Skip to main content
Log in

Clinical Pharmacokinetics of Selective Serotonin Reuptake Inhibitors

  • Review Article
  • Drug Disposition
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Summary

A feature common to all selective serotonin reuptake inhibitors (SSRIs) is that they are believed to act as antidepressant drugs because of their ability to reversibly block the reuptake of serotonin (5-hydroxytryptamine; 5-HT) in the synaptic cleft. From a chemical perspective, however, they show distinct differences. Consequently, the pharmacokinetic behaviour of the drugs can be very different, and these pharmacokinetic differences may have a major influence on their clinical profiles of action.

All SSRIs have a great affinity for the 5-HT reuptake carrier in the synaptic cleft in the central nervous system, with much less affinity for the noradrenaline (norepinephrine) reuptake carrier, and for α- and β-adrenergic, dopamine, histamine, 5-HT and muscarine receptors. Fluoxetine and citalopram are available as racemic mixtures, the isomers of fluoxetine having almost equal affinity to the 5-HT reuptake carrier, while the reuptake inhibitor properties of citalopram reside almost exclusively in the (+)-isomer. Norfluoxetine, one of the metabolites of fluoxetine, has a selectivity for the 5-HT reuptake carrier comparable with that of fluoxetine.

Gastrointestinal absorption of the SSRIs is generally good, with peak plasma concentrations observed after approximately 4 to 6h. Absolute bioavailability of citalopram is almost 100%, whereas it is likely that the other compounds undergo (substantial) first-pass metabolism. Apparent oral clearance values after single doses range from 26 L/h (citalopram) to 167 L/h (paroxetine), while after multiple doses oral clearance is markedly reduced, particularly for fluoxetine and paroxetine. Plasma protein binding of fluoxetine, paroxetine and sertraline is ⩾95%; values for fluvoxamine (77%) and citalopram (50%) are much lower. For all compounds, however, protein binding interactions do not seem to be of great importance. Although many attempts were made, to date no convincing evidence exists of a relationship between plasma concentrations of any of the SSRIs and clinical efficacy.

Elimination occurs via metabolism, probably in the liver. Renal excretion of the parent compounds is of minor importance. Metabolites of fluvoxamine and fluoxetine are predominantly excreted in urine; larger quantities of metabolites of paroxetine (36%) and sertraline (44%) are excreted in faeces. The half-lives of fluvoxamine, paroxetine, sertraline and citalopram are approximately 1 day. The half-life of fluoxetine is approximately 2 days (6 days after multiple doses), and that of the active metabolite norfluoxetine is 7 to 15 days. The metabolism of paroxetine, and possibly also of fluoxetine, is under genetic control of the sparteine/debrisoquine type.

Available data indicate that metabolism of SSRIs is impaired with reduced liver function. Although renal elimination of SSRIs is minimal, plasma concentrations of paroxetine were increased in patients with renal dysfunction. Metabolism of paroxetine and citalopram, and possibly also sertraline, is impaired in the elderly.

Drug-drug interactions on the level of cytochrome P450 have been described for all SSRIs, but there are profound differences in the isozymes inhibited. Fluvoxamine inhibits the metabolism of propranolol, warfarin, theophylline, bromazepam, carbamazepine, phenazone (antipyrine) and the demethylation of tricyclic antidepressants. Renal excretion of digoxin, atenolol and lithium, and glucuronidation of lorazepam and metabolism of alcohol are not affected: Hydroxylation of tricyclic antidepressants is severely inhibited by fluoxetine, probably because both fluoxetine and norfluoxetine strongly inhibit CYP450IID6. Also the metabolism of carbamazepine and diazepam is impaired, whereas no interaction occurs with lithium, warfarin and alcohol. Phenazone metabolism is not impaired by paroxetine. Digoxin clearance, however, was reduced by 18%, and paroxetine prolonged bleeding time of individuals receiving warfarin. Few drug-drug interaction studies with sertraline and citalopram are reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Ariens EJ. Stereochemistry, a basis for sophisticated nonsense in pharmacokinetics and clinical pharmacology. European Journal of Clinical Pharmacology 26: 663–668, 1984

    Article  PubMed  CAS  Google Scholar 

  • Apseloff G, Wilner KD, VonDeutsch DA, Henry EB, Tremaine LM, et al. Sertraline does not alter steady-state concentrations or renal clearance of lithium in healthy volunteers. Journal of Clinical Pharmacology 32: 643–646, 1992

    PubMed  CAS  Google Scholar 

  • Aronoff GR, Bergstrom RF, Pottratz ST, Sloan RS, Wolen RL, et al. Fluoxetine kinetics and protein binding in normal and impaired renal function. Clinical Pharmacology and Therapeutics 36: 138–144, 1984

    Article  PubMed  CAS  Google Scholar 

  • Bannister SJ, Houser VP, Hulse JD, Kisicki JC, Rasmussen JGC. Evaluation of the potential for interactions of paroxetine with diazepam, cimetidine, warfarin, and digoxin. Acta Psychiatrica Scandinavica 80 (Suppl. 350): 102–106, 1989

    Article  Google Scholar 

  • Baumann P. Pharmacokinetics of antidepressants: clinical relevance for citalopram and other 5-HT uptake inhibitors. Lecture held at 5th World Congress of Biological Psychiatry, Florence, June 9–14, 1991

  • Bayer AJ, Roberts NA, Allen EA, Horan M, Routledge PA, et al. The pharmacokinetics of paroxetine in the elderly. Acta Psychiatrica Scandinavica 80 (Suppl. 350): 85–86, 1989

    Article  Google Scholar 

  • Benfield P, Heel RC, Lewis SP. Fluoxetine: a review of its pharmacodynamic and pharmacokinetic properties, and therapeutic efficacy in depressive illness. Drugs 32: 481–508, 1986

    Article  PubMed  CAS  Google Scholar 

  • Benfield P, Ward A. Fluvoxamine: a review of its pharmacodynamic and pharmacokinetic properties, and therapeutic efficacy in depressive illness. Drugs 32: 313–334, 1986

    Article  PubMed  CAS  Google Scholar 

  • Bergstrom RF, Lemberger L, Cerimele BJ, Wolen RL, Kisicki JC. Relative bioequivalence of a fluoxetine oral solution versus the marketed capsule. Pharmaceutical Research 7 (Suppl.): S251, 1990

    Article  Google Scholar 

  • Bergstrom RF, Lemberger L, Farid NA, Wolen RL. Clinical pharmacology and pharmacokinetics of fluoxetine: a review. British Journal of Psychiatry 153 (Suppl. 3): 47–50, 1988a

    Google Scholar 

  • Bergstrom RF, Lemberger L, Russell DG, Kisicki JC. Fluoxetine pharmacokinetics in obese women. Pharmaceutical Research 5 (Suppl.): S158, 1988b

    Google Scholar 

  • Bergstrom RF, Peyton AL, Lemberger L. Quantification and mechanism of fluoxetine and tricyclic antidepressant interaction. Clinical Pharmacology and Therapeutics 51: 239–248, 1992

    Article  PubMed  CAS  Google Scholar 

  • Bertschy G, Vandel S, Vandel B, Allers G, Volmat R. Fluvoxamine-tricyclic antidepressant interaction. An accidental finding. European Journal of Clinical Pharmacology 40: 119–120, 1991

    Article  PubMed  CAS  Google Scholar 

  • Bjerkenstedt L, Flyckt L, Fredricson Overø K, Lingjaerde O. Relationship between clinical effects, serum drug concentration and serotonin uptake inhibition in depressed patients treated with citalopram: a double-blind comparison of three dose levels. European Journal of Clinical Pharmacology 28: 553–557, 1985

    Article  PubMed  CAS  Google Scholar 

  • Boegesoe KP, Perregaard J. New enantiomers of citalopram and their isolation. European Patent Application No. 347006, 1989

  • Boyer WF, Feighner JP. Pharmacokinetics and drug interactions. In Feighner & Boyer (Eds) Selective serotonin re-uptake inhibitors, pp. 81–88, John Wiley & Sons, Chichester, 1991

    Google Scholar 

  • Brøsen K. Recent developments in hepatic drug oxidation. Implications for clinical pharmacokinetics. Clinical Pharmacokinetics 18: 220–239, 1990

    Article  PubMed  Google Scholar 

  • Brøsen K, Gram LF, Kragh-Sørensen P. Extremely slow metabolism of amitriptyline but normal metabolism of imipramine and desipramine in an extensive metabolizer of sparteine, debrisoquine and mephenytoin. Therapeutic Drug Monitoring 13: 177–182, 1991

    Article  PubMed  Google Scholar 

  • Brøsen K, Skjelbo E. Fluoxetine and norfluoxetine are potent inhibitors of P450IID6 — the source of the sparteine/debrisoquine oxidation polymorphism. British Journal of Clinical Pharmacology 32: 136–137, 1991

    Article  PubMed  Google Scholar 

  • Ciraulo DA, Shader RI. Fluoxetine drug-drug interactions: I. Antidepressants and antipsychotics. Journal of Clinical Psychopharmacology 10: 48–50, 1990a

    Article  PubMed  CAS  Google Scholar 

  • Ciraulo DA, Shader RI. Fluoxetine drug-drug interactions: II. Journal of Clinical Psychopharmacology 10: 213–217, 1990b

    PubMed  CAS  Google Scholar 

  • Cooper SM, Jackson D, Loudon JM, McClelland GR, Raptopoulos P. The psychomotor effects of paroxetine alone and in combination with haloperidol, amylobarbitone, oxazepam, or alcohol. Acta Psychiatrica Scandinavica 80 (Suppl. 350): 53–55, 1989

    Article  Google Scholar 

  • Crewe HK, Lennard MS, Tucker GT, Woods FR, Haddock RE. The effect of selective serotonin re-uptake inhibitors on cytochrome P4502D6 (CYP2D6) activity in human liver microsomes. British Journal of Clinical Pharmacology 34: 262–265, 1992

    Article  PubMed  CAS  Google Scholar 

  • Dalhoff K, Almdal TP, Bjerrum K, Keiding S, Mengel H, et al. Paroxetine in patients with cirrhosis. Psychopharmacology 103: B13, 1991

    Google Scholar 

  • DeBree H, Van der Schoot JB, Post LC. Fluvoxamine maleate; disposition in man. European Journal of Drug Metabolism and Pharmacokinetics 8: 175–179, 1983

    Article  CAS  Google Scholar 

  • Dechant KL, Clissold SP. Paroxetine: a review of its pharmacodynamic and pharmacokinetic properties, and therapeutic potential in depressive illness. Drugs 41: 225–253, 1991

    Article  PubMed  CAS  Google Scholar 

  • De Vries MH, Raghoebar M, Mathlener IS, Van Harten J. Single and multiple oral dose fluvoxamine kinetics in young and elderly subjects. Therapeutic Drug Monitoring 14: 493–498, 1992

    Article  PubMed  Google Scholar 

  • DeWilde JEM, Doogan DP. Fluvoxamine and chlorimipramine in endogenous depression. Journal of Affective Disorders 4: 249–259, 1982

    Article  CAS  Google Scholar 

  • Diot P, Jonville AP, Gerard F, Bonnelle M, Autret E, et al. Possible interaction entre théophylline et fluvoxamine (Possible interaction between theophylline and fluvoxamine). Thérapie 46: 169–171, 1991

    Google Scholar 

  • Doyle GD, Laher M, Kelly JG, Byrne MM, Clarkson A, et al. The pharmacokinetics of paroxetine in renal impairment. Acta Psychiatrica Scandinavica 80 (Suppl. 350): 89–90, 1989

    Article  Google Scholar 

  • Dufour H, Bouchacourt M, Thermoz P, Viala A, Pack Rop P, et al. Citalopram — a highly selective 5-HT uptake inhibitor — in the treatment of depressed patients. International Clinical Psychopharmacology 2: 225–237, 1987

    Article  PubMed  CAS  Google Scholar 

  • Editorial. Sertraline: a clinical monograph, Pfizer International, 1990

  • Evans AM, Nation RL, Sansom LN, Bochner F, Somogyi AA. Stereoselective drug disposition: potential for misinterpretation of drug disposition data. British Journal of Clinical Pharmacology 26: 771–780, 1988

    Article  PubMed  CAS  Google Scholar 

  • FDA Hearing. 33rd Advisory Committee Meeting on Psychopharmacological Drugs, held at the FDA, Rockville, Maryland, USA, 19 November 1990

  • FDA. Summary basis of approval of sertraline, 1991

  • Foglia JP, Perel JM, Nathan RS, Pollock BG. Therapeutic drug monitoring (TDM) of fluvoxamine, a selective antidepressant. Clinical Chemistry 26: 1043, 1990

    Google Scholar 

  • Forster PL, Dewland PM, Muirhead D, Rapeport WG. The effects of sertraline on plasma concentration and renal clearance of digoxin. Biological Psychiatry 29: 355S, 1991

    Google Scholar 

  • Fredericson Overø K, Toft B, Christophersen L, Gylding-Sabroe JP. Kinetics of citalopram in elderly patients. Psychopharmacology 86: 253–257, 1985

    Article  PubMed  Google Scholar 

  • Fritze J, Unsorg B, Lanczik M. Interaction between carbamazepine and fluvoxamine. Acta Psychiatrica Scandinavica 84: 583–584, 1991

    Article  PubMed  CAS  Google Scholar 

  • Gardner MJ, Ronfeld RA, Wilner KD, Lazar JD, Hunt TL, et al. The effects of sertraline on the pharmacokinetics of diazepam in healthy volunteers. Biological Psychiatry 29: 354S, 1991

    Google Scholar 

  • Gram LF. Plasma concentrations of antidepressants and clinical response: state-of-the-art. Lecture held at 5th World Congress of Biological Psychiatry, Florence, June 9–14, 1991

  • Greb WH, Brett MA, Buscher G, Dierdorf HD, Von Schrader HW, et al. Absorption of paroxetine under various dietary conditions and following antacid intake. Acta Psychiatrica Scandinavica 80 (Suppl. 350): 99–101, 1989a

    Article  Google Scholar 

  • Greb WH, Buscher G, Dierdorf H-D, Köster FE, Wolf D, et al. The effect of liver enzyme inhibition by cimetidine and enzyme induction by phenobarbitone on the pharmacokinetics of paroxetine. Acta Psychiatrica Scandinavica 80 (Suppl. 350): 95–98, 1989b

    Article  Google Scholar 

  • Greb WH, Buscher G, Dierdorf H-D, Von Schrader HW, Wolf D. Ability of charcoal to prevent absorption of paroxetine. Acta Psychiatrica Scandinavica 80 (Suppl. 350): 156–157, 1989c

    Article  Google Scholar 

  • Grimsley SR, Jann MW, Carter G, D’Mello AP, D’Souza MJ. Increased carbamazepine plasma concentrations after fluoxetine coadministration. Clinical Pharmacology and Therapeutics 50: 10–15, 1991

    Article  PubMed  CAS  Google Scholar 

  • Haddock RE, Johnson AM, Langley PF, Nelson DR, Pope JA, et al. Metabolic pathway of paroxetine in animals and man and the comparative pharmacological properties of its metabolites. Acta Psychiatrica Scandinavica 80 (Suppl. 350): 24–26, 1989a

    Article  Google Scholar 

  • Haddock RE, Jackson D, Woods FR. Paroxetine: lack of effect on hepatic drug metabolizing enzymes. Acta Psychiatrica Scandinavica 80 (Suppl. 350): 93–94, 1989b

    Article  Google Scholar 

  • Haenen J. An interaction study of paroxetine on lithium plasma levels in depressed patients stabilized on lithium therapy. Poster presented at the 5th World Congress of Biological Psychiatry, Florence, June 9–14, 1991

  • Härtter S, Wetzel H, Hammes E, Hiemke C. Inhibition of antidepressant demethylation and hydroxylation by fluvoxamine in depressed patients. Psychopharmacology, in press, 1992

    Google Scholar 

  • Hebenstreit GF, Fellerer K, Zöchling R, Zentz A, Dunbar GC. A pharmacokinetic dose titration study in adult and elderly depressed patients. Acta Psychiatrica Scandinavica 80 (Suppl. 350): 81–84, 1989

    Article  Google Scholar 

  • Hendrickx B, Floris M. A controlled pilot study of the combination of fluvoxamine and lithium. Current Therapeutic Research 49: 106–110, 1991

    Google Scholar 

  • Hindmarch I, Harrison C. The effects of paroxetine and other antidepressants in combination with alcohol on psychomotor activity related to car driving. Acta Psychiatrica Scandinavica 80 (Suppl. 350): 45, 1989

    Article  Google Scholar 

  • Isenberg KE. Excretion of fluoxetine in human breast milk. Journal of Clinical Psychiatry 51: 169, 1990

    PubMed  CAS  Google Scholar 

  • Johnson AM. The comparative pharmacological properties of selective serotonin re-uptake inhibitors in animals. In Feighner & Boyer (Eds) Selective serotonin re-uptake inhibitors, pp. 37–70, John Wiley & Sons, Chichester, 1991

    Google Scholar 

  • Kaye CM, Haddock RE, Langley PF, Mellows G, Tasker TCG, et al. A review of the metabolism and pharmacokinetics of paroxetine in man. Acta Psychiatrica Scandinavica 80 (Suppl. 350): 60–75, 1989

    Article  Google Scholar 

  • Kelly MW, Perry PJ, Holstad SG, Garvey MJ. Serum fluoxetine and norfluoxetine concentrations and antidepressant response. Therapeutic Drug Monitoring 11: 165–170, 1989

    Article  PubMed  CAS  Google Scholar 

  • Kragh-Sørensen P, Fredricson Overø K, Petersen OL, Jensen K, Parnas W. The kinetics of citalopram: single and multiple dose studies in man. Acta Pharmacologica et Toxicologica 48: 53–60, 1981

    Article  PubMed  Google Scholar 

  • Krastev Z, Terziivanov D, Vlahov V, Maleev A, Greb WH, et al. The pharmacokinetics of paroxetine in patients with liver cirrhosis. Acta Psychiatrica Scandinavica 80 (Suppl. 350): 91–92, 1989

    Article  Google Scholar 

  • Kremer JMH, Wilting J, Janssen LHM. Drug binding to human alpha-1-acid glycoprotein in health and disease. Pharmacological Reviews 40: 1–47, 1988

    PubMed  CAS  Google Scholar 

  • Lemberger L, Rowe H, Bergstrom RF, Farid KZ, Enas GG. Effect of fluoxetine on psychomotor performance, psychologic response, and kinetics of ethanol. Clinical Pharmacology and Therapeutics 37: 658–664, 1985

    Article  PubMed  CAS  Google Scholar 

  • Lemberger L, Rowe H, Bosomworth JC, Tenbarge JB, Bergstrom RF. The effect of fluoxetine on the pharmacokinetics and psychomotor responses of diazepam. Clinical Pharmacology and Therapeutics 43: 412–419, 1988

    Article  PubMed  CAS  Google Scholar 

  • Levinson ML, Lipsy RJ, Fuller DK. Adverse effects and drug interactions associated with fluoxetine therapy. DICP: Annals of Pharmacotherapy 25: 657–661, 1991

    PubMed  CAS  Google Scholar 

  • Lock JD, Gwirtsman HE, Targ EF. Possible adverse drug interactions between fluoxetine and other psychotropics. Journal of Clinical Psychiatry 10: 383–384, 1990

    CAS  Google Scholar 

  • Lundmark J, Scheel Thomsen I, Fjord-Larsen T, Manniche PM, Mengel H, et al. Paroxetine: pharmacokinetic and antidepressant effect in the elderly. Acta Psychiatrica Scandinavica 80 (Suppl. 350): 76–80, 1989

    Article  Google Scholar 

  • Mikkelsen M, Andersen BB, Dam M, Vesterager A, Kristensen HB, et al. Paroxetine and antiepileptic drugs: no interaction. Psychopharmacology 103: B13, 1991

    Google Scholar 

  • Milne RJ, Goa KL. Citalopram: a review of its pharmacodynamics and pharmacokinetic properties, and therapeutic potential in depressive illness. Drugs 41: 450–477, 1991

    Article  PubMed  CAS  Google Scholar 

  • Mol F, Tulp MTM, Schipper J, Van Charldorp KJ. Molecular pharmacology of 5-HT-uptake inhibitors. Poster presented at XIth IUPHAR Congress, Amsterdam, July 1–6, 1990. (Abstract published in European Journal of Pharmacology 183: 1565, 1990)

  • Montgomery SA, Baldwin D, Shah A, Green M, Fineberg N, et al. Plasma-level response relationships with fluoxetine and zimelidine. Clinical Neuropharmacology 13 (Suppl. 1): S71–S75, 1990

    Article  PubMed  Google Scholar 

  • Ochs HR, Greenblatt DJ, Verburg-Ochs B, Labedski L. Chronic treatment with fluvoxamine, clovoxamine, and placebo: interaction with digoxin and effects on sleep and alertness. Journal of Clinical Pharmacology 29: 91–95, 1989

    PubMed  CAS  Google Scholar 

  • Ottevanger EA. Fluvoxamine: highly selective 5HT re-uptake inhibitor. Basic brochure. Duphar B.V., 1987

    Google Scholar 

  • Overmars H, Scherpenisse PM, Post LC. Fluvoxamine maleate: metabolism in man. European Journal of Drug Metabolism and Pharmacokinetics 8: 269–280, 1983

    Article  PubMed  CAS  Google Scholar 

  • Øyehaug E, Ostensen ET, Salvesen B. High-performance liquid Chromatographic determination of citalopram and four of its metabolites in plasma and urine samples from psychiatric patients. Journal of Chromatography — Biomedical Applications 308: 199–208, 1984

    Article  PubMed  Google Scholar 

  • Pearson HJ. Interaction of fluoxetine with carbamazepine. Journal of Clinical Psychiatry 51: 126, 1990

    PubMed  CAS  Google Scholar 

  • Potter WZ, Manji HK. Antidepressants, metabolites, and apparent drug resistance. Clinical Neuropharmacology 13 (Suppl. 1): S45–S53, 1990

    Article  PubMed  Google Scholar 

  • Preskorn SH, Alderman J, Messig M, Harris S, Chung M. Desipramine levels after sertraline or fluoxetine. Presented at the American Psychiatric Association meeting, May 1992

  • Raghoebar M, Roseboom H. Kinetics of fluvoxamine in special populations. Poster presented at the ‘Symposium on variability in pharmacokinetics and drug response’, Gothenburg, October 3–5, 1988

  • Richelson E, Pfenning M. Blockade by antidepressants and related compounds of biogenic amine uptake into rat brain synaptosomes: most antidepressants selectively block norepinephrine uptake. European Journal of Pharmacology 104: 277–286, 1984

    Article  PubMed  CAS  Google Scholar 

  • Ronfeld RA, Shaw GL, Tremaine LM. Distribution and pharmacokinetics of the selective 5-HT uptake blocker sertraline in man, rat and dog. Psychopharmacology 96 (Suppl.): 269, 1988

    Google Scholar 

  • Rowe H, Carmichael R, Lemberger L. The effect of fluoxetine on warfarin metabolism in the rat and in man. Life Sciences 23: 807–812, 1978

    Article  PubMed  CAS  Google Scholar 

  • Salama AA, Shafey M. A case of severe lithium toxicity induced by combined fluoxetine and lithium carbonate. American Journal of Psychiatry 146: 278, 1989

    PubMed  CAS  Google Scholar 

  • Schenker S, Bergstrom RF, Wolen RL, Lemberger L. Fluoxetine disposition and elimination in cirrhosis. Clinical Pharmacology and Therapeutics 44: 353–359, 1988

    Article  PubMed  CAS  Google Scholar 

  • Sindrup SH, Brøsen K, Gram LF, Hallas J, Skjelbo E, et al. The relationship between paroxetine and the sparteine oxidation polymorphism. Clinical Pharmacology and Therapeutics 51: 278–287, 1992

    Article  PubMed  CAS  Google Scholar 

  • Skjelbo E, Brøsen K. Inhibitors of imipramine metabolism by human liver microsomes. British Journal of Clinical Pharmacology 34: 256–261, 1992

    Article  PubMed  CAS  Google Scholar 

  • Sperber AD. Toxic interaction between fluvoxamine and sustained release theophylline in an 11-year-old boy. Drug Safety 6: 460–462, 1991

    Article  PubMed  CAS  Google Scholar 

  • Spina E, Campo GM, Avenoso A, Pollicino MA, Caputi AP. Interaction between fluvoxamine and imipramine/desipramine in four patients. Therapeutic Drug Monitoring 14: 194–196, 1992

    Article  PubMed  CAS  Google Scholar 

  • Tasker TCG, Kaye CM, Zussman BD, Link CGG. Paroxetine plasma levels: lack of correlation with efficacy or adverse events. Acta Psychiatrica Scandinavica 80 (Suppl. 350): 152–155, 1989

    Article  Google Scholar 

  • Tate JL. Extrapyramidal symptoms in a patient taking haloperidol and fluoxetine. American Journal of Psychiatry 146: 399–400, 1989

    PubMed  CAS  Google Scholar 

  • Thomas DR, Nelson DR, Johnson AM. Biochemical effects of the antidepressant paroxetine, a specific 5-hydroxytryptamine uptake inhibitor. Psychopharmacology 93: 193–200, 1987

    Article  PubMed  CAS  Google Scholar 

  • Van Harten J, Van Bemmel P, Dobrinska MR, Ferguson RK, Raghoebar M. Bioavailability of fluvoxamine given with and without food. Biopharmaceutics and Drug Disposition 12: 571–576, 1991

    Article  Google Scholar 

  • Van Harten J, Holland RL, Wesnes K, Raghoebar M. Kinetic and dynamic interaction study between fluvoxamine and benzodiazepines. Poster presented at the Second Jerusalem Conference on Pharmaceutical Sciences and Clinical Pharmacology, Jerusalem, May 24–29, 1992a

  • Van Harten J, Stevens LA, Raghoebar M, Holland RL, Wesnes K, et al. Fluvoxamine does not interact with alcohol or potentiate alcohol-related impairment of cognitive function. Clinical Pharmacology and Therapeutics 52: 427–435, 1992b

    Article  PubMed  Google Scholar 

  • Warrington SJ. Clinical implications of the pharmacology of sertraline. International Clinical Psychopharmacology 6 (Suppl. 2): 11–21, 1991

    Article  PubMed  Google Scholar 

  • Westermeyer J. Fluoxetine-induced tricyclic toxicity: extent and duration. Journal of Clinical Pharmacology 31: 388–392, 1991

    PubMed  CAS  Google Scholar 

  • Wilner KD, Lazar JD, Apseloff G, Gerber N, Yurkewick L. The effects of sertraline on the pharmacodynamics of warfarin in healthy volunteers. Biological Psychiatry 29: 354S–355S, 1991

    Google Scholar 

  • Wong DT, Bymaster FP, Reid LR, Fuller RW, Perry KW. Inhibition of serotonin uptake by optical isomers of fluoxetine. Drug Development Research 6: 397–403, 1985

    Article  CAS  Google Scholar 

  • Wright S, Dawling S, Ashford JJ. Excretion of fluvoxamine in breast milk. British Journal of Clinical Pharmacology 31: 209, 1991

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

van Harten, J. Clinical Pharmacokinetics of Selective Serotonin Reuptake Inhibitors. Clin. Pharmacokinet. 24, 203–220 (1993). https://doi.org/10.2165/00003088-199324030-00003

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003088-199324030-00003

Keywords

Navigation