37: 1099–102

    PubMed  CAS  Google Scholar 

  112. Allain P, Chaleil D, Mauras Y, et al. Pharmacokinetics of desferrioxamine and its aluminium chelates in patients on haemodialysis. Clin Chim Acta 1987; 170: 331–8

    Article  PubMed  CAS  Google Scholar 

  113. Kontoghiorghes GJ. Therapeutic, pharmacological and toxicological aspects of metals and new chelating drugs. Curr Top Mol Pharmacol 1993; 1: 189–211

    Google Scholar 

  114. Kontoghiorghes GJ. The study of iron mobilisation from transferrin using a-ketohydroxy heteroaromatic chelators. Biochim Biophys Acta 1986; 869: 141–6

    Article  PubMed  CAS  Google Scholar 

  115. Kontoghiorghes GJ. Iron mobilisation from lactoferrin by chelators at physiological pH. Biochim Biophys Acta 1986; 882: 267–70

    Article  PubMed  CAS  Google Scholar 

  116. Kontoghiorghes GJ, Chambers S, Hoffbrand AV. Comparative study of iron mobilisation from haemosiderin, ferritin and iron (III) precipitates by chelators. Biochem J 1987; 241: 87–92

    PubMed  CAS  Google Scholar 

  117. Kontoghiorghes GJ. Decreased solubilisation of ferritin iron and fresh iron (III) precipitate following repeated chelator treatments. Inorg Chim Acta 1987; 138: 36–40

    Article  Google Scholar 

  118. Keberle H. The biochemistry of desferrioxamine and its relation to iron metabolism. Ann N Y Acad Sci 1964; 119: 758–68

    Article  PubMed  CAS  Google Scholar 

  119. Lee P, Mohammed N, Marshall RD, et al. Intravenous infusion pharmacokinetics of desferrioxamine in thalassaemia patients. Drug Metab Dispos 1993; 21: 640–4

    PubMed  CAS  Google Scholar 

  120. Evans RW, Sharma M, Ogwang W, et al. The effect of alphaketohydroxypyridine chelators on transferrin saturation in vitro and in vivo. Drugs Today (Barc) 1992; 28Suppl. A: 19–23

    CAS  Google Scholar 

  121. Mostert LJ, Van Dorst JA, Koster JF, et al. Free radical and cytotoxic effects of chelators and their iron complexes in the hepatocyte. Free Radic Res Commun 1987; 3: 379–88

    Article  PubMed  CAS  Google Scholar 

  122. Brock JH, Liceaga J, Arthur HML, et al. The effect of novel 1-alkyl-3-hydroxy-2-methylpyrid-4-one chelators on uptake and release of iron from macrophages. Am J Haematol 1990; 34: 21–5

    Article  CAS  Google Scholar 

  123. Weinberg ED. Cellular iron metabolism in health and disease. Drug Metab Rev 1990; 22: 531–79

    Article  PubMed  CAS  Google Scholar 

  124. Proper RD, Shurin SB, Nathan DG. Reassessment of the use of desferrioxamine B in iron overload. N Engl J Med 1976; 294: 1421–3

    Article  Google Scholar 

  125. Cases A, Velly J, Sabater J, et al. Acute visual and auditory neurotoxicity in patients with end-stage renal disease receiving desferoxamine. Clin Nephrol 1988; 29: 176–8

    PubMed  CAS  Google Scholar 

  126. Tenenbein M, Kowalski S, Sienko A, et al. Pulmonary toxic effects of continous desferrioxamine administration in acute iron poisoning. Lancet 1992; I: 699–701

    Article  Google Scholar 

  127. Sofroniadou K, Drossou M, Foundoulaki M, et al. Acute bone marrow aplasia associated with intravenous administration of deferoxamine (desferrioxamine). Drug Saf 1990; 5(2): 152–4

    Article  PubMed  CAS  Google Scholar 

  128. Sharnetzky M, Konig R, Lamomek M, et al. Prophylaxis of systemic yersiniasis in Thalassaemia major [letter]. Lancet 1984; II: 791

    Article  Google Scholar 

  129. De Sanctis V, Pinamonti A, Di Palma A, et al. Growth and development in thalassaemia major patients with severe bone lesions due to desferrioxamine. Eur J Paediatr 1996; 155: 368–72

    Article  Google Scholar 

  130. Hoffbrand AV, Bartlett A, Veys PA, et al. Agranulocytosis and thrombocytopenia in a patient with Blackfan-Diamond anaemia during oral chelator trial [letter]. Lancet 1989; II: 457

    Article  Google Scholar 

  131. Kontoghiorghes GJ, Bartlett AH, Hoffbrand AV. Prospects for effective oral iron chelation therapy in man with 1,2-dimethyl-3-hydroxypyrid-4-one and other alphaketohydroxypyridines. Prog Clin Biol Res 1989; 309: 107–14

    PubMed  CAS  Google Scholar 

  132. Loebstein R, Diav-Citrin O, Atanackovic G, et al. Deferiproneinduced agranulocytosis: a critical review of five rechallenged cases. Clin Drug Invest 1997; 13: 345–9

    Article  Google Scholar 

  133. Castriota-Scanderbeg A, Sacco M. Agranulocytosis, arthritis and systemic vasculitis in a patient receiving the oral iron chelator L1 (deferiprone). Br J Haematol 1997; 96: 254–5

    Article  PubMed  CAS  Google Scholar 

  134. Ceci A, Baiardi P, Felisi M, et al. The safety and effectiveness of deferiprone in a large-scale, 3-year study in Italian patients. Br J Haematol 2002; 118: 330–6

    Article  PubMed  CAS  Google Scholar 

  135. Kersten MJ, Lange R, Smeets MEP, et al. Long term treatment of transfusional iron overload with the oral iron chelator deferiprone (L1): a Dutch multicentre trial. Ann Haematol 1996; 73: 247–52

    Article  CAS  Google Scholar 

  136. Bartlett AN, Hoffbrand AV, Kontoghiorghes GJ. Long-term trial with the oral iron chelator 1,2-dimethyl-3-hydroxypyrid-4-one (L1). Br J Haematol 1990; 76: 301–9

    Article  PubMed  CAS  Google Scholar 

  137. Davies SC, Marcus RE, Hungerford JL, et al. Ocular toxicity of high dose intravenous desferrioxamine. Lancet 1983; II: 181–4

    Article  Google Scholar 

  138. Rahi AHS, Hungerford JL, Ahmed AI. Ocular toxicity of desferrioxamine: light microscopic histochemical and ultrastructural findings. Br J Ophthal 1986; 70: 373–81

    Article  CAS  Google Scholar 

  139. Rubinstein M, Dupont P, Doppel JP, et al. Ocular toxicity of desferrioxamine. Lancet 1985; I: 817–8

    Article  Google Scholar 

  140. Borgna-Pignatti C, De Stefano P, Broglia AM. Visual loss in patient on high dose subcutaneous desferrioxamine. Lancet 1984; I: 68

    Google Scholar 

  141. Agarwal MB, Gupta SS, Viswanathan C, et al. Long term assessment of efficacy and toxicity of L1 (1, 2-dimethyl-3-hydroxypyrid-4-one) in transfusion dependent thalassaemia: Indian trial. Drugs Today (Barc) 1992; 28Suppl. A: 107–14

    Google Scholar 

  142. Berkovitch M, Laxer RM, Inman R, et al. Arthropathy in thalassaemia patients receiving deferiprone. Lancet 1994; 343: 1471–2

    Article  PubMed  CAS  Google Scholar 

  143. Guerin A, London G, Marchais S, et al. M. Acute deafness and desferrioxamine. Lancet 1985; II: 39–40

    Article  Google Scholar 

  144. Roger SD, Stewart JH, Harris DCU. Desferrioxamine enhances the haemopoietic response to erythropoietin but adverse events are common. Nephron 1991; 58: 33–6

    Article  PubMed  CAS  Google Scholar 

  145. Polson RJ, Jawed A, Bomford A, et al. Treatment of rheumatoid arthritis with desferrioxamine: relation between stores of iron before treatment and side effects. Br Med J (Clin Res Ed) 1985; 291: 448

    Article  CAS  Google Scholar 

  146. Bentur Y, Koren G, Tegoro A, et al. Comparison of deferoxamine pharmacokinetics between asymptomatic thalassemic children and those exhibiting severe neurotoxicity. Clin Pharmacol Ther 1990; 47: 478–82

    Article  PubMed  CAS  Google Scholar 

  147. Blake DR, Winyard P, Lunec J, et al. Cerebral and ocular toxicity induced by desferrioxamine. Q J Med 1985; 56: 345–55

    PubMed  CAS  Google Scholar 

  148. Freedman MH, Grisaru D, Olivieri N, et al. Pulmonary syndrome in patients with thalassaemia major receiving intravenous deferoxamine infusions. Am J Dis Child 1990; 144: 565–9

    PubMed  CAS  Google Scholar 

  149. Tondury P, Zimmerman A, Nielsen P, et al. Liver iron fibrosis during long-term treatment with deferiprone in Swiss thalassaemic patients. Br J Haematol 1998; 101: 413–5

    Article  PubMed  CAS  Google Scholar 

  150. Wanless IR, Sweeney G, Dhillon AP, et al. Lack of progressive hepatic fibrosis during long-term therapy with deferiprone in subjects with transfusion-dependent beta-thalassemia. Blood 2002; 100: 1566–9

    Article  PubMed  CAS  Google Scholar 

  151. De Virgidis S, Cognie M, Frau F, et al. Deferoxamine-induced growth retardation in patients with thalassaemia major. J Pediatr 1988; 113: 661–9

    Article  Google Scholar 

  152. De Sanctis V, Atti C, Banim P, et al. Growth in thalassaemia major. Acta Med Auxal 1991; 23: 29–36

    Google Scholar 

  153. Robins-Browne RM, Pipic JK. Desferrioxamine and systemic yersiniosis [letter]. Lancet 1983; II: 1372

    Article  Google Scholar 

  154. Scharnetzky M, Konig R, Lakomek M, et al. Prophylaxis of systemic yersiniosis in thalassaemia major [letter]. Lancet 1984; I: 791

    Article  Google Scholar 

  155. Gordts B, Rummens E, De Meirleir L, et al. Yersinia pseudotuberculosis septicaemia in thalassaemia major. Lancet 1984; I: 41–2

    Article  Google Scholar 

  156. Kelly D, Price E, Wright V, et al. Yersinia and iron overload. BMJ 1986; 292: 413

    Article  PubMed  CAS  Google Scholar 

  157. Del Vecchio GC, Schettini F, Placente L, et al. Effects of deferiprone on immune status and cytokine pattern in thalassaemia major. Acta Haematol 2002; 108: 144–9

    Article  PubMed  Google Scholar 

  158. Aydinok Y, Nisli G, Kavakli K, et al. Sequential use of L1 and desferrioxamine in primary school children with thalassaemia major in Turkey. Acta Haematol 1999; 102: 17–21

    Article  PubMed  CAS  Google Scholar 

  159. Van Cutsem J, Boelaert JR. Effects of deferoxamine, feroxamine and iron on experimental mucormycosis (zygomycosis). Kidney Int 1989; 36: 1061–8

    Article  PubMed  Google Scholar 

  160. Walker JA, Sherman RA, Eisinger RP. Thrombocytopenia associated with intravenous desferrioxamine. Am J Kidney Dis 1985; 6: 254–6

    PubMed  CAS  Google Scholar 

  161. Nebeker HG, Milliner DS, Ott SA, et al. Aluminium-related osteomalagia: clinical response to desferrioxamine [abstract]. Kidney Int 1984; 25: 173

    Google Scholar 

  162. Romeo MA, Di Gregorio F, Schiliro G. Allergy to desferrioxamine. J Inherit. Metab Dis 1984; 7: 121

    CAS  Google Scholar 

  163. Athanasiou A, Shepp MA, Necheles TF. Anaphylactic reaction to desferrioxamine [letter]. Lancet 1977; II: 616

    Article  Google Scholar 

  164. Bousquet J, Navarpo M, Robert G, et al. Rapid desensitisation for desferrioxamine anaphylactic reactions. Lancet 1983; II: 859–60

    Article  Google Scholar 

  165. Miller KB, Rosenwasser LJ, Bessette JA, et al. Rapid desensitisation for desferrioxamine anaphylactic reaction [letter]. Lancet 1987; I: 1059

    Google Scholar 

  166. Batey R, Scott J, Jain S, et al. Acute renal insufficiency occurring during intravenous desferrioxamine therapy. Scand J Haematol 1979; 22: 277–9

    Article  PubMed  CAS  Google Scholar 

  167. Wayne AS, Rosenblum ND, Sallan D, et al. Renal abnormalities in patients with β-thalassaemia major treated with chronic subcutaneous deferoxamine [abstract]. Blood 1993; 82Suppl. 1: 476a

    Google Scholar 

  168. Kontoghiorghes GJ. Orally active α-ketohydroxypyridine iron chelators: effects on iron and other metal mobilisations. Acta Haematol 1987; 78: 212–6

    Article  PubMed  CAS  Google Scholar 

  169. Klebanoff SJ, Waltersdorph AM, Michel BR, et al. Oxygenbased free radical generation by ferrous ions and desferioxamine. J Biol Chem 1989; 254: 19765–71

    Google Scholar 

  170. Ganeshaguru K, Lally KM, Piga A, et al. Cytotoxic mechanisms of iron chelators. Drugs Today (Barc) 1992; 28Suppl. A: 29–34

    CAS  Google Scholar 

  171. Lederman HM, Cohen A, Lee JWW, et al. Deferrioxamine: a reversible S-phase inhibitor of human lymphocyte proliferation. Blood 1984; 64: 748–53

    PubMed  CAS  Google Scholar 

  172. Summers MR, Jacobs A, Tudway D, et al. Studies in desferrioxamine and ferrioxamine iron metabolism in normal and iron loaded subjects. Br J Haematol 1979; 42: 547–55

    Article  PubMed  CAS  Google Scholar 

  173. Marcus RE, Davies SG, Bantock HM, et al. Desferrioxamine to improve cardiac function in iron-overloaded patients with thalassaemia major. Lancet 1984; I: 392–3

    Article  Google Scholar 

  174. Cohen A, Martin M, Schwartz E. Depletion of excessive liver iron stores with desferrioxamine. Br J Haematol 1984; 58: 369–73

    Article  PubMed  CAS  Google Scholar 

  175. Kontoghiorghes GJ, Marcus RE, Huehns ER. Desferrioxamine suppositories [letter]. Lancet 1983; II: 454

    Article  Google Scholar 

  176. Callender ST, Weatherall DJ. Iron chelation with oral desferrioxamine [letter]. Lancet 1980; II: 689

    Article  Google Scholar 

  177. Kontoghiorghes GJ. L1 (1,2-dimethyl-3-hydroxypyrid-4-one). Drugs Future 1988; 13: 413–5

    Google Scholar 

  178. Kontoghiorghes GJ, Piga A, Hoffbrand A. Cytotoxic effects of the lipophilic iron chelator omadine. FEBS Lett 1986; 204: 208–12

    Article  PubMed  CAS  Google Scholar 

  179. Kontoghiorghes GJ, Goddard JG, Bartlett AN, et al. Pharmacokinetic studies in humans with the oral iron chelator 1,2-dimethyl-3-hydroxypyrid-4-one. Clin Pharmacol Ther 1990; 48: 255–61

    Article  PubMed  CAS  Google Scholar 

  180. Sheppard L, Kontoghiorghes GJ. Synthesis and metabolism of L1 and other novel alpha-ketohydroxypyridine iron chelators and their metal complexes. Drugs Today (Barc) 1992; 28Suppl. A: 3–10

    CAS  Google Scholar 

  181. Matsui D, Klein J, Hermann C, et al. Relationship between the pharmacokinetics and iron excretion pharmacodynamics of the new oral iron chelator 1,2-dimethyl-3-hydroxypyrid-4-one in patients with thalassaemia. Clin Pharmacol Ther 1991; 50: 294–8

    Article  PubMed  CAS  Google Scholar 

  182. Nielsen P, Frtjes M, Drescow B, et al. The iron-decorporating effect of L1 in normal and TMH-ferrocene iron loaded rats and in one patient with post-transfusional siderosis as judged by 59Fe-labelling technique. Drugs Today (Barc) 1992; 28 Suppl. A: 45–53

    Google Scholar 

  183. Diav-Citrin O, Atanackovic G, Koren G. An investigation into variability in the therapeutic response to deferiprone in patients with thalassaemia major. Ther Drug Monit 1999; 21: 74–81

    Article  PubMed  CAS  Google Scholar 

  184. Kontoghiorghes GJ, Aldouri MA, Sheppard LN, et al. 1, 2-Dimethyl-3-hydroxypyrid-4-one, on orally active chelator for the treatment of transfusional iron overload. Lancet 1987; I: 1294–5

    Article  Google Scholar 

  185. Olivieri NF, Koren G, Hermann C, et al. Comparison of oral iron chelator L1 and desferrioxamine in iron loaded patients. Lancet 1990; II: 1275–9

    Article  Google Scholar 

  186. Agarwal MB, Gupta SS, Viswanathan C, et al. Long term assessment of efficacy and safety of L1, an oral iron chelator in transfusion dependent thalassaemia: Indian trial. Br J Haematol 1992; 82: 460–6

    Article  PubMed  CAS  Google Scholar 

  187. Tondury P, Kontoghiorghes GJ, Ridolfi-Luthy R, et al. L1 (1,2-dimethyl-3-hydroxypyrid-4-one) for oral iron chelation in patients with B -thalassaemia major. Br J Haematol. 1990; 76: 550–3

    Article  PubMed  CAS  Google Scholar 

  188. Goudsmit R, Kersten MJ. Long term treatment of transfusion hemosiderosis with the oral iron chelator L1. Drugs Today (Barc) 1992; 28Suppl. A: 133–5

    Google Scholar 

  189. Jaeger M, Aul C, Sohngen D, et al. Iron overload in polytransfused patients with MDS: use of L1 for oral iron chelation. Drugs Today (Barc) 1992; 28Suppl. A: 143–7

    Google Scholar 

  190. Carnelli V, Spadaro C, Stefano V, et al. L1 efficacy and toxicity in poorly compliant and for refractory to desferrioxamine thalassaemia patients: interim report. Drugs Today (Barc) 1992; 28Suppl. A: 119–21

    Google Scholar 

  191. Collins AF, Fassos FF, Stobie S, et al. Iron balance and dose response studies of the oral iron chelator 1,2-dimethyl-3-hydroxypyrid-4-one (L1) in iron loaded patients with sickle cell disease. Blood 1994; 83: 2329–3

    PubMed  CAS  Google Scholar 

  192. Rombos Y, Tzanetea R, Konstantopoulos K, et al. Chelation therapy in patients with thalassaemia using the orally active iron chelator deferiprone (L1). Haematologica 2000; 85: 115–7

    PubMed  CAS  Google Scholar 

  193. Diav-Citrin O, Koren G. Oral iron chelation with deferiprone. Pediatr Clin North Am 1997; 44: 235–47

    Article  PubMed  CAS  Google Scholar 

  194. Mazza P, Amurri B, Lazzari G, et al. Oral iron chelating therapy: a single centre interim report on deferiprone (L1) in thalassemia. Haematologica 1998; 83: 496–501

    PubMed  CAS  Google Scholar 

  195. Berdoukas V, Bohane T, Eagle C, et al. The Sydney children’s hospital experience with the oral iron chelator deferiprone (L1). Transfus Sci 2000; 23: 239–40

    Article  PubMed  CAS  Google Scholar 

  196. Dresow B, Fischer R, Nielsen P, et al. Effect of oral iron chelator L1 in iron absorption in man. Ann N Y Acad Sci 1998; 850: 466–8

    Article  PubMed  CAS  Google Scholar 

  197. Kontoghiorghes GJ. New orally active iron chelators. Lancet 1985; II: 817

    Article  Google Scholar 

  198. Kontoghiorghes GJ, Bartlett AN, Hoffbrand AV, et al. Intensive chelation and iron balance studies using oral 1,2-dimethyl-3-hydroxypyrid-4-one (L1) in man [abstract]. Br J Haematol 1990; 74Suppl. 1: 10

    Google Scholar 

  199. Ciba Report on Desferal. Adverse Drug Reaction Centre. Information No.2. 1965 Oct: 1–38

  200. Pope E, Berkovitch M, Klein J, et al. Salivary measurement of deferiprone concentrations and correlation with serum levels. Ther Drug Monit 1997; 19: 95–7

    Article  PubMed  CAS  Google Scholar 

  201. Taher A, Chamoun FM, Koussa S, et al. Efficacy and side effects of deferiprone (L1) in thalassaemia patients not compliant with desferrioxamine. Acta Haematol 1999; 101: 173–7

    Article  PubMed  CAS  Google Scholar 

  202. Zahet L, Murad FH, Alameddine R, et al. Effect of iron chelation therapy with deferiprone (L1) on the psychosocial status of thalassaemia patients. Haematologia 2002; 31: 333–9

    Article  Google Scholar 

  203. Al-Refai FN, Wonke B, Hoffbrand AV, et al. Efficacy and possible adverse effects of the oral iron chelator 1,2-dimethyl-3-hydroxypyrid-4-one (L1) in thalassaemia major. Blood 1992; 80: 593–9

    Google Scholar 

  204. Cermak J, Brabec V. Treatment of iron overload states with oral administration of the chelator L1. Vnitr Lek 1994; 40: 586–90

    PubMed  CAS  Google Scholar 

  205. Adhikari D, Roy TB, Biswas A, et al. Efficacy and safety of oral iron chelating agent deferiprone in beta-thalassaemia and hemoglobin E-beta thalassemia. Indian Pediatr 1995; 32: 855–61

    PubMed  CAS  Google Scholar 

  206. Lucas GN, Perera BJ, Foneka EA, et al. A trial of deferiprone in transfusion-dependent iron overloaded children. Ceylon Med J 2000; 45: 71–4

    PubMed  CAS  Google Scholar 

  207. Uetrecht JP. Drug metabolism by leukocytes and its role in drug-induced Lupus and other idiosyncratic drug reactions. Toxicology 1990; 20: 213–35

    CAS  Google Scholar 

  208. Fugata S, Murakami Y, Kuma K, et al. G-CSF levels during spontaneous recovery from drug-induced agranulocytosis [letter]. Lancet 1993; 342; 1495: 242

    Google Scholar 

  209. Al-Refai FN, Wonke B, Hoffbrand AV. Deferiprone-associated myelotoxicity. Eur J Haematol 1994; 53: 298–301

    Article  Google Scholar 

  210. Kontoghiorghes GJ. Advances in oral iron chelation in man. Int J Haematol 1992; 55: 27–38

    CAS  Google Scholar 

  211. Kontoghiorghes GJ. Dose response studies using desferrioxamine and orally active chelators in a mouse model. Scand J Haematol 1986; 37: 63–70

    Article  PubMed  CAS  Google Scholar 

  212. Kontoghiorghes GJ, Hoffbrand AV. Orally active aketohydroxy pyridine iron chelators intended for clinical use: in vivo studies in rabbits. Br J Haematol 1986; 62: 607–13

    Article  PubMed  CAS  Google Scholar 

  213. Wonke B, Wright C, Hoffbrand AV. Combined therapy with deferiprone and deferoxamine. Br J Haematol 1998; 103: 361–4

    Article  PubMed  CAS  Google Scholar 

  214. Kontoghiorghes GJ, Kolnagou A. Deferiprone versus desferoxamine in thalassaemia, and T2* validation and utility. Lancet 2003; 361: 184

    Article  PubMed  CAS  Google Scholar 

  215. Maggio A, D’Amico G, Morabito A, et al. Deferiprone versus deferoxamine in patients with thalassaemia major: a randomised clinical trial. Blood Cells Mol Dis 2002; 28: 196–208

    Article  PubMed  Google Scholar 

  216. Panayi GS, Huston G, Shah RR. Deficient sulphoxidation status in D-penicillamine toxicity. Lancet 1983; I: 414

    Article  Google Scholar 

  217. Stobie S, Tyberg J, Matsui D, et al. Comparison of the pharmacokinetics of 1,2-dimethyl-3-hydroxypyrid-4-one (L1) in healty volunteers, with and without co-administration of ferrous sulfate, to thalassaemia patients. Int J Clin Pharmacol Ther Toxicol 1993; 31: 602–5

    PubMed  CAS  Google Scholar 

  218. Kontoghiorghes GJ, Barr J, Baillod RA. Aluminium mobilisation in renal dialysis patients using the oral chelator 1,2-dimethyl-3-hydroxypyrid-4-one (L1). Drugs Today (Barc) 1992; 28Suppl. A: 183–7

    Google Scholar 

  219. Thuma PE, Olivieri NF, Mabeza GF, et al. Assessment of the effect of the oral iron chelator deferiprone on asymptomatic Plasmodium falciparum parasitaemia in humans. Am J Trop Med Hyg 1998; 58: 358–64

    PubMed  CAS  Google Scholar 

  220. Kontoghiorghes GK, Jackson MI, Lunec J. In vitro screening of iron chelators using models of free radical damage. Free Radic Res Commun 1986; 2: 115–24

    Article  PubMed  CAS  Google Scholar 

  221. Ling G, Tirosh R, Pinson A, et al. Role of iron in the potentiation of anthracycline cardiotoxicity: identification of heart cell mitochondria as major site of iron-anthracycline interactions. J Lab Clin Med 1996; 127: 272–8

    Article  Google Scholar 

  222. Forsbeck K, Nillson K, Kontoghiorghes GJ. Variation in iron accumulation, transferrin membrane binding and DNA synthesis in the K562 and U937 cell lines induced by chelators and their iron complexes. Eur J Haematol 1987; 39: 318–25

    Article  PubMed  CAS  Google Scholar 

  223. Voest EE, Vreugdenhil G, Marx JJM. Iron-chelating agents in non-iron overload conditions. Ann Intern Med 1994; 120: 490–9

    PubMed  CAS  Google Scholar 

  224. Sadrzadeh SMH, Nanji AA, Price PL. The oral iron chelator 1,2-dimethyl-3-hydroxypyrid-4-one reduces hepatic-free iron, lipid peroxidation and fat accumulation in chronically ethanolfed rats. J Pharmacol Exp Ther 1994; 269: 632–6

    PubMed  CAS  Google Scholar 

  225. Fredenburg AM, Sethi RK, Allen DD, et al. The pharmacokinetics and blood-brain barrier permeation of the chelators 1,2-dimethyl, 1,2-diethyl, and 1-[ethan-1’ol]-2-methyl-3-hydroxypyrid-4-one in the rat. Toxicology 1996; 108(3): 191–9

    Article  PubMed  CAS  Google Scholar 

  226. Kontoghiorghes GJ, May A. Uptake and intracellular distribution of iron from transferrin and chelators in erythroid cells. Biol Met 1990; 3: 183–7

    Article  PubMed  CAS  Google Scholar 

  227. Motekaitis R. J, Martell AE. Stabilities of the iron (III) chelates of 1,2-dimethyl-3-hydroxy-4-pyridinone and related ligands. Inorg Chim Acta 1991; 183: 71–80

    Article  CAS  Google Scholar 

  228. Borgna-Pignatti C, Cohen A. Evaluation of a new method of administration of the iron chelating agent deferoxamine. J Pediatr 1997; 130: 86–8

    Article  PubMed  CAS  Google Scholar 

  229. Hirase N, Abe Y, Salamura S, et al. Anemia and neutropenia in a case of copper deficiency: role of copper in normal hematopoiesis. Acta Haematol 1992; 87: 195–7

    Article  PubMed  CAS  Google Scholar 

  230. Higuchi S, Higashi A, Nahamura T, et al. Anti-neutrophil antibodies in patients with nutritional copper deficiency. Eur J Paediatr 1991; 150: 327–30

    Article  CAS  Google Scholar 

  231. Young GAR, Vincent PC. Drug induced agranulocytosis. Clin Haematol 1980; 9: 483–504

    PubMed  Google Scholar 

  232. Uetrecht JP. Idiosyncratic drug reaction: possible role of reactive metabolites generated by leukocytes. Pharm Res 1989; 6: 265–73

    Article  PubMed  CAS  Google Scholar 

  233. Kontoghiorghes GJ. L1NAll. -Allyl-2-methyl-3-hydroxypyrid-4-one. Drugs Future 1990; 15: 230–2

    Google Scholar 

  234. Nortey P, Barr J, Matsakis M, et al. Effect on iron excretion and animal toxicology of L1 and other alpha-ketohydroxypyridine chelators. Drugs Today (Barc) 1992; 28Suppl. A: 81–8

    CAS  Google Scholar 

  235. Goddard JG, Kontoghiorghes GJ. Development of an HPLC analytical method for orally administered 1-substituted-2-alkyl-3-hydroxypyrid-4-one iron chelators in biological fluids. Clin Chem 1990; 36: 5–8

    PubMed  CAS  Google Scholar 

  236. Spino M, Yang J. Pharmacokinetics and whole body distribution of CP 502: a hydroxypyridinone second generation oral iron chelator [abstract book]. 12th International Conference on Oral Chelation (ICOC); 2002 Jul 4-7: Santorini Hellas 2002, 83–4

    Google Scholar 

  237. Alberti A. ICL 670: update on the clinical development of this new oral iron chelator [abstract book]. 12th International Conference on Oral Chelation (ICOC); 2002 Jul 4-7: Santorini, Hellas 2002, 85–6

    Google Scholar 

  238. Galanello R, Cappellini MD, Piga A, et al. Update on the effects of ICL 670, a novel tridentate oral iron chelator, on liver iron concentration in patients with transfusion dependent iron overload [abstract book]. 12th International Conference on Oral Chelation (ICOC); 2002 Jul 4-7: Santorini, Hellas 2002, 90–1

    Google Scholar 

  239. Marquis JK, Bree M, Appelqvist T. Bioavailability and pharmacokinetic properties of GT56-252, a novel orally available iron chelator [abstract book]. 12th International Conference on Oral Chelation (ICOC); 2002 Jul 4-7: Santorini, Hellas. 2002: 113(P1)

    Google Scholar 

  240. Marquis JK, Aoude-Dagher R, Guillaumat PO. Pharmaology and toxicology of GT56-252, a novel orally available iron chelator [abstract book]. 12th International Conference on Oral Chelation (ICOC); 2002 Jul 4-7: Santorini, Hellas 2002, 113(P2)

    Google Scholar 

  241. Kontoghiorghes GJ, Sheppard L. Simple synthesis of the potent iron chelators 1-alkyl-3-hydroxy-2-methylpyrid-4-ones. Inorg Chim Acta 1987; 136: L11–2

    Article  CAS  Google Scholar 

  242. Kontoghiorghes GJ. Oral iron chelation is here. BMJ 1991; 303: 1279–80

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This publication was supported by internal funds of the Postgraduate Research Institute of Science, Technology, Environment and Medicine, a non-profit, charitable organisation. G.J. Kontoghiorghes is the inventor of L1 and none of the authors has received any funding from the manufacturers of deferiprone or deferoxamine.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George J. Kontoghiorghes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kontoghiorghes, G.J., Neocleous, K. & Kolnagou, A. Benefits and Risks of Deferiprone in Iron Overload in Thalassaemia and Other Conditions. Drug-Safety 26, 553–584 (2003). https://doi.org/10.2165/00002018-200326080-00003

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00002018-200326080-00003

Keywords

Navigation