Skip to main content
Log in

Clinical Pharmacokinetics of Imipramine and Desipramine

  • Drug Disposition
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Summary

The pharmacokinetics of Imipramine and desipramine have been extensively investigated with recent studies designed to understand sources of intersubject variability and to study discrete clinical populations rather than healthy volunteers. Sources of intersubject variability in pharmacokinetics are both genetic (oxidative phenotype) and environmental. Oxidative phenotype has an important impact on first-pass metabolism. In individuals with poor metabolism, systemic availability for imipramine is increased. Intrinsic clearance of desipramine is reduced 4-fold in individuals with poor metabolism.

Recent pharmacokinetic studies in diverse patient populations such as the depressed elderly, children and alcoholics have revealed decreased clearance of imipramine in the elderly and increased clearance of both imipramine and desipramine in chronic alcoholics. In at least a third of the population, nonlinear pharmacokinetics of desipramine may be observed at steady-state plasma concentrations above 150 μg/L. These nonlinear changes in desipramine pharmacokinetics are not associated with age or sex, but are associated with higher desipramine 2-hydroxydesipramine concentration ratios. Hydroxylated metabolites of imipramine and desipramine may posses both antidepressants and cardiotoxic activity but their formation is rate limited and plasma concentrations tend to follow the parent compound with little accumulation. The potent cardiovascular effects of the hydroxymetabolites may be particularly relevant for the elderly and in acute overdose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Abernethy DR, Divoll M, Greenblatt DJ, Harmatz JS, Shader RI. Absolute bioavailability of Imipramine: influence of food. Psychopharmacology 83: 104–106, 1984a

    Article  Google Scholar 

  • Abernethy DR, Greenblatt DJ, Shader RI. Imipramine-cimelidme interaction: impairment of clearance and enhanced absolute bioavailability. Journal of Pharmacology and Experimental Therapeutics 229: 702–705, 1984

    PubMed  CAS  Google Scholar 

  • Abernethy DR, Greenblatt DJ, Shader RI. Imipramine and desipramine disposition in the elderly. Journal of Pharmacology and Experimental Therapeutics 232: 183–188, 1985

    PubMed  CAS  Google Scholar 

  • Abernethy DR, Kerzner L. Age effects on alpha-1-acid glycoprotein concentration and Imipramine plasma protein binding. Journal of the American Geriatrics Society 32: 705–708, 1984

    PubMed  CAS  Google Scholar 

  • Alexanderson B, Pharmacokinetics of desmethylimipraminc and nortriptyline in man after single and multiple oral doses. European Journal of Clinical Pharmacology 5: 1–10, 1972

    Article  CAS  Google Scholar 

  • Amsterdam J, Brunswick D, Mendels J. High dose desipraminc, plasma drug levels and clinical response. Journal of Clinical Psychiatry 40: 141–143, 1979

    PubMed  CAS  Google Scholar 

  • Amsterdam JD, Brunswick DJ, Potter L, Kaplan MJ. Cimetidineinduced alterations in desipramine plasma concentrations. Psychopharmacology 83: 373–375. 1984

    Article  PubMed  CAS  Google Scholar 

  • Amsterdam JD, Brunswick DJ, Potter L, Winokur A, Rickeis K, Desipramine and 2-hydroxydesipramine plasma levels in endogenous depressed patients. Archives of General Psychiatry 42: 361–364, 1985

    Article  PubMed  CAS  Google Scholar 

  • Antal EJ, Lawson IR, Aldcrson LM, Chapron DJ, Kramer PA. Estimating steady slate desipramine levels in noninstitutionalized elderly patients using single dose disposition parameters. Journal of Clinical Psyehopharmacology 2: 193–198, 1982

    CAS  Google Scholar 

  • Arias TD, Jorge LF, Inaba T. No evidence for the presence of poor metabolizers of sparteine in an Amerindian group: the Cunas of Panama. British Journal of Clinical Pharmacology 21: 547–549, 1986

    Article  PubMed  CAS  Google Scholar 

  • Balant-Gorgia AE, Baient LP, Genet Ch, Dayer P, Aeschlimann JM, et al. Importance of oxidative polymorphism and Icvomepromazine treatment on the steady-state blood concentrations of clomipramine and its major metabolics. European Journal of Clinical Pharmacology 31: 449–455. 1986

    Article  PubMed  CAS  Google Scholar 

  • Baldessarini RJ, Teicher MH, Cassidy JW, et al. Anticonvulsant cotreatmenl may increase toxic metabolites of antidepressants and other psychotropic drugs. Journal of Clinical Psyehopharmacology 8: 381, 1988

    Article  CAS  Google Scholar 

  • Baumann P, Tinguely D, Schopf J. Increase of α1-acid glycoprotein after treatment with amitriptyline. British Journal of Clinical Pharmacology 14: 102–103, 1982

    Article  PubMed  CAS  Google Scholar 

  • Beckelt AH, Al-Sarraj S, Metabolism of amitriptyline, nortripyline, Imipramine and desipramine to yield hydroxylamincs. Journal of Pharmacy and Pharmacology 25: 335–336, 1973

    Article  Google Scholar 

  • Bell IR, Cole JO, Fluoxetinc induces elevation of desipramine level and exacerbation of geriatric non-psychotic depression. Journal of Clinical Psyehopharmacology 8: 447–448, 1988

    Article  CAS  Google Scholar 

  • Bertilsson L, Aberg-Wistedt A. The debnsoquine hydroxylation test predicts steady-stale plasma levels of desipramine. British Journal of Clinical Pharmacology 15: 388–390, 1983

    Article  PubMed  CAS  Google Scholar 

  • Bertschy G, Vandel S, Vandel B, Allers G, Bechtcl P, et al. Desipramine dose prediction based on 24-hour single-dose levels: feasibility and validity. Pharmacopsychiatry 22: 161–164, 1989

    Article  PubMed  CAS  Google Scholar 

  • Bickel MH, Binding of chlorpromazine and imipramine to red cells, albumin, lipoproteins and other blood components. Journal of Pharmacy and Pharmacology 27: 733–738. 1975

    Article  PubMed  CAS  Google Scholar 

  • Bickel MH, Graber BE, Moor M, Distribution of chlorpromazine and imipramine in adipose and other tissues of rats. Life Sciences 33: 2025–2031, 1983

    Article  PubMed  CAS  Google Scholar 

  • Bickel MH, Weder HJ, Demethylation of imipramine in the rat as influenced by SKF 525 A and by different routes of administration. Life Sciences 7: 1223–1230, 1968

    Article  PubMed  CAS  Google Scholar 

  • Birgersson C, Morgan ET, Jornvall H, von Bahr C, Purification of a desmethylimipraminc and debrisoquine hydroxylating cytochrome p-450 from human liver. Biochemical Pharmacology 35: 3165–3166, 1986

    Article  PubMed  CAS  Google Scholar 

  • Bjerre M, Gram LF, Kragh-Sorensen P, Kristensen CB, Pedcrsen OL, et al. Dose-dependent kinetics of imipramine in elderly patients. Psyehopharmacology 75: 354–357, 1981

    Article  CAS  Google Scholar 

  • Bock JL, Nelson JC, Gray S, Jatlow PI. Desipramine hydroxylation: variability and effect of anlipsychotic drugs. Clinical Pharmacology and Therapeutics 33: 322–328, 1983

    Article  PubMed  CAS  Google Scholar 

  • Brinkschultc M, Brcser-Plaff U, The role of lipoproteins in the binding of tricyclic antidepressants and perazine to human plasma. In Usdin et al. (Eds) Phenothiazines and structurally related drugs, pp. 189–192, Elsevier, Amsterdam, 1980

    Google Scholar 

  • Brøsen K, Gram LF, First-pass metabolism of Imipramine an ddesipramine: impact of the sparteine oxidation phenotype. Clinical Pharmacology and Therapeutics 43: 400–406, 1988

    Article  PubMed  Google Scholar 

  • Brøsen K, Gram LF, Klysner R, Bech P. Steady-state levels of Imipramine and us metabolites: significance of dose-dependent kinetics. European Journal of Clinical Pharmacology 30: 43–49, 1986b

    Article  PubMed  Google Scholar 

  • Brøsen K, Gram LF, Klysner R, Otton SV, Bech P. et al. Steadystate concentrations of imipramine and its metabolites in relation to the sparteine/debrisoquine polymorphism. European Journal of Clinical Pharmacology 30: 679–684, 1986a

    Article  PubMed  Google Scholar 

  • Brøsen K. Otton SV, Gram LF, Imipramine demethylation and hydroxylation: impact of the sparteine oxidation phenotype. Clinical Pharmacology and Therapeutics 40: 543–549, 1986c

    Article  PubMed  Google Scholar 

  • Brunswick DJ, Amsterdam JD, Mendels J, Stern SL, Prediction of steady-state Imipramine and desmethylimipramine plasma concentrations from single dose data. Clinical Pharmacology and Therapeutics 25: 605–610, 1979

    PubMed  CAS  Google Scholar 

  • Burckhardt D, Raeder E, Muller V, Imhof P, Neubauer H. Cardiovascular effects of tricyclic and tetracyclic antidepressants. Journal of the American Medical Association 239: 213–216, 1978

    Article  PubMed  CAS  Google Scholar 

  • Christiansen J, Gram LF, Imipramine and its metabolites in human brain. Journal of Pharmacy and Pharmacology 25: 604–608, 1973

    Article  PubMed  CAS  Google Scholar 

  • Christiansen J, Gram LF, Kofod B, Rafaelsen OJ. Imipramine metabolism in man. Psychopharmacologia 11: 255–264, 1967

    Article  PubMed  CAS  Google Scholar 

  • Ciraulo DA, Alderson LM, Chaproon DJ, Jaffe JH, Bollepalli S, et al. Imipramine disposition in alcoholics. Journal of Clinical Psyehopharmacology 2: 2–7, 1982

    Article  CAS  Google Scholar 

  • Ciraulo DA, Barnhill JG, Jaffe JH. Clinical pharmacokinetics of imipramine and desipramine in alcoholics and normal volunteers. Clinical Pharmacology and Therapeutics 43: 509–518, 1988

    Article  PubMed  CAS  Google Scholar 

  • Cole JO, Where are those new antidepressants we were promised? Archives of General Psychiatry 45: 193–194, 1988

    Article  PubMed  CAS  Google Scholar 

  • Cooke RG, Warsh JJ, Stancer HC, Reed KL, Persad E. The nonlinear kinetics of desipramine and 2-hydroxydesipramine in plasma. Clinical Pharmacology and Therapeutics 36: 343–349, 1984

    Article  PubMed  CAS  Google Scholar 

  • Cooper TB, Bark N, Simpson GM, Prediction of steady state plasma and saliva levels of desmethylimipramine using a single dose, single time point procedure. Psyehopharmacology 74: 115–121, 1981

    Article  CAS  Google Scholar 

  • Costa D, Predescu V, Visan-Ionescu I, Ciurezu T, Endogenous depression and imipramine levels in the blood. Psychopharmacology 70: 291–294, 1980

    Article  PubMed  CAS  Google Scholar 

  • Crammer SL, Scott B, Rolfe B, Metabolism of 14C-imipramine: II. Urinary metabolites in man. Psychopharmacologia 15: 207–225, 1969

    PubMed  CAS  Google Scholar 

  • Cutler NR, Zavadil AP, Eisdorfer G, Ross RJ, Potter WZ, Concentrations of desipramine in elderly women are not elevated. American Journal of Psychiatry 138: 1235–1237, 1981

    PubMed  CAS  Google Scholar 

  • Danon A, Chen Z, Binding of imipramine to plasma proteins: effect of hyperlipoproteinemia. Clinical Pharmacology and Therapeutics 25: 316–321, 1979

    PubMed  CAS  Google Scholar 

  • Dayton PG, Israili ZH, Cunningham RF, Stiller R, Perel JM. The effects of lipids on the binding of imipramine and other drugs to serum proteins. In Usdin et al. (Eds) Phenothiazines and structurally related drugs, pp. 185–188, Elsevier. Amsterdam. 1980

    Google Scholar 

  • Dencker H, Dencker SJ, Green A, Nagy A. Intestinal absorption, demethylation, and enterohepatic circulation of imipramine. Clinical Pharmacology and Therapeutics 15: 584–586, 1976

    Google Scholar 

  • Devane CL, Cyclic antidepressants. In Evans et al (Eds) Applied pharmacokinetics: principles of therapeutic drug monitoring, pp. 549–585, Applied Therapeutics. Spokane, 1980

  • Devane CL, Jusko WJ. Plasma concentrations monitoring of hydroxylated metabolites of imipramine and desipramine. Drug Intelligence and Clinical Pharmacy 15: 263–266, 1981

    PubMed  CAS  Google Scholar 

  • Devane CL, Savelt M, Jusko WJ, Desipramine and 2-hydroxy desipramine pharmacokinetics in normal volunteers. European Journal of Clinical Pharmacology 19: 61–64, 1981

    Article  PubMed  CAS  Google Scholar 

  • Distlerath LM, Guengench FP. Characterization of a human liver cytochrome P-450 involved in the oxidation of debrisoquin and other drugs by using antibodies raised to the analogous rat enzyme. Proceedings of the National Academy of Sciences USA 81: 7348–7352, 1984

    Article  CAS  Google Scholar 

  • Dugas JE, Bishop DS, Nonlinear desipramine pharmacokinetics: a case study. Journal of Clinical Psychopharmacology 5: 43–45, 1985

    Article  PubMed  CAS  Google Scholar 

  • Eichelbaum M, Defective oxidation of drugs: pharmacokinctic and therapeutic implications. Clinical Pharmacokinetics 7: 1–22, 1982

    Article  PubMed  CAS  Google Scholar 

  • Eichelbaum M, Spannbrucker N, Steincke B, Dengler HJ, Defective N-oxidation of spaneine in man: a new pharmacogenetic defect. European Journal of Clinical Pharmacology 16: 183–187, 1979

    Article  PubMed  CAS  Google Scholar 

  • Eichelbaum M, Woolhouse NM. Inter-ethnic difference in sparteine oxidation among Ghanaians and Germans. European Journal of Clinical Pharmacology 28: 79–83, 1985

    Article  PubMed  CAS  Google Scholar 

  • El-Fakahany E, Richelson E. Antagonism by antidepressants of muscarinic acetylcholine receptors of human brain. British Journal of Pharmacology 78: 97–102, 1983

    PubMed  CAS  Google Scholar 

  • Ereshefskey L, Tran-Johnson T, Davis CM, LeRoy A. Pharmacokinetic factors affecting antidepressant drug clearance and clinical effect: evaluation of doxepin and Imipramine. Clinical Chemistry 34: 863–880, 1988

    Google Scholar 

  • Freilich DI, Giardina EV. Imipramine binding to alpha-1-acid glycoprotein in normal subjects and cardiac patients. Clinical Pharmacology and Therapeutics 35: 670–674, 1984

    Article  PubMed  CAS  Google Scholar 

  • Glassman AH, Hurwic MJ, Perel JM. Plasma binding of Imipramine and clinical outcome. American Journal of Psychiatry 130: 1367–1369, 1973

    PubMed  CAS  Google Scholar 

  • Glassman AH, Johnson LL, Giardina E-G, Walsh BT, Roose SP. The use of imipramine in depressed patients with congestive heart failure. Journal of the American Medical Association 250: 1997–2001, 1983

    Article  PubMed  CAS  Google Scholar 

  • Glassman AH, Perel JM, Shostak M, Kantor S, Fleiss JL. Clinical implications of Imipramine plasma levels for depressive illness. Archives of General Psychiatry 34: 197–204, 1977

    Article  PubMed  CAS  Google Scholar 

  • Glassman AH, Roose SP, Giardina E-G, Bigger JT. Cardiovascular effects of tricyclic antidepressants. In Meltzer (Ed.) Psychopharmacology: the third generation of progress. Raven Press, New York, pp 1437–1442, 1987

    Google Scholar 

  • Gonzalez FJ, Skoda RC, Kimura S, Umeno M, Zanger UM, et al. Characterization of the common genetic defect in humans deficient in debrisoquine metabolism. Nature 331: 442–446, 1988

    Article  PubMed  CAS  Google Scholar 

  • Gram LF, Andreasen PB, Overo KF, Christiansen J. Comparison of single dose kinetics of imipramine, nortriptyline, and antipyrine in man. Psychopharmacology Bulletin 50: 21–27, 1976

    Article  CAS  Google Scholar 

  • Gram LF, Bjerre M. Kragh-Sorensen P. Kvinesdal B, Molin J, et al. Imipramine metabolics in blood of patients during therapy and after overdose. Clinical Pharmacology and Therapeutics 33: 335–343. 1983

    Article  PubMed  CAS  Google Scholar 

  • Gram LF, Christiansen J, First-pass metabolism of imipramine in man. Clinical Pharmacology and Therapeutics 17: 555–563. 1975

    PubMed  CAS  Google Scholar 

  • Gram LF, Kofod B, Christiansen J. Rafaelsen OJ. Imipraminc metabolism: pH-dependent distribution and urinary excretion. Clinical Pharmacology and Therapeutics 12: 239–244, 1971

    PubMed  CAS  Google Scholar 

  • Gram LF, Overo KF. Drug interaction: inhibitory effects of neuroleptics on metabolism of tricyclic antidepressants in man. British Medical Journal 163: 463–465. 1972

    Article  Google Scholar 

  • Gram LF, Sondergaad IB, Christiansen J. Petersen GO, Bech P. et al. Steady-state kinetics of imipramine in patients. Psychopharmacology 54: 255–261. 1977

    Article  PubMed  CAS  Google Scholar 

  • Greenblatt DJ. The pharmacokinetization of psychiatry. Journal of Clinical Pharmacology 25: 239–240. 1985

    PubMed  CAS  Google Scholar 

  • Greenblatt DJ, Sellers EM. Koch-Weser J. Importance of protein binding for the interpretation of serum or plasma drug concentrations. Journal of Clinical Pharmacology 22: 259–263. 1982

    PubMed  CAS  Google Scholar 

  • Hammer W, Sjoqvist F. Plasma levels of monomethylaled tricyclic antidepressants during treatment with imipramine-like compounds. Life Sciences 6: 1895–1903, 1967

    Article  PubMed  CAS  Google Scholar 

  • Heikkila RE, Goldfinger SS, Orlansky H, The effect of various phenothiazines and tricyclic antidepressants on the accumulation and release of (3H)norepinephnne and (3H)5-hydroxytryptamine in slices of rat occipital cortex. Research Communications in Chemical Pathology and Pharmacology 13: 237–250, 1976

    PubMed  CAS  Google Scholar 

  • Inaba T, Jurima M, Nakano M, Kalow W, Mephenytoin and spaneine pharmacogenetics in Canadian Caucasians. Clinical Pharmacology and Therapeutics 36: 670–676, 1984

    Article  PubMed  CAS  Google Scholar 

  • Jandhyala B, Steenberg M, Perel JM, Manian AA, Buckley J, Effects of several tricyclic antidepressants on the hemodynamics and myocardial contractility of anesthetized dogs. European Journal of Pharmacology 42: 403–410, 1977

    Article  PubMed  CAS  Google Scholar 

  • Javaid JI, Perel J, Davis JM, Inhibition of biogenic amines uptake by imipramine, desipramine. 2-OH-imipramine and 2-OH-desipramine in rat brain. Life Sciences 24: 21–28, 1979

    Article  PubMed  CAS  Google Scholar 

  • Jorgensen OS, Lober M, Christiansen J, Gram LF, Plasma concentration and clinical effect in imipramine treatment of childhood enuresis. Clinical Pharmacokinetics 5: 386–393. 1980

    Article  PubMed  CAS  Google Scholar 

  • Jusko WJ, Influence of cigarette smoking on drug metabolism in man. Drug Metabolism Review 9: 221–228, 1979

    Article  CAS  Google Scholar 

  • Kitanaka I, Ross RJ, Cutler NR, Zavadil AP, Potter WZ. Altered hydroxydesipramine concentrations in elderly depressed patients. Clinical Pharmacology and Therapeutics 18: 517–520, 1982

    Google Scholar 

  • Kocsis JH, Hanin I, Bowden C, Brunswick D. Imipramine and amitriptyline plasma concentrations and clinical response in major depression. British Journal of Psychiatry 148: 52–57, 1986

    Article  PubMed  CAS  Google Scholar 

  • Kragh-Sorensen P, Larson NE, Factors influencing nortriptyline steady-state kinetics. Clinical Pharmacology and Therapeutics 28: 796–803, 1986

    Google Scholar 

  • Kristensen CB, Imipramine serum protein binding in health subjects. Clinical Pharmacology and Therapeutics 34: 689–694, 1983

    Article  PubMed  CAS  Google Scholar 

  • Kruger R, Holzl G, Kuss HJ, Schefold L. Comparison of the metabolism of the three antidepressants amitriptyline, imipramine, and chlorimipramine in vitro in rat liver microsomes. Psychopharmacology 88: 505–513, 1986

    Article  PubMed  CAS  Google Scholar 

  • Kuhn R, Untersuchungen uber mogliche Zusammenhange zwischen Metabolitenausscheidung and Krankheitsverlauf depressive zustande unter Imipramin-Medikation. Psychopharmacologia 8: 201–222, 1965

    Article  PubMed  CAS  Google Scholar 

  • Kutcher SP, Reid K, Dubbin JD, et al. Electrocardiogram changes and therapeutic desipramine and 2-hydroxy-desipramine concentrations in elderly depressives. British Journal of Psychiatry 148: 676–679, 1986

    Article  PubMed  CAS  Google Scholar 

  • Lake CR, Mikkelsen EJ, Rapoport JL, Zavadil III AP, Kopin IJ. Effects of imipramine and norepinephrine and blood pressure in enuretic boys. Clinical Pharmacology and Therapeutics 26: 647–653, 1979

    PubMed  CAS  Google Scholar 

  • Lieberman JA, Cooper TB, Suckow RF, Steinberg H, Borenstein M, et al. Tricyclic antidepressant levels in chronic renal failure. Clinical Pharmacology and Therapeutics 37: 301–307, 1985

    Article  PubMed  CAS  Google Scholar 

  • Linnoila M, Dorrity F, Jobson K. Plasma and erythrocyte levels of tricyclic antidepressants in depressed patients. American Journal of Psychiatry 135: 557–561, 1978

    PubMed  CAS  Google Scholar 

  • Mahgoub A, Idle JR, Dring LG, Lancaster R, Smith RL. Polymorphic hydroxylation of debrisoquine in man. Lancet 2: 584–586, 1977

    Article  PubMed  CAS  Google Scholar 

  • Mellstrom B, Bertilsson L, Lou Y-C, Sawe J, Sjoqvist F. Amitriptyline metabolism: relationship to polymorphic debrisoquine hydroxylation. Clinical Pharmacology and Therapeutics 34: 516–520, 1983

    Article  PubMed  CAS  Google Scholar 

  • Meilstrom B, Bertilsson L, Sawe J, Schulz HU, Sjoqvist F. E-and Z-10-hydroxylation of nortriptyline: relationship to polymorphic debrisoquine hydroxylation. Clinical Pharmacology and Therapeutics 30: 189–193, 1981

    Article  Google Scholar 

  • Meilstrom B, Sawe J, Berlilsson L, Sjoqvist F. Amitriptyline mclabolism: association with dcbrisoquine hydroxylation in nonsmokers. Clinical Pharmacology and Therapeutics 39: 369–371, 1986

    Article  Google Scholar 

  • Moody JP, Tait AC, Todrick A. Plasma levels of imipramine and desmcthylimipraminc during therapy. British Journal of Psychiatry 133: 183–193, 1967

    Article  Google Scholar 

  • Musccttola G, Goodwin FK, Potter WZ, Claeys MM, Markey SP. Imipramine and desipramine in plasma and spinal fluid: relationship to clinical response and serotonin metabolism. Archives of General Psychiatry 35: 621–625, 1978

    Article  Google Scholar 

  • Nagy A, Johansson R, Plasma levels of Imipramine and desipramine in man after different routes of administration. Naunvn-Schmiedeberg’s Archives of Pharmacology 290: 145–160, 1975

    Article  CAS  Google Scholar 

  • Nagy A, Johansson R, The demcthylation of Imipramine and clomipramine as apparent from their plasma kinetics. Psychopharmacology 54: 125–131, 1977

    Article  PubMed  CAS  Google Scholar 

  • Nagy A, Treiber L. Quantitative determination of imipramine and desipramine in human blood plasma by direct densitometry of thinlayer chromatograms. Journal of Pharmacy and Pharmacology 25: 599–603, 1973

    Article  PubMed  CAS  Google Scholar 

  • Nakamura K, Goto F, Ray A, et al. Interelhnic differences in genetic polymorphism of debrisoquine and mephenytoin hydroxylation between Japanese and Caucasian populations. Clinical Pharmacology and Therapeutics 38: 402–408, 1985

    Article  PubMed  CAS  Google Scholar 

  • Nakano S, Hollister LE, Chronopharmacology of amitriptyline. Clinical Pharmacology and Therapeutics 33: 453–459, 1982

    Google Scholar 

  • Nelson JC, Atillasoy E, Mazure C, Jatlow PI, Hvdroxvdesipramine in the elderly. Journal of Clinical Psychopharmacology 8: 428–433, 1988b

    Article  PubMed  CAS  Google Scholar 

  • Nelson JC, Jatlow P, Nonlinear desipramine kinetics: prevalence and importance. Clinical Pharmacology and Therapeutics 41: 666–670, 1987

    Article  PubMed  CAS  Google Scholar 

  • Nelson JC, Jatlow PI, Mazure C, Desipramine plasma levels and response in elderly melancholic patients. Journal of Clinical Psychopharmacology 5: 217–220, 1985

    Article  PubMed  CAS  Google Scholar 

  • Nelson JC, Jatlow P, Quinlan DM, et al. Desipramine plasma concentration and anlidcpressanl respones. Archives of General Psychiatry 39: 1419–1422, 1982

    Article  PubMed  CAS  Google Scholar 

  • Nelson JC, Mazure C, Jatlow PI, Antidepressanl activity of 2-hydroxydesipramine. Clinical Pharmacology and Therapeutics 44: 283–288, 1988a

    Article  PubMed  CAS  Google Scholar 

  • Nies A, Robinson DS, Friedman MJ, Green R, Cooper TB, et al. Relationship between age and tricyclic antidepressant plasma levels. American Journal of Psychiatry 134: 790–793, 1977

    PubMed  CAS  Google Scholar 

  • Nordin C, Siwers B, Bcnitez J, Bertilsson L, Plasma concentrations of nortriptyline and its 10-hydroxy metabolite in depressed patients — relationship to the debnsoquine hydroxylation metabolic ratio. British Journal of Clinical Pharmacology 19: 832–835, 1985

    Article  PubMed  CAS  Google Scholar 

  • Osikowska-Evers B, Dayer P, Meyer UA, Robertz GF, Eichelbaum M, Evidence for altered catalytic properties of the cylochrome P-450 involved in the spartcine oxidation in poor metabolizers. Clinical Pharmacology and Therapeutics 41: 320–325, 1987

    Article  PubMed  CAS  Google Scholar 

  • Otton SV, Inaba T, Kalow W, Inhibition of sparteine oxidation in human liver by Iricyclic antidepressants and other drugs. Life Sciences 32: 795–800, 1983

    Article  PubMed  CAS  Google Scholar 

  • Pearl GF, Boutagy J, Shenfield GM, Dcbnsoquin oxidation in an Australian population. British Journal of Clinical Pharmacology 21: 465–471, 1986

    Article  Google Scholar 

  • Perel JM, Irani F, Hurivic M, Classman AH, Manian AA, Tricvclic antidepressants: relationships among pharmacokinctics, metabolism and clinical oulcome. In Garattini (Eds) Depressive disorders, pp. 325–336, FK Schallauer Verlag. Stuttgart. 1978a

    Google Scholar 

  • Perel JM, Stiller RL, Glassman AH, Studies on plasma level/effect relationships in Imipramine therapy. Communications in Psychopharmacology 2: 429–439, 1978b

    PubMed  CAS  Google Scholar 

  • Perry PJ, Pfohl BM, Holstad SG, The relationship between antidepressant response and tricyclic antidepressant plasma concentrations: retrospective analysis of the literature using logistic regression analysis. Clinical Pharmacokinetics 13: 381–392, 1987

    Article  PubMed  CAS  Google Scholar 

  • Piafsky KM, Borga O, Plasma protein of basic drugs II: importance of alpha-l acid glycoprotein for interindividual variation. Clinical Pharmacology and Therapeutics 22: 545–549, 1977

    PubMed  CAS  Google Scholar 

  • Pollock BG, Perel JM, Hydroxymetabolites of iricyclic antidepressants: evaluation for relative cardiotoxicity. In Dahl & Gram (Eds) Clinical pharmacology in psychiatry: molecular studies to clinical reality, pp 232–236, Springer-Verlag, Berlin. 1989

    Chapter  Google Scholar 

  • Pollock BG, Perel JM, Stiller RL, Birder LA, Manian AA, Comparative cardiotoxicity and pharmacokinetics of imipramine and 2-hydroxvimipramine in unanesthetized swine. Clinical Research 35: 380, 1987

    Google Scholar 

  • Potter WZ, Cahl HM, Manian AA, Zavadil AP, Goodwin FK, Hydroxylated metabolites of tricyclic antidepressants: preclinical assessment of activity. Biological Psychiatry 14: 601–613, 1979b

    PubMed  CAS  Google Scholar 

  • Potter WZ, Calil HM, Sutfin TA, Zavadil AP, Jusko WJ, et al. Active metabolites of imipramine and desipramine in man. Clinical Pharmacology and Therapeutics 31: 393–401, 1982

    Article  PubMed  CAS  Google Scholar 

  • Potter WZ, Calil HM, Zavadil AP, Steady-state concentrations of hydroxylated metabolites of tricyclic antidepressants in patients: relationship to clinical effect. Psychopharmacology Bulletin 16: 32–34, 1980a

    Google Scholar 

  • Potter WZ, Muscetlola G, Goodwin FK, Binding of imipramine 10 plasma protein and to brain tissue: relationship to CSF tricyclic levels in man. Psychopharmacology 63: 187–192, 1979a

    Article  PubMed  CAS  Google Scholar 

  • Potter WZ, Zavadil AP, Kopin IJ, Goodwin FK, Single-dose kinetics predict steady-slate concentrations of imipramine and desipramine. Archives of General Psychiatry 37: 314–320, 1980b

    Article  PubMed  CAS  Google Scholar 

  • Preskorn SH, Bupp SJ, Weller EB, Weller RA. Plasma levels of Imipramine and metabolites in 68 hospitalized children. Journal of the American Academy of Child and Adolescent Psychiatry 28: 373–375, 1989

    Article  PubMed  CAS  Google Scholar 

  • Preskorn SH, Jerkovich GS, Hughes C, Weller R, Depression in children: concentration dependent CNS toxicity of tricyclic antidepressants. Psychopharmacology Bulletin 24: 275–279, 1988

    PubMed  Google Scholar 

  • Preskorn SH, Weiler EB, Hughes CW, Weller RA. Relationship of plasma imipramine levels to CNS toxicity in children. American Journal of Psychiatry 145: 897, 1988

    PubMed  CAS  Google Scholar 

  • Price-Evans DA, Harmer D, Downham DY, Whibley EJ, Idle JR, et al. The genetic control of sparteine and debrisoquin metabolism in man with new methods of analysing bimodal distributions. Journal of Medical Genetics 20:321–329, 1983

    Article  Google Scholar 

  • Price-Evans DA, Mahgoub A, Sloan TP, Idle JR, Smith RL, A family and population study of the genetic polymorphism of debrisoquine in a while British population. Journal of Medical Genetics 17: 102–105, 1980

    Article  Google Scholar 

  • Reidenberg MM, Odar-Cedcrlof I, von Bahr C, Borga O, Sjoqvist F, Protein binding of diphenylhydantoin and desmcthylimipraminc in plasma from patients with poor renal function. New England Journal of Medicine 285: 264–267, 1971

    Article  PubMed  CAS  Google Scholar 

  • Rigal JG, Albin H, Duchier AR, D’Aulnay, JM, Fenelon JH, el al, Imipramine blood levels and clinical outcome, Journal of Clinical Psychopharmacology 7: 222–229, 1987

    Article  PubMed  CAS  Google Scholar 

  • Rubinstein G, McIntyre I, Burrows GD, Norman TR, Maguire KP. Metabolism of tricyclic antidepressant drugs. In Burrows et al. (Eds) Anlidepressants. pp. 57–74, Elsevier. Amsterdam. 1983

    Google Scholar 

  • Rudorfer MV, Lane, Potter WZ, Interelhnic dissociation between debrisoquin and desipramine hydroxylation. Journal of Clinical Psychopharmacology 5: 89–92, 1985

    Article  PubMed  CAS  Google Scholar 

  • Sallee F, Stiller R, Perel J, Rancurello M, Targeting Imipramine dose in children with depression. Clinical Pharmacology and Therapeutics 40: 8–13, 1986

    Article  PubMed  CAS  Google Scholar 

  • Sathananthan GL, Gershon S, Almeida M, Spector S, Correlation between plasma and cerebrospinal levels of Imipramine. Archives of General Psychiatry 33: 1109–1110, 1976

    Article  PubMed  CAS  Google Scholar 

  • Schindler W, Uber die Konstitutionsermittlung and Synthese eines Metaboliten von N-(lmethylaminopropyl)-iminodibenzyl-hydrochlorid. Helvetica Chimica Acta 43: 35–42, 1960

    Article  CAS  Google Scholar 

  • Sigg EG, Osborne M, Korol B, Cardiovascular effects of imipramine. Journal of Pharmacology and Experimental Therapeutics 141: 237–243, 1963

    PubMed  CAS  Google Scholar 

  • Sjoqvist F, Berglund F, Borga O, Hammer W, Andersson S, et al. The pH-dependent excretion of monomethylated tricyclic antidepressants in dog and man. Clinical Pharmacology and Therapeutics 10: 826–833, 1969

    PubMed  CAS  Google Scholar 

  • Slattery JT, Gibaldi M, Koup JR. Prediction of maintenance dose required to attain a desired drug concentration at steady-state from a single determination of concentration after an initial dose. Clinical Pharmacokinetics 5: 377–385, 1980

    Article  PubMed  CAS  Google Scholar 

  • Spina E, Birgersson C, von Bahr C, Ericsson O, Mellstrom B, et al. Phenotypic consistency in hydroxylation of dcsmethylimipramine and debrisoquine in healthy subjects and in human liver microsomes. Clinical Pharmacology and Therapeutics 36: 677–682, 1984

    Article  PubMed  CAS  Google Scholar 

  • Spina E, Henthorn T, Eleborg L, Desmethylimipramine overdose: nonlinear kinetics in a slow hydroxylator. Therapeutic Drug Monitoring 5: 239–241, 1985

    Article  Google Scholar 

  • Spina E, Koike Y, Differential effects of Cimetidine and ranitidine on Imipramine demethylation and desmethylimipramine hydroxylation by human liver microsomes. European Journal of Clinical Pharmacology 30: 239–242, 1986

    Article  PubMed  CAS  Google Scholar 

  • Spina E, Pacifici GM, von Bahr C, Rane A. Characterization of desmethylimipramine 2-hydroxylation in human foetal and adult liver microsomes. Acta Pharmacologica et Toxicologica 58: 277–281, 1986

    Article  PubMed  CAS  Google Scholar 

  • Spina E, Steiner E, Orjan E, et al. Hydroxylation of desmethylimipramine: dependence on the debrisoquin hydroxylation phenotype. Clinical Pharmacology and Therapeutics 41: 314–319, 1987

    Article  PubMed  CAS  Google Scholar 

  • Steiner E, Iselius L, Alvan G, Lindsten J, Sjöqvist FA, A family study of genetic and environmental factors determining polymorphic hydroxylation of debrisoquin in man. Clinical Pharmacology and Therapeutics 38: 394–401, 1985

    Article  PubMed  CAS  Google Scholar 

  • Stout SA, DeVane CL, Quantification of Imipramine and its major metabolites in whole blood, brain, and other tissues of the rat by liquid chromatography. Psychopharmacology 84: 39–41, 1984

    Article  PubMed  CAS  Google Scholar 

  • Sulser F, Watts J, Brodie BB. On the mechanism of antidepressant action of imipramine-like drugs. Annals of the New York Academy of Science 96: 279–286, 1962

    Article  CAS  Google Scholar 

  • Sutfin TA, Devane CL, Jusko WJ. The analysis and disposition of imipramine and its active metabolites in man. Psychopharmacology 82: 310–317, 1984

    Article  PubMed  CAS  Google Scholar 

  • Sutfin TA, Perini Gl, Molnar G, Jusko WJ, Multiple-dose pharmacokinetics of imipramine and its major active and conjugated metabolites in depressed patients. Journal of Clinical Psychopharmacology 8: 48–53, 1988

    Article  PubMed  CAS  Google Scholar 

  • Tollefson G, Valentine R, Garvey M, Tuanson VB, Imipramine metabolism in recurrent depressive episodes. Journal of Affective Disorders 8: 183–186, 1985

    Article  PubMed  CAS  Google Scholar 

  • Vinks A, Inaba T, Otton SV, Kalow W, Sparteine metabolism in Canadian Caucasians. Clinical Pharmacology and Therapeutics 31: 23–29, 1982

    Article  PubMed  CAS  Google Scholar 

  • von Bahr C, Spina E, Birgerson C, Ericsson O, Goransson M, et al. Inhibition of desmethylimipramine 2-hydroxylation by drugs in human liver microsomes. Biochemical Pharmacology 34: 2501–2505, 1985

    Article  Google Scholar 

  • Weiler EB, Weller RA, Preskorn SH, Steady-state plasma imipramine levels in prepubertal depressed children. American Journal of Psychiatry 139: 506–508, 1982

    Google Scholar 

  • Wilkerson RD, Antiarrhythmic effects of tricyclic antidepressant drugs in ouabain-induced arrhythmias in the dog. Journal of Pharmacology and Experimental Therapeutics 205: 666–674, 1978

    PubMed  CAS  Google Scholar 

  • Wilkinson GR, Shand DG, A physiological approach to hepatic drug clearance. Clinical Pharmacology and Therapeutics 18: 377–390, 1975

    PubMed  CAS  Google Scholar 

  • Woolhouse NM, Adjepon-Yamoah KK, Mellstrom B, Hedman A, Bertilsson L, et al. Nortriptyline and debrisoquin hydroxylation in Ghanaian and Swedish subjects. Clinical Pharmacology and Therapeutics 36: 374–378, 1984

    Article  PubMed  CAS  Google Scholar 

  • Zeidenberg P, Perel JM, Kanzler M, Warthon RN, Malitz S, Clinical and metabolic studies with imipramine in man. American Journal of Psychiatry 127: 1321–1326, 1971

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sallee, F.R., Pollock, B.G. Clinical Pharmacokinetics of Imipramine and Desipramine. Clin Pharmacokinet 18, 346–364 (1990). https://doi.org/10.2165/00003088-199018050-00002

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003088-199018050-00002

Keywords

Navigation