Skip to main content
Log in

Morphine-6-Glucuronide

An Analgesic of the Future?

  • Leading Article
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

Morphine-6-β-glucuronide (M6G) is an opioid agonist that plays a role in the clinical effects of morphine. Although M6G probably crosses the blood-brain barrier with difficulty, during long term morphine administration it may reach sufficiently high CNS concentrations to exert clinically relevant opioid effects. As a consequence of its almost exclusive renal elimination, M6G may accumulate in the body of patients with impaired renal function and cause severe opioid adverse effects with insidious onset and long persistence.

Its profile of receptor affinities, however, gives reason to speculate that M6G may exhibit analgesic effects while causing fewer adverse effects than morphine. This is supported by reports of the good tolerability of intrathecal and intravenous injections of M6G in humans with intact renal function. M6G may thus be contemplated as an analgesic for short term postoperative analgesia, especially for intrathecal analgesic therapy. In addition, its possibly higher potency than morphine makes M6G a candidate opioid for local or peripheral analgesic therapy. However, current knowledge is too incomplete to finally judge the clinical usefulness of M6G. The next topics for clinical research on M6G should include: (i) a comparison of the potencies of M6G and morphine to cause wanted and unwanted clinical effects; (ii) development of a predictive population pharmacokinetic-pharmacodynamic model of M6G with calculation of the transfer half-life between plasma and effect site; and (iii) identification of cofactors influencing the action of M6G that can serve as predictors for the clinical outcome of morphine/M6G therapy in an individual including the pharmacogenetics of M6G.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Table I
Table II
Table III
Table IV

Similar content being viewed by others

References

  1. Hasselström J, Alexander N, Bringel C, et al. Single-dose and steady-state kinetics of morphine and its metabolites in cancer patients: a comparison of two oral formulations. Eur J Clin Pharmacol 1991; 40: 585–91

    PubMed  Google Scholar 

  2. Kamata O, Watanabe S, Ishii S, et al. Analgesic effect of morphine glucuronides. Proceedings of the 89th Meeting Pharmacology Society of Japan; 1969: 443

    Google Scholar 

  3. Tiseo PJ, Thaler HT, Lapin J, et al. Morphine-6-glucuronide concentrations and opioid-related side effects: a survey in cancer patients. Pain 1995; 61: 47–54

    Article  PubMed  CAS  Google Scholar 

  4. Hanna MH, Peat SJ, Woodham M, et al. Analgesic efficacy and CSF pharmacokinetics of intrathecal morphine-6-glucuronide: comparison with morphine. Br J Amaesth 1990; 64: 547–50

    Article  CAS  Google Scholar 

  5. Peat SJ, Hanna MH, Durcan M, et al. Morphine-6-glucuronide in post operative pain [abstract]. Proceedings of the 9th World Congress of Pain; 1999 Aug 22–27; Veinna. Seattle (WA): International Association for the Study of Pain, 2000: 334–5

    Google Scholar 

  6. Don HF, Dieppa RA, Taylor P. Narcotic analgesics in anuric patients. Anesthesiology 1975; 42: 745–7

    Article  PubMed  CAS  Google Scholar 

  7. Suri A, Estes KS, Geisslinger G, et al. Pharmacokinetic-pharmacodynamic relationships for analgesics. Int J Clin Pharmacol Ther 1997; 35(8): 307–23

    PubMed  CAS  Google Scholar 

  8. Crotty B, Watson KJ, Desmond PV, et al. Hepatic extraction of morphine is impaired in cirrhosis. Eur J Clin Pharmacol 1989; 36(5): 501–6

    Article  PubMed  CAS  Google Scholar 

  9. Hasselström J, Eriksson S, Persson A, et al. The metabolism and bioavailability of morphine in patients with severe liver cirrhosis. Br J Clin Pharmacol 1990; 29: 289–97

    Article  PubMed  Google Scholar 

  10. Patwardhan RV, Johnson RF, Hoyumpa Jr A, et al. Normal metabolism of morphine in cirrhosis. Gastroenterology 1981; 81: 1006–11

    PubMed  CAS  Google Scholar 

  11. Shelly MP, Quinn KG, Park GR. Pharmacokinetics of morphine in patients following orthotopic liver transplantation. Br J Anaesth 1989; 63: 375–9

    Article  PubMed  CAS  Google Scholar 

  12. Mazoit JX, Sandouk P, Scherrmann JM, et al. Extrahepatic metabolism of morphine occurs in humans. Clin Pharmacol Ther 1990; 48(6): 613–8

    Article  PubMed  CAS  Google Scholar 

  13. Sloan PA, Mather LE, McLean CF, et al. Physiological disposition of i.v. morphine in sheep. Br J Anaesth 1991; 67(4): 378–86

    Article  PubMed  CAS  Google Scholar 

  14. Bodenham A, Quinn K, Park GR. Extrahepatic morphine metabolism in man during the anhepatic phase of orthotopic liver transplantation. Br J Anaesth 1989; 63: 380–4

    Article  PubMed  CAS  Google Scholar 

  15. Wahlström A, Winblad B, Bixo M, et al. Human brain metabolism of morphine and naloxone. Pain 1988; 35: 121–7

    Article  PubMed  Google Scholar 

  16. Wahlström A, Pacifici GM, Lindstrom B, et al. Human liver morphine UDP-glucuronyl transferase enantioselectivity and inhibition by opioid congeners and oxazepam. Br J Pharmacol 1988; 94: 864–70

    Article  PubMed  Google Scholar 

  17. Coffman BL, Rios GR, King CD, et al. Human UGT2B7 catalyzes morphine glucuronidation. Drug Metab Dispos 1997; 25(1): 1–4

    PubMed  CAS  Google Scholar 

  18. Green MD, King CD, Mojarrabi B, et al. Glucuronidation of amines and other xenobiotics catalyzed by expressed human UDP-glucuronosyltransferase 1A3. Drug Metab Dispos 1998; 26(6): 507–12

    PubMed  CAS  Google Scholar 

  19. Faura CC, Collins SL, Moore RA, et al. Systematic review of factors affecting the ratios of morphine and its major metabolites. Pain 1998; 74(1): 43–53

    Article  PubMed  CAS  Google Scholar 

  20. Wahlström A, Lenhammar L, Ask B, et al. Tricyclic antidepressants inhibit opioid receptor binding in human brain and hepatic morphine glucuronidation. Pharmacol Toxicol 1994; 74: 23–7

    Article  Google Scholar 

  21. Bhargava HN, Rahmani NH, Villar VM, et al. Effects of naltrexone on pharmacodynamics and pharmacokinetics of intravenously administered morphine in the rat. Pharmacology 1993; 46(2): 66–74

    Article  PubMed  CAS  Google Scholar 

  22. Lawrence AJ, Michalkiewicz A, Morley JS, et al. Differential inhibition of hepatic morphine UDP-glucuronosyltransferases by metal ions. Biochem Pharmacol 1992; 43: 2335–40

    Article  PubMed  CAS  Google Scholar 

  23. Rane A, Gawronska S, Svensson JO. Natural (−)- and unnatural (+)-enantiomers of morphine: comparative metabolism and effect of morphine and phenobarbital treatment. J Pharmacol Exp Ther 1985; 234: 761–5

    PubMed  CAS  Google Scholar 

  24. Narayan SS, Hayton WL, Yost GS. Chronic ethanol consumption causes increased glucuronidation of morphine in rabbits. Xenobiotica 1991; 21(4): 515–24

    Article  PubMed  CAS  Google Scholar 

  25. Aasmundstad TA, Lillekjendlie B, Morland J. Ethanol interference with morphine metabolism in isolated guinea pig hepatocytes. Pharmacol Toxicol 1996; 79(3): 114–9

    Article  PubMed  CAS  Google Scholar 

  26. Bhat R, Abu H, Chari G, et al. Morphine metabolism in acutely ill preterm newborn infants. J Pediatr 1992; 120: 795–9

    Article  PubMed  CAS  Google Scholar 

  27. Hartley R, Green M, Quinn M, et al. Pharmacokinetics of morphine infusion in premature neonates. Arch Dis Child 1993; 69: 55–8

    Article  PubMed  CAS  Google Scholar 

  28. Lynn A, Nespeca MK, Bratton SL, et al. Clearance of morphine in postoperative infants during intravenous infusion: the influence of age and surgery. Anesth Analg 1998; 86(5): 958–63

    PubMed  CAS  Google Scholar 

  29. Kart T, Christrup LL, Rasmussen M. Recommended use of morphine in neonates, infants and children based on a literature review: part 2 — clinical use. Paediatr Anaesth 1997; 7(2): 93–101

    Article  PubMed  CAS  Google Scholar 

  30. Kart T, Christrup LL, Rasmussen M. Recommended use of morphine in neonates, infants and children based on a literature review: part 1 — pharmacokinetics. Paediatr Anaesth 1997; 7(1): 5–11

    Article  PubMed  CAS  Google Scholar 

  31. Choonara I, Lawrence A, Michalkiewicz A, et al. Morphine metabolism in neonates and infants. Br J Clin Pharmacol 1992; 34: 434–7

    Article  PubMed  CAS  Google Scholar 

  32. Choonara IA, McKay P, Hain R, et al. Morphine metabolism in children. Br J Clin Pharmacol 1989; 28: 599–604

    Article  PubMed  CAS  Google Scholar 

  33. Hartley R, Quinn M, Green M, et al. Morphine glucuronidation in premature neonates. Br J Clin Pharmacol 1993; 35: 314–7

    PubMed  CAS  Google Scholar 

  34. Osborne R, Joel S, Trew D, et al. Morphine and metabolite behavior after different routes of morphine administration: demonstration of the importance of the active metabolite morphine-6-glucuronide. Clin Pharmacol Ther 1990; 47: 12–9

    Article  PubMed  CAS  Google Scholar 

  35. Loh HH, Liu HC, Cavalli A, et al. Mu opioid receptor knockout in mice: effects on ligand-induced analgesia and morphine lethality. Brain Res Mol Brain Res 1998; 54(2): 321–6

    Article  PubMed  CAS  Google Scholar 

  36. Schuller AG, King MA, Zhang J, et al. Retention of heroin and morphine-6 beta-glucuronide analgesia in a new line of mice lacking exon 1 of MOR-1. Nat Neurosci 1999; 2(2): 151–6

    Article  PubMed  CAS  Google Scholar 

  37. Chen ZR, Irvine RJ, Somogyi AA, et al. Mu receptor binding of some commonly used opioids and their metabolites. Life Sci 1991; 48: 2165–71

    Article  PubMed  CAS  Google Scholar 

  38. Löser SV, Meyer J, Freudenthaler S, et al. Morphine-6-O-beta-D-glucuronide but not morphine-3-O-beta-D-glucuronide binds to mu-, delta- and kappa- specific opioid binding sites in cerebral membranes. Naunyn Schmiedebergs Arch Pharmacol 1996; 354(2): 192–7

    Article  PubMed  Google Scholar 

  39. Hucks D, Thompson PI, McLoughlin L, et al. Explanation at the opioid receptor level for differing toxicity of morphine and morphine 6-glucuronide. Br J Cancer 1992; 65: 122–6

    Article  PubMed  CAS  Google Scholar 

  40. Thompson PI, Hucks D, McLoughlin L, et al. Comparative opiate receptor affinities of morphine and its active metabolite morphine-6-glucuronide. Br J Cancer 1990; 62: 484

    Article  Google Scholar 

  41. Paul D, Standifer KM, Inturrisi CE, et al. Pharmacological characterization of morphine-6 beta-glucuronide, a very potent morphine metabolite. J Pharmacol Exp Ther 1989; 251: 477–83

    PubMed  CAS  Google Scholar 

  42. Oguri K, Yamada M, Shigezane J, et al. Enhanced binding of morphine and nalorphine to opioid delta receptor by glucuronate and sulfate conjugations at the 6-position. Life Sci 1987; 41: 1457–64

    Article  PubMed  CAS  Google Scholar 

  43. Pasternak GW. Pharmacological mechanisms of opioid analgesics. Clin Neuropharmacol 1993; 16: 1–18

    Article  PubMed  CAS  Google Scholar 

  44. Pasternak GW, Wood PJ. Multiple mu opiate receptors. Life Sci 1986; 38: 1889–98

    Article  PubMed  CAS  Google Scholar 

  45. Min BH, Augustin LB, Felsheim RF, et al. Genomic structure analysis of promoter sequence of a mouse mu opioid receptor gene. Proc Natl Acad Sci U S A 1994; 91(19): 9081–5

    Article  PubMed  CAS  Google Scholar 

  46. Pasternak GW. Incomplete cross tolerance and multiple mu opioid peptide receptors. Trends Pharmacol Sci 2001; 22(2): 67–70

    Article  PubMed  CAS  Google Scholar 

  47. Pan YX, Xu J, Bolan E, et al. Identification and characterization of three new alternatively spliced mu-opioid receptor isoforms. Mol Pharmacol 1999; 56(2): 396–403

    PubMed  CAS  Google Scholar 

  48. Brown GP, Yang K, Ouerfelli O, et al. 3H-morphine-6-beta-glucuronide binding in brain membranes and an MOR-1-transfected cell line. J Pharmacol Exp Ther 1997; 282(3): 1291–7

    PubMed  CAS  Google Scholar 

  49. Rossi GC, Leventhal L, Pan YX, et al. Antisense mapping of MOR-1 in rats: distinguishing between morphine and morphine-6-beta-glucuronide antinociception. J Pharmacol Exp Ther 1997; 281(1): 109–14

    PubMed  CAS  Google Scholar 

  50. Rossi GC, Pan YX, Brown GP, et al. Antisense mapping the MOR-1 opioid receptor: evidence for alternative splicing and a novel morphine-6 beta-glucuronide receptor. FEBS Lett 1995; 369(2-3): 192–6

    Article  PubMed  CAS  Google Scholar 

  51. Shimomura K, Kamata O, Ueki S, et al. Analgesic effect of morphine glucuronides. Tohoku J Exp Med 1971; 105: 45–52

    Article  PubMed  CAS  Google Scholar 

  52. Yoshimura H, Ida S, Oguri K, et al. Biochemical basis for analgesic activity ofmorphine-6-glucuronide: I. Penetration of morphine-6-glucuronide in the brain of rats. Biochem Pharmacol 1973; 22: 1423–30

    Article  PubMed  CAS  Google Scholar 

  53. Stain F, Barjavel MJ, Sandouk P, et al. Analgesic response and plasma and brain extracellular fluid pharmacokinetics of morphine and morphine-6-beta-D-glucuronide in the rat. J Pharmacol Exp Ther 1995; 274: 852–7

    PubMed  CAS  Google Scholar 

  54. Abbott FV, Palmour RM. Morphine-6-glucuronide: analgesic effects and receptor binding profile in rats. Life Sci 1988; 43: 1685–95

    Article  PubMed  CAS  Google Scholar 

  55. Frances B, Gout R, Campistron G, et al. Morphine-6-glucuronide is more mu-selective and potent in analgesic tests than morphine. Prog Clin Biol Res 1990; 328: 477–80

    PubMed  CAS  Google Scholar 

  56. Frances B, Gout R, Monsarrat B, et al. Further evidence that morphine-6 beta-glucuronide is a more potent opioid agonist than morphine. J Pharmacol Exp Ther 1992; 262: 25–31

    PubMed  CAS  Google Scholar 

  57. Gong QL, Hedner T, Hedner J, et al. Antinociceptive and ventilatory effects of the morphine metabolites: morphine-6-glucuronide and morphine-3-glucuronide. Eur J Pharmacol 1991; 193: 47–56

    Article  PubMed  CAS  Google Scholar 

  58. Gong QL, Hedner J, Bjorkman R, et al. Morphine-3-glucuronide may functionally antagonize morphine-6-glucuronide induced antinociception and ventilatory depression in the rat. Pain 1992; 48: 249–55

    Article  PubMed  CAS  Google Scholar 

  59. Lötsch J, Tegeder I, Angst MS, et al. Antinociceptive effects of morphine-6-glucuronide in homozygous MDR1a P-glycoprotein knockout and in wildtype mice in the hotplate test. Life Sci 2000; 66(24): 2393–403

    Article  PubMed  Google Scholar 

  60. Hand CW, Blunnie WP, Claffey LP, et al. Potential analgesic contribution from morphine-6-glucuronide in CSF [letter]. Lancet 1987; II: 1207–8

    Article  Google Scholar 

  61. Hanks GW, Hoskin PJ, Aherne GW, et al. Explanation for potency of repeated oral doses of morphine? Lancet 1987; II: 723–5

    Article  Google Scholar 

  62. Hoskin PJ, Hanks GW, Heron CW, et al. M6G and its analgesic action in chronic use [letter]. Clin J Pain 1989; 5: 199–200

    Article  PubMed  CAS  Google Scholar 

  63. Joel SP, Osborne RJ, Nixon NS, et al. Morphine-6-glucuronide, an important metabolite [letter]. Lancet 1985; I: 1099–100

    Article  Google Scholar 

  64. Portenoy RK, Thaler HT, Inturrisi CE, et al. The metabolite morphine-6-glucuronide contributes to the analgesia produced by morphine infusion in patients with pain and normal renal function. Clin Pharmacol Ther 1992; 51: 422–31

    Article  PubMed  CAS  Google Scholar 

  65. Faura CC, Moore RA, Horga JF, et al. Morphine and morphine-6-glucuronide plasma concentrations and effect in cancer pain. J Pain Symptom Manage 1996; 11(2): 95–102

    Article  PubMed  CAS  Google Scholar 

  66. Tighe KE, Webb AM, Hobbs GJ. Persistently high plasma morphine-6-glucuronide levels despite decreased hourly patient-controlled analgesia morphine use after single-dose diclofenac: potential for opioid-related toxicity. Anesth Analg 1999; 88(5): 1137–42

    PubMed  CAS  Google Scholar 

  67. Dennis GC, Soni D, Dehkordi O, et al. Analgesic responses to intrathecal morphine in relation to CSF concentrations of morphine-3,beta-glucuronide and morphine-6, beta-glucuronide. Life Sci 1999; 64(19): 1725–31

    Article  PubMed  CAS  Google Scholar 

  68. Klepstad P, Kaasa S, Borchgrevink PC. Start of oral morphine to cancer patients: effective serum morphine concentrations and contribution from morphine-6-glucuronide to the analgesia produced by morphine. Eur J Clin Pharmacol 2000; 55(10): 713–9

    Article  PubMed  CAS  Google Scholar 

  69. Grace D, Fee JP. A comparison of intrathecal morphine-6-glucuronide and intrathecal morphine sulfate as analgesics for total hip replacement. Anesth Analg 1996; 83: 1055–9

    PubMed  CAS  Google Scholar 

  70. Abbott FV, Franklin KB. Morphine-6-glucuronide contributes to rewarding effects of opiates. Life Sci 1991; 48: 1157–63

    Article  PubMed  CAS  Google Scholar 

  71. Pelligrino DA, Riegler FX, Albrecht RF. Ventilatory effects of fourth cerebroventricular infusions of morphine-6- or morphine-3-glucuronide in the awake dog. Anesthesiology 1989; 71: 936–40

    Article  PubMed  CAS  Google Scholar 

  72. Osborne R, Joel S, Trew D, et al. Analgesic activity of morphine-6-glucuronide [letter]. Lancet 1988; I: 828

    Article  Google Scholar 

  73. Osborne R, Thompson P, Joel S, et al. The analgesic activity of morphine-6-glucuronide. Br J Clin Pharmacol 1992; 34: 130–8

    Article  PubMed  CAS  Google Scholar 

  74. Thompson PI, Joel SP, John L, et al. Respiratory depression following morphine and morphine-6-glucuronide in normal subjects. Br J Clin Pharmacol 1995; 40(2): 145–52

    PubMed  CAS  Google Scholar 

  75. Buetler TM, Wilder-Smith OH, Wilder-Smith CH, et al. Analgesic action of i.v. morphine-6-glucuronide in healthy volunteers. Br J Anaesth 2000; 84(1): 97–9

    Article  PubMed  CAS  Google Scholar 

  76. Lötsch J, Kobal G, Stockmann A, et al. Lack of analgesic activity of morphine-6-glucuronide after short-term intravenous administration in healthy volunteers. Anesthesiology 1997; 87(6): 1348–58

    Article  PubMed  Google Scholar 

  77. Motamed C, Mazoit X, Ghanouchi K, et al. Preemptive intravenous morphine-6-glucuronide is ineffective for postoperative pain relief. Anesthesiology 2000; 92(2): 355–60

    Article  PubMed  CAS  Google Scholar 

  78. Penson RT, Joel SP, Bakhshi K, et al. Randomized placebo controlled trial of the activity of the morphine glucuronides. Clin Pharmacol Ther 2000; 68(6): 667–76

    Article  PubMed  CAS  Google Scholar 

  79. Peat SJ, Hanna MH, Woodham M, et al. Morphine-6-glucuronide: effects on ventilation in normal volunteers. Pain 1991; 45: 101–4

    Article  PubMed  CAS  Google Scholar 

  80. Schmidt N, Brune K, Geisslinger G. Opioid receptor agonist potencies of morphine and morphine-6-glucuronide in the guinea-pig ileum. Eur J Pharmacol 1994; 255: 245–7

    Article  PubMed  CAS  Google Scholar 

  81. Glare PA, Walsh TD. Clinical pharmacokinetics of morphine. Ther Drug Monit 1991; 13: 1–23

    Article  PubMed  CAS  Google Scholar 

  82. Christrup LL. Morphine metabolites. Acta Anaesthesiol Scand 1997; 41 (1 Pt 2): 116–22

    Article  PubMed  CAS  Google Scholar 

  83. Milne RW, Nation RL, Somogyi AA. The disposition of morphine and its 3- and 6-glucuronide metabolites in humans and animals, and the importance of the metabolites to the pharmacological effects of morphine. Drug Metab Rev 1996; 28(3): 345–472

    Article  PubMed  CAS  Google Scholar 

  84. Aderjan RE, Skopp G. Formation and clearance of active and inactive metabolites of opiates in humans. Ther Drug Monit 1998; 20(5): 561–9

    Article  PubMed  CAS  Google Scholar 

  85. Bigler D, Christensen CB, Eriksen J, et al. Morphine, morphine-6-glucuronide and morphine-3-glucuronide concentrations in plasma and cerebrospinal fluid during long-term high-dose intrathecal morphine administration. Pain 1990; 41: 15–8

    Article  PubMed  CAS  Google Scholar 

  86. Hanna MH, Peat SJ, Knibb AA, et al. Disposition of morphine-6-glucuronide and morphine in healthy volunteers. Br J Anaesth 1991; 66: 103–7

    Article  PubMed  CAS  Google Scholar 

  87. Lötsch J, Weiss M, Kobal G, et al. Pharmacokinetics of morphine-6-glucuronide and its formation from morphine after intravenous administration. Clin Pharmacol Ther 1998; 63(6): 629–39

    Article  PubMed  Google Scholar 

  88. Stain-Texier F, Sandouk P, Scherrmann JM. Intestinal absorption and stability of morphine 6-glucuronide in different physiological compartments of the rat. Drug Metab Dispos 1998; 26(5): 383–7

    PubMed  CAS  Google Scholar 

  89. Lötsch J, Stockmann A, Kobal G, et al. Pharmacokinetics of morphine and its glucuronides after i.v. infusion of morphine and morphine-6-glucuronide in healthy volunteers. Clin Pharmacol Ther 1996; 60: 316–25

    Article  PubMed  Google Scholar 

  90. Milne RW, Nation RL, Somogyi AA, et al. The influence of renal function on the renal clearance ofmorphine and its glucuronide metabolites in intensive-care patients. Br J Clin Pharmacol 1992; 34: 53–9

    Article  PubMed  CAS  Google Scholar 

  91. Angst MS, Bührer M, Lötsch J. Insidious intoxication after morphine treatment in renal failure: delayed onset of morphine-6-glucuronide action. Anesthesiology 2000; 92(5): 1473–6

    Article  PubMed  CAS  Google Scholar 

  92. Bodd E, Jacobsen D, Lund E, et al. Morphine-6-glucuronide might mediate the prolonged opioid effect of morphine in acute renal failure. Hum Exp Toxicol 1990; 9: 317–21

    Article  PubMed  CAS  Google Scholar 

  93. Hagen NA, Foley KM, Cerbone DJ, et al. Chronic nausea and morphine-6-glucuronide. J Pain Symptom Manage 1991; 6: 125–8

    Article  PubMed  CAS  Google Scholar 

  94. Hanna MH, D’Costa F, Peat SJ, et al. Morphine-6-glucuronide disposition in renal impairment. Br J Anaesth 1993;70: 511–4

    Article  PubMed  CAS  Google Scholar 

  95. Hasselström J, Berg U, Lofgren A, et al. Long lasting respiratory depression induced by morphine-6-glucuronide? Br J Clin Pharmacol 1989; 27: 515–8

    Article  PubMed  Google Scholar 

  96. Osborne R, Joel S, Grebenik K, et al. The pharmacokinetics of morphine and morphine glucuronides in kidney failure. Clin Pharmacol Ther 1993; 54: 158–67

    Article  PubMed  CAS  Google Scholar 

  97. Osborne RJ, Joel SP, Slevin ML. Morphine intoxication in renal failure: the role ofmorphine-6-glucuronide. BMJ Clin Res Ed 1986; 292: 1548–9

    Article  CAS  Google Scholar 

  98. Portenoy RK, Foley KM, Stulman J, et al. Plasma morphine and morphine-6-glucuronide during chronic morphine therapy for cancer pain: plasma profiles, steady-state concentrations and the consequences of renal failure. Pain 1991; 47: 13–9

    Article  PubMed  CAS  Google Scholar 

  99. Sear JW, Hand CW, Moore RA, et al. Studies on morphine disposition: influence of renal failure on the kinetics of morphine and its metabolites. Br J Anaesth 1989; 62: 28–32

    Article  PubMed  CAS  Google Scholar 

  100. Pauli-Magnus C, Hofmann U, Mikus G, et al. Pharmacokinetics of morphine and its glucuronides following intravenous administration of morphine in patients undergoing continuous ambulatory peritoneal dialysis. Nephrol Dial Transplant 1999; 14(4): 903–9

    Article  PubMed  CAS  Google Scholar 

  101. Bion JF, Logan BK, Newman PM, et al. Sedation in intensive care: morphine and renal function. Intens Care Med 1986; 12(5): 359–65

    Article  CAS  Google Scholar 

  102. Huwyler J, Drewe J, Klusemann C, et al. Evidence for P-glycoprotein-modulated penetration of morphine-6-glucuronide into brain capillary endothelium. Br J Pharmacol 1996; 118(8): 1879–85

    Article  PubMed  CAS  Google Scholar 

  103. Huwyler J, Drewe J, Gutmann H, et al. Modulation of morphine-6-glucuronide penetration into the brain by P-glycoprotein. Int J Clin Pharmacol Ther 1998; 36(2): 69–70

    PubMed  CAS  Google Scholar 

  104. Thompson SJ, Koszdin K, Bernards CM, et al. Opiate-induced analgesia is increased and prolonged in mice lacking P-glycoprotein. Anesthesiology 2000; 92(5): 1392–9

    Article  PubMed  CAS  Google Scholar 

  105. Letrent SP, Pollack GM, Brouwer KR, et al. Effects of a potent and specific P-glycoprotein inhibitor on the blood-brain barrier distribution and antinociceptive effect of morphine in the rat. Drug Metab Dispos 1999; 27(7): 827–34

    PubMed  CAS  Google Scholar 

  106. Xie R, Hammarlund-Udenaes M, de Boer AG, et al. The role of P-glycoprotein in blood-brain barrier transport of morphine: transcortical microdialysis studies in mdrla (−/−) and mdrla (+/+) mice. Br J Pharmacol 1999; 128(3): 563–8

    Article  PubMed  CAS  Google Scholar 

  107. Hoffmeyer S, Burk O, von Richter O, et al. Functional polymorphisms of the human multidrug-resistance gene: multiple sequence variations and correlation of one allele with P-glycoprotein expression and activity in vivo. Proc Natl Acad Sci U S A 2000; 97(7): 3473–8

    Article  PubMed  CAS  Google Scholar 

  108. Mickley LA, Lee JS, Weng Z, et al. Genetic polymorphism in MDR-1: a tool for examining allelic expression in normal cells, unselected and drug-selected cell lines, and human tumors. Blood 1998; 91(5): 1749–56

    PubMed  CAS  Google Scholar 

  109. Drewe J, Ball HA, Beglinger C, et al. Effect of P-glycoprotein modulation on the clinical pharmacokinetics and adverse effects of morphine. Br J Clin Pharmacol 2000; 50(3): 237–46

    Article  PubMed  CAS  Google Scholar 

  110. Race JE, Grassl SM, Williams WJ, et al. Molecular cloning and characterization of two novel human renal organic anion transporters (hOAT1 and hOAT3). Biochem Biophys Res Commun 1999; 255(2): 508–14

    Article  PubMed  CAS  Google Scholar 

  111. Lötsch J, Kobal G, Geisslinger G. No contribution of morphine-6-glucuronide to clinical morphine effects after short-term administration. Clin Neuropharmacol 1998; 21(6): 351–4

    PubMed  Google Scholar 

  112. Gardmark M, Hammarlund-Udenaes M. Delayed antinociceptive effect following morphine-6-glucuronide administration in the rat: pharmacokinetic/pharmacodynamic modelling. Pain 1998; 74(2-3): 287–96

    Article  PubMed  CAS  Google Scholar 

  113. Aasmundstad TA, Morland J, Paulsen RE. Distribution of morphine 6-glucuronide and morphine across the blood-brain barrier in awake, freely moving rats investigated by in vivo microdialysis sampling. J Pharmacol Exp Ther 1995; 275: 435–41

    PubMed  CAS  Google Scholar 

  114. Van Crugten JT, Somogyi AA, Nation RL, et al. Concentration-effect relationships of morphine and morphine-6 beta-glucuronide in the rat. Clin Exp Pharmacol Physiol 1997; 24(5): 359–64

    Article  PubMed  Google Scholar 

  115. Hull CJ, Van Beem HB, McLeod K, et al. A pharmacodynamic model for pancuronium. Br J Anaesth 1978; 50(11): 1113–23

    Article  PubMed  CAS  Google Scholar 

  116. Sheiner LB, Stanski DR, Vozeh S, et al. Simultaneous modeling of pharmacokinetics and pharmacodynamics: application to d-tubocurarine. Clin Pharmacol Ther 1979; 25: 358–71

    PubMed  CAS  Google Scholar 

  117. Kramer TH, d’Amours RH, Buettner BS. Pharmacodynamic model of the effects of morphine-6-glucuronide during patient-controlled analgesia. Clin Pharmacol Ther 1996; 59: 132

    Article  Google Scholar 

  118. Bickel U, Schumacher O, Kang YS, et al. Poor permeability of morphine 3-glucuronide and morphine 6-glucuronide through the blood-brain barrier in the rat. J Pharmacol Exp Ther 1996; 278: 107–13

    PubMed  CAS  Google Scholar 

  119. Carrupt PA, Testa B, Bechalany A, et al. Morphine 6-glucuronide and morphine 3-glucuronide as molecular chameleons with unexpected lipophilicity. J Med Chem 1991; 34: 1272–5

    Article  PubMed  CAS  Google Scholar 

  120. Avdeef A, Barrett DA, Shaw PN, et al. Octanol-, chloroform-, and propylene glycol dipelargonat-water partitioning of morphine-6-glucuronide and other related opiates. J Med Chem 1996; 39(22): 4377–81

    Article  PubMed  CAS  Google Scholar 

  121. Goucke CR, Hackett LP, Ilett KF. Concentrations of morphine, morphine-6-glucuronide and morphine-3-glucuronide in serum and cerebrospinal fluid following morphine administration to patients with morphine-resistant pain. Pain 1994; 56(2): 145–9

    Article  PubMed  CAS  Google Scholar 

  122. Portenoy RK, Khan E, Layman M, et al. Chronic morphine therapy for cancer pain: plasma and cerebrospinal fluid morphine and morphine-6-glucuronide concentrations. Neurology 1991; 41: 1457–61

    Article  PubMed  CAS  Google Scholar 

  123. Hain RD, Hardcastle A, Pinkerton CR, et al. Morphine and morphine-6-glucuronide in the plasma and cerebrospinal fluid of children. Br J Clin Pharmacol 1999; 48(1): 37–42

    Article  PubMed  CAS  Google Scholar 

  124. Wolff T, Samuelsson H, Hedner T. Morphine and morphine metabolite concentrations in cerebrospinal fluid and plasma in cancer pain patients after slow-release oral morphine administration. Pain 1995; 62(2): 147–54

    Article  PubMed  CAS  Google Scholar 

  125. Wolff T, Samuelsson H, Hedner T. Concentrations of morphine and morphine metabolites in CSF and plasma during continuous subcutaneous morphine administration in cancer pain patients. Pain 1996; 68(2-3): 209–16

    Article  PubMed  CAS  Google Scholar 

  126. Wolff T, Samuelsson H, Hedner T. Concentrations of morphine and morphine metabolites in CSF and plasma during continuous subcutaneous morphine administration in cancer pain patients. Pain 1996; 68(2-3): 209–16

    Article  PubMed  CAS  Google Scholar 

  127. Stain-Texier F, Boschi G, Sandouk P, et al. Elevated concentrations of morphine 6-beta-D-glucuronide in brain extracellular fluid despite low blood-brain barrier permeability. Br J Pharmacol 1999; 128(4): 917–24

    Article  PubMed  CAS  Google Scholar 

  128. Likar R, Kapral S, Steinkellner H, et al. Dose-dependency of intra-articular morphine analgesia. Br J Anaesth 1999; 83(2): 241–4

    Article  PubMed  CAS  Google Scholar 

  129. Bond C, LaForge KS, Tian M, et al. Single-nucleotide polymorphism in the human mu opioid receptor gene alters beta-en-dorphin binding and activity: possible implications for opiate addiction. Proc Natl Acad Sci U S A 1998; 95(16): 9608–13

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work has been made possible by a grant from the Deutsche Forschungsgemeinschaft (DFG Lo 612/3-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jörn Lötsch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lötsch, J., Geisslinger, G. Morphine-6-Glucuronide. Clin Pharmacokinet 40, 485–499 (2001). https://doi.org/10.2165/00003088-200140070-00001

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003088-200140070-00001

Keywords

Navigation