Skip to main content
Log in

Pharmacokinetic Aspects of Treating Infections in the Intensive Care Unit

Focus on Drug Interactions

  • Review Articles
  • Drug Interactions
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

Pharmacokinetic interactions involving anti-infective drugs may be important in the intensive care unit (ICU). Although some interactions involve absorption or distribution, the most clinically relevant interactions during anti-infective treatment involve the elimination phase.

Cytochrome P450 (CYP) 1A2, 2C9, 2C19, 2D6 and 3A4 are the major isoforms responsible for oxidative metabolism of drugs. Macrolides (especially troleandomycin and erythromycin versus CYP3A4), fluoroquinolones (especially enoxacin, ciprofloxacin and norfloxacin versus CYP1A2) and azole antifungals (especially fluconazole versus CYP2C9 and CYP2C19, and ketoconazole and itraconazole versus CYP3A4) are all inhibitors of CYP-mediated metabolism and may therefore be responsible for toxicity of other coadministered drugs by decreasing their clearance. On the other hand, rifampicin is a nonspecific inducer of CYP-mediated metabolism (especially of CYP2C9, CYP2C19 and CYP3A4) and may therefore cause therapeutic failure of other coadministered drugs by increasing their clearance.

Drugs frequently used in the ICU that are at risk of clinically relevant pharmacokinetic interactions with anti-infective agents include some benzodiazepines (especially midazolam and triazolam), immunosuppressive agents (cyclosporin, tacrolimus), antiasthmatic agents (theophylline), opioid analgesics (alfentanil), anticonvulsants (phenytoin, carbamazepine), calcium antagonists (verapamil, nifedipine, felodipine) and anticoagulants (warfarin).

Some lipophilic anti-infective agents inhibit (clarithromycin, itraconazole) or induce (rifampicin) the transmembrane transporter P-glycoprotein, which promotes excretion from renal tubular and intestinal cells. This results in a decrease or increase, respectively, in the clearance of P-glycoprotein substrates at the renal level and an increase or decrease, respectively, of their oral bioavailability at the intestinal level.

Hydrophilic anti-infective agents are often eliminated unchanged by renal glomerular filtration and tubular secretion, and are therefore involved in competition for excretion. β-Lactams are known to compete with other drugs for renal tubular secretion mediated by the organic anion transport system, but this is frequently not of major concern, given their wide therapeutic index. However, there is a risk of nephrotoxicity and neurotoxicity with some cephalosporins and carbapenems. Therapeutic failure with these hydrophilic compounds may be due to haemodynamically active coadministered drugs, such as dopamine, dobutamine and furosemide, which increase their renal clearance by means of enhanced cardiac output and/or renal blood flow.

Therefore, coadministration of some drugs should be avoided, or at least careful therapeutic drug monitoring should be performed when available. Monitoring may be especially helpful when there is some coexisting pathophysiological condition affecting drug disposition, for example malabsorption or marked instability of the systemic circulation or of renal or hepatic function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Table I
Table II
Table III
Table IV

Similar content being viewed by others

References

  1. Vincent JL, Bihari DJ, Suter PM, et al. The prevalence of nosocomial infection in intensive care units in Europe. Results of the European Prevalence of Infection in Intensive Care (EPIC) Study. EPIC International Advisory Committee. JAMA 1995; 274(8): 639–44

    Article  PubMed  CAS  Google Scholar 

  2. Miners JO, Birkett DJ. Cytochrome P4502C9: an enzyme of major importance in human drug metabolism. Br J Clin Pharmacol 1998; 45(6): 525–38

    Article  PubMed  CAS  Google Scholar 

  3. Guengerich FP. Cytochrome P-450 3A4: regulation and role in drug metabolism. Annu Rev Pharmacol Toxicol 1999; 39: 1–17

    Article  PubMed  CAS  Google Scholar 

  4. Dresser GK, Spence JD, Bailey DG. Pharmacokinetic-pharmacodynamic consequences and clinical relevance of cytochrome P450 3A4 inhibition. Clin Pharmacokinet 2000; 38(1): 41–57

    Article  PubMed  CAS  Google Scholar 

  5. Venkatakrishnan K, von Moltke LL, Greenblatt DJ. Effects of the antifungal agents on oxidative drug metabolism: clinical relevance. Clin Pharmacokinet 2000; 38(2): 111–80

    Article  PubMed  CAS  Google Scholar 

  6. Shimada T, Yamazaki H, Mimura M, et al. Interindividual variations in human liver cytochrome P-450 enzymes involved in the oxidation of drugs, carcinogens and toxic chemicals: studies with liver microsomes of 30 Japanese and 30 Caucasians. J Pharmacol Exp Ther 1994; 270(1): 414–23

    PubMed  CAS  Google Scholar 

  7. Kronbach T, Mathys D, Umeno M, et al. Oxidation of midazolam and triazolam by human liver cytochrome P450IIIA4. Mol Pharmacol 1989; 36(1): 89–96

    PubMed  CAS  Google Scholar 

  8. Schmider J, Brockmoller J, Arold G, et al. Simultaneous assessment of CYP3A4 and CYP1A2 activity in vivo with alprazolam and caffeine. Pharmacogenetics 1999; 9(6): 725–34

    Article  PubMed  CAS  Google Scholar 

  9. Andersson T, Miners JO, Veronese ME, et al. Diazepam metabolism by human liver microsomes is mediated by both S-mephenytoin hydroxylase and CYP3A isoforms. Br J Clin Pharmacol 1994; 38(2): 131–7

    Article  PubMed  CAS  Google Scholar 

  10. Yasumori T, Nagata K, Yang SK, et al. Cytochrome P450 mediated metabolism of diazepam in human and rat: involvement of human CYP2C in N-demethylation in the substrate concentration-dependent manner. Pharmacogenetics 1993; 3(6): 291–301

    Article  PubMed  CAS  Google Scholar 

  11. Schwarz HJ. Pharmacokinetics and metabolism of temazepam in man and several animal species. Br J Clin Pharmacol 1979; 8(1): 23S–9S

    Article  PubMed  CAS  Google Scholar 

  12. Kronbach T, Fischer V, Meyer UA. Cyclosporine metabolism in human liver: identification of a cytochrome P-450III gene family as the major cyclosporine-metabolizing enzyme explains interactions of cyclosporine with other drugs. Clin Pharmacol Ther 1988; 43(6): 630–5

    Article  PubMed  CAS  Google Scholar 

  13. Sattler M, Guengerich FP, Yun CH, et al. Cytochrome P-450 3 A enzymes are responsible for biotransformation of FK506 and rapamycin in man and rat. Drug Metab Dispos 1992; 20(5): 753–61

    PubMed  CAS  Google Scholar 

  14. Fahr A. Cyclosporin clinical pharmacokinetics. Clin Pharmacokinet 1993; 24(6): 472–95

    Article  PubMed  CAS  Google Scholar 

  15. Campana C, Regazzi MB, Buggia I, et al. Clinically significant drug interactions with cyclosporin. An update. Clin Pharmacokinet 1996; 30(2): 141–79

    Article  PubMed  CAS  Google Scholar 

  16. Venkataramanan R, Swaminathan A, Prasad T, et al. Clinical pharmacokinetics of tacrolimus. Clin Pharmacokinet 1995; 29(6): 404–30

    Article  PubMed  CAS  Google Scholar 

  17. Christians U, Braun F, Schmidt M, et al. Specific and sensitive measurement of FK506 and its metabolites in blood and urine of liver-graft recipients. Clin Chem 1992; 38(10): 2025–32

    PubMed  CAS  Google Scholar 

  18. Tjia JF, Colbert J, Back DJ. Theophylline metabolism in human liver microsomes: inhibition studies. J Pharmacol Exp Ther 1996; 276(3): 912–7

    PubMed  CAS  Google Scholar 

  19. Kharasch ED, Thummel KE. Human alfentanil metabolism by cytochrome P450 3A3/4. An explanation for the interindividual variability in alfentanil clearance? Anesth Analg 1993; 76(5): 1033–9

    Article  PubMed  CAS  Google Scholar 

  20. Kharasch ED, Russell M, Mautz D, et al. The role of cytochrome P450 3A4 in alfentanil clearance. Implications for interindividual variability in disposition and perioperative drug interactions. Anesthesiology 1997; 87(1): 36–50

    Article  PubMed  CAS  Google Scholar 

  21. Feierman DE, Lasker JM. Metabolism of fentanyl, a synthetic opioid analgesic, by human liver microsomes. Role of CYP3A4. Drug Metab Dispos 1996; 24(9): 932–9

    PubMed  CAS  Google Scholar 

  22. Yun CH, Wood M, Wood AJ, et al. Identification of the pharmacogenetic determinants of alfentanil metabolism: cytochrome P-450 3A4. An explanation of the variable elimination clearance. Anesthesiology 1992; 77(3): 467–74

    Article  PubMed  CAS  Google Scholar 

  23. Labroo RB, Thummel KE, Kunze KL, et al. Catalytic role of cytochrome P4503 A4 in multiple pathways of alfentanil metabolism. Drug Metab Dispos 1995; 23(4): 490–6

    PubMed  CAS  Google Scholar 

  24. Tateishi T, Krivoruk Y, Ueng YF, et al. Identification of human liver cytochrome P-450 3A4 as the enzyme responsible for fentanyl and sufentanil N-dealkylation. Anesth Analg 1996; 82(1): 167–72

    PubMed  CAS  Google Scholar 

  25. Guitton J, Buronfosse T, Desage M, et al. Possible involvement of multiple cytochrome P450s in fentanyl and sufentanil metabolism as opposed to alfentanil. Biochem Pharmacol 1997; 53(11): 1613–9

    Article  PubMed  CAS  Google Scholar 

  26. Kerr BM, Thummel KE, Wurden CJ, et al. Human liver carbamazepine metabolism. Role of CYP3A4 and CYP2C8 in 10, 11-epoxide formation. Biochem Pharmacol 1994; 47(11): 1969–79

    Article  PubMed  CAS  Google Scholar 

  27. Tucker RM, Denning DW, Hanson LH, et al. Interaction of azoles with rifampin, phenytoin, and carbamazepine: in vitro and clinical observations. Clin Infect Dis 1992; 14(1): 165–74

    Article  PubMed  CAS  Google Scholar 

  28. Bonay M, Jonville-Bera AP, Diot P, et al. Possible interaction between phenobarbital, carbamazepine and itraconazole. Drug Saf 1993; 9(4): 309–11

    Article  PubMed  CAS  Google Scholar 

  29. Dickinson RG, Hooper WD, Patterson M, et al. Extent of urinary excretion of p-hydroxyphenytoin in healthy subjects given phenytoin. Ther Drug Monit 1985; 7(3): 283–9

    Article  PubMed  CAS  Google Scholar 

  30. Cadle RM, Zenon GJ 3rd, Rodriguez-Barradas MC, et al. Fluconazole-induced symptomatic phenytoin toxicity. Ann Pharmacother 1994; 28(2): 191–5

    PubMed  CAS  Google Scholar 

  31. Bajpai M, Roskos LK, Shen DD, et al. Roles of cytochrome P4502C9 and cytochrome P4502C19 in the stereoselective metabolism of phenytoin to its major metabolite. Drug Metab Dispos 1996; 24(12): 1401–3

    PubMed  CAS  Google Scholar 

  32. Guengerich FP, Brian WR, Iwasaki M, et al. Oxidation of dihydropyridine calcium channel blockers and analogues by human liver cytochrome P-450 IIIA4. J Med Chem 1991; 34(6): 1838–44

    Article  PubMed  CAS  Google Scholar 

  33. Sutton D, Butler AM, Nadin L, et al. Role of CYP3A4 in human hepatic diltiazem N-demethylation: inhibition of CYP3A4 activity by oxidized diltiazem metabolites. J Pharmacol Exp Ther 1997; 282(1): 294–300

    PubMed  CAS  Google Scholar 

  34. Bailey DG, Arnold JM, Munoz C, et al. Grapefruit juicefelodipine interaction: mechanism, predictability, and effect of naringin. Clin Pharmacol Ther 1993; 53(6): 637–42

    Article  PubMed  CAS  Google Scholar 

  35. Kroemer HK, Gautier JC, Beaune P, et al. Identification of P450 enzymes involved in metabolism of verapamil in humans. Naunyn Schmiedebergs Arch Pharmacol 1993; 348(3): 332–7

    Article  PubMed  CAS  Google Scholar 

  36. Krecic-Shepard ME, Barnas CR, Slimko J, et al. In vivo comparison of putative probes of CYP3A4/5 activity: erythromycin, dextromethorphan, and verapamil. Clin Pharmacol Ther 1999; 66(1): 40–50

    Article  PubMed  CAS  Google Scholar 

  37. Lown KS, Bailey DG, Fontana RJ, et al. Grapefruit juice increases felodipine oral availability in humans by decreasing intestinal CYP3A protein expression. J Clin Invest 1997; 99(10): 2545–53

    Article  PubMed  CAS  Google Scholar 

  38. Ma B, Prueksaritanont T, Lin JH. Drug interactions with calcium channel blockers: possible involvement of metabolite-intermediate complexation with CYP3A. Drug Metab Dispos 2000; 28(2): 125–30

    PubMed  CAS  Google Scholar 

  39. Zhang Z, Fasco MJ, Huang Z, et al. Human cytochromes P4501A1 and P4501A2: R-warfarin metabolism as a probe. Drug Metab Dispos 1995; 23(12): 1339–46

    PubMed  CAS  Google Scholar 

  40. Kaminsky LS, Zhang ZY Human P450 metabolism of warfarin. Pharmacol Ther 1997; 73(1): 67–74

    Article  PubMed  CAS  Google Scholar 

  41. Yamazaki H, Shimada T. Human liver cytochrome P450 enzymes involved in the 7-hydroxylation of R- and S-warfarin enantiomers. Biochem Pharmacol 1997; 54(11): 1195–203

    Article  PubMed  CAS  Google Scholar 

  42. Tanigawara Y Role of P-glycoprotein in drug disposition. Ther Drug Monit 2000; 22(1): 137–40

    Article  Google Scholar 

  43. Hori R, Okamura N, Aiba T, et al. Role of P-glycoprotein in renal tubular secretion of digoxin in the isolated perfused rat kidney. J Pharmacol Exp Ther 1993; 266(3): 1620–5

    PubMed  CAS  Google Scholar 

  44. Lown KS, Mayo RR, Leichtman AB, et al. Role of intestinal P-glycoprotein (mdrl) in interpatient variation in the oral bioavailability of cyclosporine. Clin Pharmacol Ther 1997; 62(3): 248–60

    Article  PubMed  CAS  Google Scholar 

  45. Wakasugi H, Yano I, Ito T, et al. Effect of clarithromycin on renal excretion of digoxin: interaction with P-glycoprotein. Clin Pharmacol Ther 1998; 64(1): 123–8

    Article  PubMed  CAS  Google Scholar 

  46. Greiner B, Eichelbaum M, Fritz P, et al. The role of intestinal P-glycoprotein in the interaction of digoxin and rifampin. J Clin Invest 1999; 104(2): 147–53

    Article  PubMed  CAS  Google Scholar 

  47. Besseghir K, Roch-Ramel F. Renal excretion of drugs and other xenobiotics. Ren Physiol 1987; 10(5): 221–41

    PubMed  CAS  Google Scholar 

  48. Tsuji A, Terasaki T, Tamai I, et al. In vivo evidence for carriermediated uptake of beta-lactam antibiotics through organic anion transport systems in rat kidney and liver. J Pharmacol Exp Ther 1990; 253(1): 315–20

    PubMed  CAS  Google Scholar 

  49. Overbosch D, Van Gulpen C, Hermans J, et al. The effect of probenecid on the renal tubular excretion of benzylpenicillin. Br J Clin Pharmacol 1988; 25(1): 51–8

    Article  PubMed  CAS  Google Scholar 

  50. Hatos G. Treatment of gonorrhoea by penicillin and a renal blocking agent (probenecid). Med J Aust 1970; 1(22): 1096–9

    PubMed  CAS  Google Scholar 

  51. Bonate PL, Reith K, Weir S. Drug interactions at the renal level. Implications for drug development. Clin Pharmacokinet 1998; 34(5): 375–404

    Article  PubMed  CAS  Google Scholar 

  52. Brown GR. Cephalosporin-probenecid drug interactions. Clin Pharmacokinet 1993; 24(4): 289–300

    Article  PubMed  CAS  Google Scholar 

  53. Olsen NV. Effects of dopamine on renal haemodynamics tubular function and sodium excretion in normal humans. Dan Med Bull 1998; 45(3): 282–97

    PubMed  CAS  Google Scholar 

  54. Leier CV, Webel J, Bush CA. The cardiovascular effects of the continuous infusion of dobutamine in patients with severe cardiac failure. Circulation 1977; 56(3): 468–72

    Article  PubMed  CAS  Google Scholar 

  55. Lass NA, Glock D, Goldberg LI. Cardiovascular and renal hemodynamic effects of intravenous infusions of the selective DAI agonist, fenoldopam, used alone or in combination with dopamine and dobutamine. Circulation 1988; 78 (5 Pt 1): 1310–5

    Article  PubMed  CAS  Google Scholar 

  56. Ludens JH, Hook JB, Brody MJ, et al. Enhancement of renal blood flow by furosemide. J Pharmacol Exp Ther 1968; 163(2): 456–60

    PubMed  CAS  Google Scholar 

  57. Williamson HE, Bourland WA, Marchand GR, et al. Furosemide induced release of prostaglandin E to increase renal blood flow. Proc Soc Exp Biol Med 1975; 150(1): 104–6

    PubMed  CAS  Google Scholar 

  58. Nuutinen LS, Tuononen S. The effect of furosemide on renal blood flow and renal tissue oxygen tension in dogs. Ann Chir Gynaecol 1976; 65(4): 272–6

    PubMed  CAS  Google Scholar 

  59. Ljubicic N, Bilic A, Plavsic V. Effect of propranolol on urinary prostaglandin E2 excretion and renal interlobar arterial blood flow after furosemide administration in patients with hepatic cirrhosis. Eur J Clin Pharmacol 1992; 43(5): 555–8

    Article  PubMed  CAS  Google Scholar 

  60. Delaforge M, Jaouen M, Mansuy D. Dual effects of macrolide antibiotics on rat liver cytochrome P-450. Induction and formation of metabolite-complexes: a structure-activity relationship. Biochem Pharmacol 1983; 32(15): 2309–18

    Article  PubMed  CAS  Google Scholar 

  61. Pessayre D, Larrey D, Vitaux J, et al. Formation of an inactive cytochrome P-450 Fe(II)-metabolite complex after administration of troleandomycin in humans. Biochem Pharmacol 1982; 31(9): 1699–704

    Article  PubMed  CAS  Google Scholar 

  62. Larrey D, Funck-Brentano C, Breil P, et al. Effects of erythromycin on hepatic drug-metabolizing enzymes in humans. Biochem Pharmacol 1983; 32(6): 1063–8

    Article  PubMed  CAS  Google Scholar 

  63. Periti P, Mazzei T, Mini E, et al. Pharmacokinetic drug interactions of macrolides. Clin Pharmacokinet 1992; 23(2): 106–31

    Article  PubMed  CAS  Google Scholar 

  64. von Rosensteil NA, Adam D. Macrolide antibacterials. Drug interactions of clinical significance. Drug Saf 1995; 13(2): 105–22

    Article  Google Scholar 

  65. Amsden GW Macrolides versus azalides: a drug interaction update. Ann Pharmacother 1995; 29(9): 906–17

    PubMed  CAS  Google Scholar 

  66. Nahata M. Drug interactions with azithromycin and the macrolides: an overview. J Antimicrob Chemother 1996; 37 Suppl. C: 133–42

    Article  PubMed  CAS  Google Scholar 

  67. Watkins VS, Polk RE, Stotka JL. Drug interactions of macrolides: emphasis on dirithromycin. Ann Pharmacother 1997; 31(3): 349–56

    PubMed  CAS  Google Scholar 

  68. Pai MP, Graci DM, Amsden GW. Macrolide drug interactions: an update. Ann Pharmacother 2000; 34(4): 495–513

    Article  PubMed  CAS  Google Scholar 

  69. Westphal JF. Macrolide-induced clinically relevant drug interactions with cytochrome P-450A (CYP) 3A4: an update focused on clarithromycin, azithromycin and dirithromycin. Br J Clin Pharmacol 2000; 50(4): 285–95

    Article  PubMed  CAS  Google Scholar 

  70. Olkkola KT, Aranko K, Luurila H, et al. A potentially hazardous interaction between erythromycin and midazolam. Clin Pharmacol Ther 1993; 53(3): 298–305

    Article  PubMed  CAS  Google Scholar 

  71. Mattila MJ, Idanpaan-Heikkila JJ, Tornwall M, et al. Oral single doses of erythromycin and roxithromycin may increase the effects of midazolam on human performance. Pharmacol Toxicol 1993; 73(3): 180–5

    Article  PubMed  CAS  Google Scholar 

  72. Yeates RA, Laufen H, Zimmermann T, et al. Pharmacokinetic and pharmacodynamic interaction study between midazolam and the macrolide antibiotics, erythromycin, clarithromycin, and the azalide azithromycin. Int J Clin Pharmacol Ther 1997; 35(12): 577–9

    PubMed  CAS  Google Scholar 

  73. Gorski JC, Jones DR, Haehner-Daniels BD, et al. The contribution of intestinal and hepatic CYP3A to the interaction between midazolam and clarithromycin. Clin Pharmacol Ther 1998; 64(2): 133–43

    Article  PubMed  CAS  Google Scholar 

  74. Yeates RA, Laufen H, Zimmermann T. Interaction between midazolam and clarithromycin: comparison with azithromycin. Int J Clin Pharmacol Ther 1996; 34(9): 400–5

    PubMed  CAS  Google Scholar 

  75. Backman JT, Aranko K, Himberg JJ, et al. A pharmacokinetic interaction between roxithromycin and midazolam. Eur J Clin Pharmacol 1994; 46(6): 551–5

    Article  PubMed  CAS  Google Scholar 

  76. Backman JT, Olkkola KT, Neuvonen PJ. Azithromycin does not increase plasma concentrations of oral midazolam. Int J Clin Pharmacol Ther 1995; 33(6): 356–9

    PubMed  CAS  Google Scholar 

  77. Zimmermann T, Yeates RA, Laufen H, et al. Influence of the antibiotics erythromycin and azithromycin on the pharmacokinetics and pharmacodynamics of midazolam. Arzneimittel Forschung 1996; 46(2): 213–7

    PubMed  CAS  Google Scholar 

  78. Phillips JP, Antal EJ, Smith RB. A pharmacokinetic drug interaction between erythromycin and triazolam. J Clin Psychopharmacol 1986; 6(5): 297–9

    Article  PubMed  CAS  Google Scholar 

  79. Warot D, Bergougnan L, Lamiable D, et al. Troleandomycintriazolam interaction in healthy volunteers: pharmacokinetic and psychometric evaluation. Eur J Clin Pharmacol 1987; 32(4): 389–93

    Article  PubMed  CAS  Google Scholar 

  80. Luurila H, Olkkola KT, Neuvonen PJ. Interaction between erythromycin and nitrazepam in healthy volunteers. Pharmacol Toxicol 1995; 76(4): 255–8

    Article  PubMed  CAS  Google Scholar 

  81. Luurila H, Olkkola KT, Neuvonen PJ. Interaction between erythromycin and the benzodiazepines diazepam and flunitrazepam. Pharmacol Toxicol 1996; 78(2): 117–22

    Article  PubMed  CAS  Google Scholar 

  82. Luurila H, Olkkola KT, Neuvonen PJ. Lack of interaction of erythromycin with temazepam. Ther Drug Monit 1994; 16(6): 548–51

    Article  PubMed  CAS  Google Scholar 

  83. Martell R, Heinrichs D, Stiller CR, et al. The effects of erythromycin in patients treated with cyclosporine. Ann Intern Med 1986; 104(5): 660–1

    PubMed  CAS  Google Scholar 

  84. Harnett JD, Parfrey PS, Paul MD, et al. Erythromycin-cyclosporine interaction in renal transplant recipients. Transplantation 1987; 43(2): 316–8

    Article  PubMed  CAS  Google Scholar 

  85. Jensen CW, Flechner SM, Van Buren CT, et al. Exacerbation of cyclosporine toxicity by concomitant administration of erythromycin. Transplantation 1987; 43(2): 263–70

    Article  PubMed  CAS  Google Scholar 

  86. Gupta SK, Bakran A, Johnson RW, et al. Erythromycin enhances the absorption of cyclosporin. Br J Clin Pharmacol 1988; 25(3): 401–2

    Article  PubMed  CAS  Google Scholar 

  87. Koselj M, Bren A, Kandus A, et al. Drug interactions between cyclosporine and rifampicin, erythromycin, and azoles in kidney recipients with opportunistic infections. Transplant Proc 1994; 26(5): 2823–4

    PubMed  CAS  Google Scholar 

  88. Zylber-Katz E. Multiple drug interactions with cyclosporine in a heart transplant patient. Ann Pharmacother 1995; 29(2): 127–31

    PubMed  CAS  Google Scholar 

  89. Freeman DJ, Martell R, Carruthers SG, et al. Cyclosporinerythromycin interaction in normal subjects. Br J Clin Pharmacol 1987; 23(6): 776–8

    PubMed  CAS  Google Scholar 

  90. Gersema LM, Porter CB, Russell EH. Suspected drug interaction between cyclosporine and clarithromycin [letter]. J Heart Lung Transplant 1994; 13(2): 343–5

    PubMed  CAS  Google Scholar 

  91. Ferrari SL, Goffin E, Mourad M, et al. The interaction between clarithromycin and cyclosporine in kidney transplant recipients. Transplantation 1994; 58(6): 725–7

    PubMed  CAS  Google Scholar 

  92. Sketris IS, Wright MR, West ML. Possible role of the intestinal P-450 enzyme system in a cyclosporine-clarithromycin interaction. Pharmacotherapy 1996; 16(2): 301–5

    PubMed  CAS  Google Scholar 

  93. Spicer ST, Liddle C, Chapman JR, et al. The mechanism of cyclosporine toxicity induced by clarithromycin. Br J Clin Pharmacol 1997; 43(2): 194–6

    Article  PubMed  CAS  Google Scholar 

  94. Sadaba B, Lopez de Ocariz A, Azanza JR, et al. Concurrent clarithromycin and cyclosporin A treatment. J Antimicrob Chemother 1998; 42(3): 393–5

    Article  PubMed  CAS  Google Scholar 

  95. Billaud EM, Guillemain R, Fortineau N, et al. Interaction between roxithromycin and cyclosporin in heart transplant patients. Clin Pharmacokinet 1990; 19(6): 499–502

    Article  PubMed  CAS  Google Scholar 

  96. Gomez E, Sanchez-Nunez M, Sanchez JE, et al. Treatment of cyclosporin-induced gingival hyperplasia with azithromycin. Nephrol Dial Transplant 1997; 12(12): 2694–7

    Article  PubMed  CAS  Google Scholar 

  97. Palomar R, Belart M, Soy D, et al. Effectiveness and safety of azithromycin on the treatment of cyclosporine-induced gingival overgrowth [letter]. Nephron 1998; 79(1): 101–2

    Article  PubMed  CAS  Google Scholar 

  98. Wirnsberger GH, Pfragner R, Mauric A, et al. Effect of antibiotic treatment with azithromycin on cyclosporine A-induced gingival hyperplasia among renal transplant recipients. Transplant Proc 1998; 30(5): 2117–9

    Article  PubMed  CAS  Google Scholar 

  99. Nowicki M, Kokot F, Wiecek A. Partial regression of advanced cyclosporin-induced gingival hyperplasia after treatment with azithromycin. A case report. Ann Transplant 1998; 3(3): 25–7

    PubMed  CAS  Google Scholar 

  100. Shaeffer MS, Collier D, Sorrell ME Interaction between FK506 and erythromycin [letter]. Ann Pharmacother 1994; 28(2): 280–1

    PubMed  CAS  Google Scholar 

  101. Jensen C, Jordan M, Shapiro R, et al. Interaction between tacrolimus and erythromycin [letter]. Lancet 1994; 344(8925): 825

    Article  PubMed  CAS  Google Scholar 

  102. Padhi ID, Long P, Basha M, et al. Interaction between tacrolimus and erythromycin. Ther Drug Monit 1997; 19(1): 120–2

    Article  PubMed  CAS  Google Scholar 

  103. Wolter K, Wagner K, Philipp T, et al. Interaction between FK 506 and clarithromycin in a renal transplant patient [letter]. Eur J Clin Pharmacol 1994; 47(2): 207–8

    Article  PubMed  CAS  Google Scholar 

  104. Katari SR, Magnone M, Shapiro R, et al. Clinical features of acute reversible tacrolimus (FK 506) nephrotoxicity in kidney transplant recipients. Clin Transplant 1997; 11(3): 237–42

    PubMed  CAS  Google Scholar 

  105. Gomez G, Alvarez ML, Errasti P, et al. Acute tacrolimus nephrotoxicity in renal transplant patients treated with clarithromycin. Transplant Proc 1999; 31(6): 2250–1

    Article  PubMed  CAS  Google Scholar 

  106. Bartolucci L, Gradoli C, Vincenzi V, et al. Macrolide antibiotics and serum theophylline levels in relation to the severity of respiratory impairment: a comparison between the effects of erythromycin and josamycin. Chemioterapia 1984; 3(5): 286–90

    PubMed  CAS  Google Scholar 

  107. Wiggins J, Arbab O, Ayres JG, et al. Elevated serum theophylline concentration following cessation of erythromycin treatment. Eur J Respir Dis 1986; 68(4): 298–300

    PubMed  CAS  Google Scholar 

  108. Paulsen O, Hoglund P, Nilsson LG, et al. The interaction of erythromycin with theophylline. Eur J Clin Pharmacol 1987; 32(5): 493–8

    Article  PubMed  CAS  Google Scholar 

  109. Ludden TM. Pharmacokinetic interactions of the macrolide antibiotics. Clin Pharmacokinet 1985; 10(1): 63–79

    Article  PubMed  CAS  Google Scholar 

  110. Ha HR, Chen J, Freiburghaus AU, et al. Metabolism of theophylline by cDNA-expressed human cytochromes P-450. Br J Clin Pharmacol 1995; 39(3): 321–6

    Article  PubMed  CAS  Google Scholar 

  111. Gillum JG, Israel DS, Polk RE. Pharmacokinetic drug interactions with antimicrobial agents. Clin Pharmacokinet 1993; 25(6): 450–82

    Article  PubMed  CAS  Google Scholar 

  112. Gillum JG, Israel DS, Scott RB, et al. Effect of combination therapy with ciprofloxacin and clarithromycin on theophylline pharmacokinetics in healthy volunteers. Antimicrob Agents Chemother 1996; 40(7): 1715–6

    PubMed  CAS  Google Scholar 

  113. McConnell SA, Nafziger AN, Amsden GW. Lack of effect of dirithromycin on theophylline pharmacokinetics in healthy volunteers. J Antimicrob Chemother 1999; 43(5): 733–6

    Article  PubMed  CAS  Google Scholar 

  114. Cazzola M, Matera MG, Paterno E, et al. Impact of rokitamycin, anew 16-membered macrolide, on serum theophylline. J Chemother 1991; 3(4): 240–4

    PubMed  CAS  Google Scholar 

  115. Bartkowski RR, Goldberg ME, Larijani GE, et al. Inhibition of alfentanil metabolism by erythromycin. Clin Pharmacol Ther 1989; 46(1): 99–102

    Article  PubMed  CAS  Google Scholar 

  116. Bartkowski RR, McDonnell TE. Prolonged alfentanil effect following erythromycin administration. Anesthesiology 1990; 73(3): 566–8

    Article  PubMed  CAS  Google Scholar 

  117. Dravet C, Mesdjian E, Cenraud B, et al. Interaction between carbamazepine and triacetyloleandomycin [letter]. Lancet 1977; I(8015): 810–1

    Article  Google Scholar 

  118. Wong YY, Ludden TM, Bell RD. Effect of erythromycin on carbamazepine kinetics. Clin Pharmacol Ther 1983; 33: 460–3

    Article  PubMed  CAS  Google Scholar 

  119. Hedrick R, Williams F, Morin R, et al. Carbamazepine-erythromycin interaction leading to carbamazepine toxicity in four epileptic children. Ther Drug Monit 1983; 5(4): 405–7

    Article  PubMed  CAS  Google Scholar 

  120. Carranco E, Karcus J, Co S. Carbamazepine toxicity induced by concurrent erythromycin therapy. Arch Neurol 1985; 42: 171–6

    Article  Google Scholar 

  121. Mota CR, Carvalho C, Mota C, et al. Severe carbamazepine toxicity induced by concurrent erythromycin therapy [letter]. Eur J Pediatr 1996; 155(4): 345

    Article  PubMed  CAS  Google Scholar 

  122. Dammann HG. Therapy with omeprazole and clarithromycin increases serum carbamazepine levels in patients with H. pylori gastritis [letter]. Dig Dis Sci 1996; 41(3): 519–20

    Article  PubMed  CAS  Google Scholar 

  123. Yasui N, Otani K, Kaneko S, et al. Carbamazepine toxicity induced by clarithromycin coadministration in psychiatric patients. Int Clin Psychopharmacol 1997; 12(4): 225–9

    Article  PubMed  CAS  Google Scholar 

  124. Sachdeo RC, Narang-Sachdeo S, Montgomery PA, et al. Evaluation of the potential interaction between felbamate and erythromycin in patients with epilepsy. J Clin Pharmacol 1998; 38(2): 184–90

    PubMed  CAS  Google Scholar 

  125. Thomsen MS, Groes L, Agerso H, et al. Lack of pharmacokinetic interaction between tiagabine and erythromycin. J Clin Pharmacol 1998; 38(11): 1051–6

    Article  PubMed  CAS  Google Scholar 

  126. Bailey DG, Bend JR, Arnold JM, et al. Erythromycin-felodipine interaction: magnitude, mechanism, and comparison with grapefruit juice. Clin Pharmacol Ther 1996; 60(1): 25–33

    Article  PubMed  CAS  Google Scholar 

  127. Liedholm H, Nordin G. Erythromycin-felodipine interaction [letter]. Drug Intell Clin Pharm 1991; 25(9): 1007–8

    CAS  Google Scholar 

  128. Kaeser YA, Branner F, Drewe J, et al. Severe hypotension and bradycardia associated with verapamil and clarithromycin [letter]. Am J Health Syst Pharm 1998; 55(22): 2417–8

    PubMed  CAS  Google Scholar 

  129. Steenbergen JA, Stauffer VL. Potential macrolide interaction with verapamil [letter]. Ann Pharmacother 1998; 32(3): 387–8

    Article  PubMed  CAS  Google Scholar 

  130. Recker MW, Kier KL. Potential interaction between clarithromycin and warfarin. Ann Pharmacother 1997; 31(9): 996–8

    PubMed  CAS  Google Scholar 

  131. Oberg KC. Delayed elevation of international normalized ratio with concurrent clarithromycin and warfarin therapy. Pharmacotherapy 1998; 18(2): 386–91

    PubMed  CAS  Google Scholar 

  132. Lane G. Increased hypoprothrombinemic effect of warfarin possibly induced by azithromycin [letter]. Ann Pharmacother 1996; 30(7-8): 884–5

    PubMed  CAS  Google Scholar 

  133. Foster DR, Milan NL. Potential interaction between azithromycin and warfarin. Pharmacotherapy 1999; 19(7): 902–8

    Article  PubMed  CAS  Google Scholar 

  134. Kantola T, Kivisto KT, Neuvonen PJ. Erythromycin and verapamil considerably increase serum simvastatin and simvastatin acid concentrations. Clin Pharmacol Ther 1998; 64(2): 177–82

    Article  PubMed  CAS  Google Scholar 

  135. van Haarst AD, van’t Klooster GA, van Gerven JM, et al. The influence of cisapride and clarithromycin on QT intervals in healthy volunteers. Clin Pharmacol Ther 1998; 64(5): 542–6

    Article  PubMed  Google Scholar 

  136. Hafner R, Bethel J, Power M, et al. Tolerance and pharmacokinetic interactions of rifabutin and clarithromycin in human immunodeficiency virus-infected volunteers. Antimicrob Agents Chemother 1998; 42(3): 631–9

    PubMed  CAS  Google Scholar 

  137. Michalets EL, Williams CR. Drag interactions with cisapride. Clin Pharmacokinet 2000; 39(1): 49–75

    Article  PubMed  CAS  Google Scholar 

  138. Lindenbaum J, Rund DG, Butler Jr VP, et al. Inactivation of digoxin by the gut flora: reversal by antibiotic therapy. N Engl J Med 1981; 305(14): 789–94

    Article  PubMed  CAS  Google Scholar 

  139. Friedman HS, Bonventre MV. Erythromycin-induced digoxin toxicity [letter]. Chest 1982; 82(2): 202

    Article  PubMed  CAS  Google Scholar 

  140. Sutton A, Pilot MA. Digoxin toxicity and erythromycin [letter]. BMJ 1989; 298(6680): 1101

    Article  PubMed  CAS  Google Scholar 

  141. Morton MR, Cooper JW. Erythromycin-induced digoxin toxicity. Drug Intell Clin Pharm 1989; 23(9): 668–70

    CAS  Google Scholar 

  142. Maxwell DL, Gilmour-White SK, Hall MR. Digoxin toxicity due to interaction of digoxin with erythromycin. BMJ 1989; 298(6673): 572

    Article  PubMed  CAS  Google Scholar 

  143. Bizjak ED, Mauro VF. Digoxin-macrolide drug interaction. Ann Pharmacother 1997; 31(9): 1077–9

    PubMed  CAS  Google Scholar 

  144. Francis H, Tyndall A, Webb J. Severe vascular spasm due to erythromycin-ergotamine interaction. Clin Rheumatol 1984; 3(2): 243–6

    Article  PubMed  CAS  Google Scholar 

  145. Leroy F, Asseman P, Pravost P, et al. Dihydroergotamine-erythromycin-induced ergotism. Ann Intern Med 1988; 109(3): 249

    PubMed  CAS  Google Scholar 

  146. Ghali R, De Lean J, Douville Y, et al. Erythromycin-associated ergotamine intoxication: arteriographic and electrophysiologic analysis of a rare cause of severe ischemia of the lower extremities and associated ischemic neuropathy. Ann Vasc Surg 1993; 7(3): 291–6

    Article  PubMed  CAS  Google Scholar 

  147. Karam B, Farah E, Ashoush R, et al. Ergotism precipitated by erythromycin: a rare case of vasospasm. Eur J Vasc Endovasc Surg 2000; 19(1): 96–8

    Article  PubMed  CAS  Google Scholar 

  148. Spinier SA, Cheng JW, Kindwall KE, et al. Possible inhibition of hepatic metabolism of quinidine by erythromycin. Clin Pharmacol Ther 1995; 57(1): 89–94

    Article  Google Scholar 

  149. Lin JC, Quasny HA. QT prolongation and development of torsades de pointes with the concomitant administration of oral erythromycin base and quinidine. Pharmacotherapy 1997; 17(3): 626–30

    PubMed  CAS  Google Scholar 

  150. Amsden GW, Cheng KL, Peloquin CA, et al. Oral cimetidine prolongs clarithromycin absorption. Antimicrob Agents Chemother 1998; 42(7): 1578–80

    PubMed  CAS  Google Scholar 

  151. Paar D, Terjung B, Sauerbrach T. Life-threatening interaction between clarithromycin and disopyramide [letter]. Lancet 1997; 349(9048): 326–7

    Article  PubMed  CAS  Google Scholar 

  152. Horowitz RS, Dart RC, Gomez HE Clinical ergotism with lingual ischemia induced by clarithromycin-ergotamine interaction. Arch Intern Med 1996; 156(4): 456–8

    Article  PubMed  CAS  Google Scholar 

  153. Borachoff SE, Sturgill MG, Grasing KW, et al. The steady-state disposition of indinavir is not altered by the concomitant administration of clarithromycin. Clin Pharmacol Ther 2000; 67(4): 351–9

    Article  Google Scholar 

  154. Ouellet D, Hsu A, Granneman GR, et al. Pharmacokinetic interaction between ritonavir and clarithromycin. Clin Pharmacol Ther 1998; 64(4): 355–62

    Article  PubMed  CAS  Google Scholar 

  155. Apseloff G, Foulds G, LaBoy-Goral L, et al. Comparison of azithromycin and clarithromycin in their interactions with rifabutin in healthy volunteers. J Clin Pharmacol 1998; 38(9): 830–5

    PubMed  CAS  Google Scholar 

  156. Fost DA, Leung DY, Martin RJ, et al. Inhibition of methylprednisolone elimination in the presence of clarithromycin therapy. J Allergy Clin Immunol 1999; 103(6): 1031–5

    Article  PubMed  CAS  Google Scholar 

  157. Guillemet C, Alt M, Arpin-Bott MP, et al. Clarithromycin-digoxin: an unrecognized interaction in some patients [letter, in French]. Presse Med 1997; 26(11): 512

    PubMed  CAS  Google Scholar 

  158. Laberge P, Martineau P. Clarithromycin-induced digoxin intoxication. Ann Pharmacother 1997; 31(9): 999–1002

    PubMed  CAS  Google Scholar 

  159. Brown BA, Wallace Jr RJ, Griffith DE, et al. Clarithromycinassociated digoxin toxicity in the elderly. Clin Infect Dis 1997; 24(1): 92–3

    Article  PubMed  CAS  Google Scholar 

  160. Nawarskas JJ, McCarthy DM, Spinler SA. Digoxin toxicity secondary to clarithromycin therapy. Ann Pharmacother 1997; 31(7-8): 864–6

    PubMed  CAS  Google Scholar 

  161. Guerriero SE, Ehrenpreis E, Gallagher KL. Two cases of clarithromycin-induced digoxin toxicity. Pharmacotherapy 1997; 17(5): 1035–7

    PubMed  CAS  Google Scholar 

  162. Juurlink DN, Ito S. Comment: clarithromycin-digoxin interaction [letter]. Ann Pharmacother 1999; 33(12): 1375–6

    Article  PubMed  CAS  Google Scholar 

  163. Thalhammer F, Hollenstein UM, Locker GJ, et al. Azithromycin-related toxic effects of digitoxin [letter]. Br J Clin Pharmacol 1998; 45(1): 91–2

    Article  PubMed  CAS  Google Scholar 

  164. Eick APT, Sallee D, Preminger T, et al. Possible drag interaction between digoxin and azithromycin in a young child. Clin Drag Invest 2000; 20(1): 61–4

    Article  Google Scholar 

  165. Sekkarie MA. Torsades de pointes in two chronic renal failure patients treated with cisapride and clarithromycin. Am J Kidney Dis 1997; 30(3): 437–9

    Article  PubMed  CAS  Google Scholar 

  166. Gray VS. Syncopal episodes associated with cisapride and concurrent drags. Ann Pharmacother 1998; 32(6): 648–51

    Article  PubMed  CAS  Google Scholar 

  167. Piquette RK. Torsade de pointes induced by cisapride/clarithromycin interaction. Ann Pharmacother 1999; 33(1): 22–6

    Article  PubMed  CAS  Google Scholar 

  168. Ragosta M, Weihl AC, Rosenfeld LE. Potentially fatal interaction between erythromycin and disopyramide. Am J Med 1989; 86(4): 465–6

    Article  PubMed  CAS  Google Scholar 

  169. Malaty LI, Kuper JJ. Drag interactions of HIV protease inhibitors. Drug Saf 1999; 20(2): 147–69

    Article  PubMed  CAS  Google Scholar 

  170. LaForce CF, Szefler SJ, Miller MF, et al. Inhibition of methylprednisolone elimination in the presence of erythromycin therapy. J Allergy Clin Immunol 1983; 72(1): 34–9

    Article  PubMed  CAS  Google Scholar 

  171. Szefler SJ, Rose JQ, Ellis EF, et al. The effect of troleandomycin on methylprednisolone elimination. J Allergy Clin Immunol 1980; 66(6): 447–51

    Article  PubMed  CAS  Google Scholar 

  172. Szefler SJ, Brenner M, Jusko WJ, et al. Dose- and time-related effect of troleandomycin on methylprednisolone elimination. Clin Pharmacol Ther 1982; 32(2): 166–71

    Article  PubMed  CAS  Google Scholar 

  173. Trivedi S, Hyman J, Lichstein E. Clarithromycin and digoxin toxicity [letter]. Ann Intern Med 1998; 128(7): 604

    PubMed  CAS  Google Scholar 

  174. Nordt SP, Williams SR, Manoguerra AS, et al. Clarithromycin induced digoxin toxicity. J Accident Emerg Med 1998; 15(3): 194–5

    Article  CAS  Google Scholar 

  175. Gooderham MJ, Bolli P, Fernandez PG. Concomitant digoxin toxicity and warfarin interaction in a patient receiving clarithromycin. Ann Pharmacother 1999; 33(7–8): 796–9

    Article  PubMed  CAS  Google Scholar 

  176. Nix DE, Watson WA, Lener ME, et al. Effects of aluminum and magnesium antacids and ranitidine on the absorption of ciprofloxacin. Clin Pharmacol Ther 1989; 46(6): 700–5

    Article  PubMed  CAS  Google Scholar 

  177. Parpia SH, Nix DE, Hejmanowski LG, et al. Sucralfate reduces the gastrointestinal absorption of norfloxacin. Antimicrob Agents Chemother 1989; 33(1): 99–102

    Article  PubMed  CAS  Google Scholar 

  178. Nix DE, Watson WA, Handy L, et al. The effect of sucralfate pretreatment on the pharmacokinetics of ciprofloxacin. Phar-macotherapy 1989; 9(6): 377–80

    CAS  Google Scholar 

  179. Radandt JM, Marchbanks CR, Dudley MN. Interactions of fluoroquinolones with other drugs: mechanisms, variability, clinical significance, and management. Clin Infect Dis 1992; 14(1): 272–84

    Article  PubMed  CAS  Google Scholar 

  180. Fuhr U, Anders EM, Mahr G, et al. Inhibitory potency of quinolone antibacterial agents against cytochrome P450IA2 activity in vivo and in vitro. Antimicrob Agents Chemother 1992; 36(5): 942–8

    Article  PubMed  CAS  Google Scholar 

  181. McLellan RA, Drobitch RK, Monshouwer M, et al. Fluoroquinolone antibiotics inhibit cytochrome P450-medi-ated microsomal drug metabolism in rat and human. Drug Metab Dispos 1996; 24(10): 1134–8

    PubMed  CAS  Google Scholar 

  182. Fuhr U, Strobl G, Manaut F, et al. Quinolone antibacterial agents: relationship between structure and in vitro inhibition of the human cytochrome P450 isoform CYP1A2. Mol Pharmacol 1993; 43(2): 191–9

    PubMed  CAS  Google Scholar 

  183. Mizuki Y, Fujiwara I, Yamaguchi T. Pharmacokinetic interactions related to the chemical structures of fluoroquinolones. J Antimicrob Chemother 1996; 37 Suppl. A: 41–55

    Article  PubMed  CAS  Google Scholar 

  184. Mizuki Y, Yamamoto K, Yamaguchi T, et al. Intermolecular interactions of antimicrobial fluoroquinolones with purified rat liver CYP1A2 studied by proton nuclear magnetic resonance spectroscopy. Xenobiotica 1996; 26(10): 1057–66

    Article  PubMed  CAS  Google Scholar 

  185. Wijnands WJ, Vree TB, van Herwaarden CL. The influence of quinolone derivatives on theophylline clearance. Br J Clin Pharmacol 1986; 22(6): 677–83

    Article  PubMed  CAS  Google Scholar 

  186. Kinzig-Schippers M, Fuhr U, Zaigler M, et al. Interaction of pefloxacin and enoxacin with the human cytochrome P450 enzyme CYP1A2. Clin Pharmacol Ther 1999; 65(3): 262–74

    Article  PubMed  CAS  Google Scholar 

  187. Brouwers JR. Drug interactions with quinolone antibacterials. Drug Saf 1992; 7(4): 268–81

    Article  PubMed  CAS  Google Scholar 

  188. Tryba M. Stress bleeding prophylaxis with sucralfate. Pathophysiologic basis and clinical use. Scand J Gastroenterol 1990; 173 (Suppl.): 22–33

    Article  CAS  Google Scholar 

  189. Yuk JH, Nightingale CN, Quintiliani R. Ciprofloxacin levels when receiving sucralfate [letter]. JAMA 1989; 262(7): 901

    Article  PubMed  CAS  Google Scholar 

  190. Garrelts JC, Godley PJ, Peterie JD, et al. Sucralfate significantly reduces ciprofloxacin concentrations in serum. Antimicrob Agents Chemother 1990; 34(5): 931–3

    Article  PubMed  CAS  Google Scholar 

  191. Kawakami J, Matsuse T, Kotaki H, et al. The effect of food on the interaction of ofloxacin with sucralfate in healthy volunteers. Eur J Clin Pharmacol 1994; 47(1): 67–9

    Article  PubMed  CAS  Google Scholar 

  192. Lehto P, Kivisto KT. Effect of sucralfate on absorption of norfloxacin and ofloxacin. Antimicrob Agents Chemother 1994; 38(2): 248–51

    Article  PubMed  CAS  Google Scholar 

  193. Lee LJ, Hafkin B, Lee ID, et al. Effects of food and sucralfate on a single oral dose of 500 milligrams of levofloxacin in healthy subjects. Antimicrob Agents Chemother 1997; 41(10): 2196–200

    PubMed  CAS  Google Scholar 

  194. Allen A, Bygate E, Faessel H, et al. The effect of ferrous sulphate and sucralfate on the bioavailability of oral gemifloxacin in healthy volunteers. Int J Antimicrob Agents 2000; 15(4): 283–9

    Article  PubMed  CAS  Google Scholar 

  195. McLellan RA, Drobitch RK, McLellan H, et al. Norfloxacin interferes with cyclosporine disposition in pediatric patients undergoing renal transplantation. Clin Pharmacol Ther 1995; 58(3): 322–7

    Article  PubMed  CAS  Google Scholar 

  196. Van Buren DH, Koestner J, Adedoyin A, et al. Effect of ciprofloxacin on cyclosporine pharmacokinetics. Transplantation 1990; 50(5): 888–9

    PubMed  Google Scholar 

  197. Lang J, Finaz de Villaine J, Garraffo R, et al. Cyclosporine (cyclosporin A) pharmacokinetics in renal transplant patients receiving ciprofloxacin. Am J Med 1989; 87(5A): 82S–5S

    Article  PubMed  CAS  Google Scholar 

  198. Kruger HU, Schuler U, Proksch B, et al. Investigation of potential interaction of ciprofloxacin with cyclosporine in bone marrow transplant recipients. Antimicrob Agents Chemother 1990; 34(6): 1048–52

    Article  PubMed  CAS  Google Scholar 

  199. Hoey LL, Lake KD. Does ciprofloxacin interact with cyclosporine? Ann Pharmacother 1994; 28(1): 93–6

    PubMed  CAS  Google Scholar 

  200. Doose DR, Walker SA, Chien SC, et al. Levofloxacin does not alter cyclosporine disposition. J Clin Pharmacol 1998; 38(1): 90–3

    PubMed  CAS  Google Scholar 

  201. Nix DE, DeVito JM, Whitbread MA, et al. Effect of multiple dose oral ciprofloxacin on the pharmacokinetics of theophylline and indocyanine green. J Antimicrob Chemother 1987; 19(2): 263–9

    Article  PubMed  CAS  Google Scholar 

  202. Thomson AH, Thomson GD, Hepburn M, et al. A clinically significant interaction between ciprofloxacin and theophylline. Eur J Clin Pharmacol 1987; 33(4): 435–6

    Article  PubMed  CAS  Google Scholar 

  203. Raoof S, Wollschlager C, Khan FA. Ciprofloxacin increases serum levels of theophylline. Am J Med 1987; 82(4A): 115–8

    PubMed  CAS  Google Scholar 

  204. Rybak MJ, Bowles SK, Chandrasekar PH, et al. Increased theophylline concentrations secondary to ciprofloxacin. Drug Intell Clin Pharm 1987; 21(11): 879–81

    PubMed  CAS  Google Scholar 

  205. Wijnands WJ, Vree TB, Baars AM, et al. Steady-state kinetics of the quinolone derivatives ofloxacin, enoxacin, ciprofloxacin and pefloxacin during maintenance treatment with theophylline. Drugs 1987; 34 Suppl. 1: 159–69

    Article  PubMed  CAS  Google Scholar 

  206. Wijnands WJ, Vree TB, Baars AM, et al. The influence of the 4-quinolones ciprofloxacin, pefloxacin and ofloxacin on the elimination of theophylline. Pharm Weekbl Sci 1987; 9 (Suppl.): S72–5

    Article  PubMed  Google Scholar 

  207. Schwartz J, Jauregui L, Lettieri J, et al. Impact of ciprofloxacin on theophylline clearance and steady-state concentrations in serum. Antimicrob Agents Chemother 1988; 32(1): 75–7

    Article  PubMed  CAS  Google Scholar 

  208. Bern JL, Mann RD. Danger of interaction between ciprofloxacin and theophylline. BMJ Clin Res Ed 1988; 296(6629): 1131

    Google Scholar 

  209. Paidipaty B, Erickson S. Ciprofloxacin-theophylline drug interaction [letter]. Crit Care Med 1990; 18(6): 685–6

    PubMed  CAS  Google Scholar 

  210. Spivey JM, Laughlin PH, Goss TF, et al. Theophylline toxicity secondary to ciprofloxacin administration. Ann Emerg Med 1991; 20(10): 1131–4

    Article  PubMed  CAS  Google Scholar 

  211. Karki SD, Bentley DW, Raghavan M. Seizure with ciprofloxacin and theophylline combined therapy. Drug Intell Clin Pharm 1990; 24(6): 595–6

    CAS  Google Scholar 

  212. Grasela Jr TH, Dreis MW. An evaluation of the quinolone-theophylline interaction using the Food and Drug Administration spontaneous reporting system. Arch Intern Med 1992; 152(3): 617–21

    Article  PubMed  Google Scholar 

  213. Loi CM, Parker BM, Cusack BJ, et al. Individual and combined effects of cimetidine and ciprofloxacin on theophylline metabolism in male nonsmokers. Br J Clin Pharmacol 1993; 36(3): 195–200

    Article  PubMed  CAS  Google Scholar 

  214. Rockwood RP, Embardo LS. Theophylline, ciprofloxacin, erythromycin: a potentially harmful regimen [letter]. Ann Pharmacother 1993; 27(5): 651–2

    PubMed  CAS  Google Scholar 

  215. Batty KT, Davis TM, Ilett KF, et al. The effect of ciprofloxacin on theophylline pharmacokinetics in healthy subjects. Br J Clin Pharmacol 1995; 39(3): 305–11

    Article  PubMed  CAS  Google Scholar 

  216. Robson RA, Begg EJ, Atkinson HC, et al. Comparative effects of ciprofloxacin and lomefloxacin on the oxidative metabolism of theophylline. Br J Clin Pharmacol 1990; 29(4): 491–3

    Article  PubMed  CAS  Google Scholar 

  217. Landi MT, Sinha R, Lang NP, et al. Human cytochrome P4501A2. IARC Sci Publ 1999; (148): 173–95

    PubMed  CAS  Google Scholar 

  218. Ou-Yang DS, Huang SL, Wang W, et al. Phenotypic polymorphism and gender-related differences of CYP1A2 activity in a Chinese population. Br J Clin Pharmacol 2000; 49(2): 145–51

    Article  PubMed  CAS  Google Scholar 

  219. Ilett KF, Castleden WM, Vandongen YK, et al. Acetylation phenotype and cytochrome P450IA2 phenotype are unlikely to be associated with peripheral arterial disease. Clin Pharmacol Ther 1993; 54(3): 317–22

    Article  PubMed  CAS  Google Scholar 

  220. Catteau A, Bechtel YC, Poisson N, et al. A population and family study of CYP1A2 using caffeine urinary metabolites. Eur J Clin Pharmacol 1995; 47(5): 423–30

    Article  PubMed  CAS  Google Scholar 

  221. Welfare MR, Aitkin M, Bassendine MF, et al. Detailed modelling of caffeine metabolism and examination of the CYP1A2 gene: lack of a polymorphism in CYP1A2 in Caucasians. Pharmacogenetics 1999; 9(3): 367–75

    Article  PubMed  CAS  Google Scholar 

  222. Parent M, LeBel M. Meta-analysis of quinolone-theophylline interactions. Drug Intell Clin Pharm 1991; 25(2): 191–4

    CAS  Google Scholar 

  223. Rogge MC, Solomon WR, Sedman AJ, et al. The theophyllineenoxacin interaction: II. Changes in the disposition of theophylline and its metabolites during intermittent administration of enoxacin. Clin Pharmacol Ther 1989; 46(4): 420–8

    Article  PubMed  CAS  Google Scholar 

  224. Koup JR, Toothaker RD, Posvar E, et al. Theophylline dosage adjustment during enoxacin coadministration. Antimicrob Agents Chemother 1990; 34(5): 803–7

    Article  PubMed  CAS  Google Scholar 

  225. Sorgel F, Mahr G, Granneman GR, et al. Effects of 2 quinolone antibacterials, temafloxacin and enoxacin, on theophylline pharmacokinetics. Clin Pharmacokinet 1992; 22 Suppl. 1: 65–74

    Article  PubMed  Google Scholar 

  226. Ho G, Tierney MG, Dales RE. Evaluation of the effect of norfloxacin on the pharmacokinetics of theophylline. Clin Pharmacol Ther 1988; 44(1): 35–8

    Article  PubMed  CAS  Google Scholar 

  227. Gisclon LG, Curtin CR, Fowler CL, et al. Absence of a pharmacokinetic interaction between intravenous theophylline and orally administered levofloxacin. J Clin Pharmacol 1997; 37(8): 744–50

    PubMed  CAS  Google Scholar 

  228. Kinzig-Schippers M, Fuhr U, Cesana M, et al. Absence of effect of rufloxacin on theophylline pharmacokinetics in steady state. Antimicrob Agents Chemother 1998; 42(9): 2359–64

    PubMed  CAS  Google Scholar 

  229. Davy M, Allen A, Bird N, et al. Lack of effect of gemifloxacin on the steady-state pharmacokinetics of theophylline in healthy volunteers. Chemotherapy 1999; 45(6): 478–84

    Article  PubMed  CAS  Google Scholar 

  230. Mott FE, Murphy S, Hunt V. Ciprofloxacin and warfarin [letter]. Ann Intern Med 1989; 111(6): 542–3

    PubMed  CAS  Google Scholar 

  231. Kamada AK. Possible interaction between ciprofloxacin and warfarin. Drug Intell Clin Pharm 1990; 24(1): 27–8

    CAS  Google Scholar 

  232. Renzi R, Finkbeiner S. Ciprofloxacin interaction with sodium warfarin: a potentially dangerous side effect. Am J Emerg Med 1991; 9(6): 551–2

    Article  PubMed  CAS  Google Scholar 

  233. Rocci Jr ML, Vlasses PH, Distlerath LM, et al. Norfloxacin does not alter warfarin’s disposition or anticoagulant effect. J Clin Pharmacol 1990; 30(8): 728–32

    PubMed  Google Scholar 

  234. Linville II D, Emory C, Graves III L. Ciprofloxacin and warfarin interaction [letter]. Am J Med 1991; 90(6): 765

    Article  PubMed  Google Scholar 

  235. Bianco TM, Bussey HI, Farnett LE, et al. Potential warfarinciprofloxacin interaction in patients receiving long-term anticoagulation. Pharmacotherapy 1992; 12(6): 435–9

    PubMed  CAS  Google Scholar 

  236. Israel DS, Stotka J, Rock W, et al. Effect of ciprofloxacin on the pharmacokinetics and pharmacodynamics of warfarin. Clin Infect Dis 1996; 22(2): 251–6

    Article  PubMed  CAS  Google Scholar 

  237. Ellis RJ, Mayo MS, Bodensteiner DM. Ciprofloxacin-warfarin coagulopathy: a case series. Am J Hematol 2000; 63(1): 28–31

    Article  PubMed  CAS  Google Scholar 

  238. Wijnands WJ, Vree TB, Van Herwaarden CL. Enoxacin decreases the clearance of theophylline in man. Br J Clin Pharmacol 1985; 20(6): 583–8

    Article  PubMed  CAS  Google Scholar 

  239. Rogge MC, Solomon WR, Sedman AJ, et al. The theophyllineenoxacin interaction: I. Effect of enoxacin dose size on theophylline disposition. Clin Pharmacol Ther 1988; 44(5): 579–87

    Article  PubMed  CAS  Google Scholar 

  240. Bowles SK, Popovski Z, Rybak MJ, et al. Effect of norfloxacin on theophylline pharmacokinetics at steady state. Antimicrob Agents Chemother 1988; 32(4): 510–2

    Article  PubMed  CAS  Google Scholar 

  241. Gang RK, Sanyal SC, Mokaddas E, et al. Rifampicin as an adjunct to vancomycin therapy in MRSA septicaemia in burns. Burns 1999; 25(7): 640–4

    Article  PubMed  CAS  Google Scholar 

  242. Wilkinson GR. Cytochrome P4503A (CYP3A) metabolism: prediction of in vivo activity in humans. J Pharmacokinet Biopharm 1996; 24(5): 475–90

    PubMed  CAS  Google Scholar 

  243. Li AP. Primary hepatocyte cultures as an in vitro experimental model for the evaluation of pharmacokinetic drug-drug interactions. Adv Pharmacol 1997; 43: 103–30

    Article  PubMed  CAS  Google Scholar 

  244. Kostrubsky VE, Ramachandran V, Venkataramanan R, et al. The use of human hepatocyte cultures to study the induction of cytochrome P-450. Drug Metab Dispos 1999; 27(8): 887–94

    PubMed  CAS  Google Scholar 

  245. Zhou HH, Anthony LB, Wood AJ, et al. Induction of polymorphic 4′-hydroxylation of 5-mephenytoin by rifampicin. Br J Clin Pharmacol 1990; 30(3): 471–5

    Article  PubMed  CAS  Google Scholar 

  246. Feng HJ, Huang SL, Wang W, et al. The induction effect of rifampicin on activity of mephenytoin 4′-hydroxylase related to Ml mutation of CYP2C19 and gene dose. Br J Clin Pharmacol 1998; 45(1): 27–9

    Article  PubMed  CAS  Google Scholar 

  247. Morel F, Beaune PH, Ratanasavanh D, et al. Expression of cytochrome P-450 enzymes in cultured human hepatocytes. Eur J Biochem 1990; 191(2): 437–44

    Article  PubMed  CAS  Google Scholar 

  248. Runge D, Kohler C, Kostrubsky VE, et al. Induction of cytochrome P450 (CYP)lAl, CYP1A2, and CYP3A4 but not of CYP2C9, CYP2C19, multidrug resistance (MDR-1) and multidrug resistance associated protein (MRP-1) by prototypical inducers in human hepatocytes. Biochem Biophys Res Commun 2000; 273(1): 333–41

    Article  PubMed  CAS  Google Scholar 

  249. Venkatesan K. Pharmacokinetic drug interactions with rifampicin. Clin Pharmacokinet 1992; 22(1): 47–65

    Article  PubMed  CAS  Google Scholar 

  250. Grange JM, Winstanley PA, Davies PD. Clinically significant drug interactions with antituberculosis agents. Drug Saf 1994; 11(4): 242–51

    Article  PubMed  CAS  Google Scholar 

  251. Strayhorn VA, Baciewicz AM, Self TH. Update on rifampin drug interactions, III. Arch Intern Med 1997; 157(21): 2453–8

    Article  PubMed  CAS  Google Scholar 

  252. Backman JT, Olkkola KT, Neuvonen PJ. Rifampin drastically reduces plasma concentrations and effects of oral midazolam. Clin Pharmacol Ther 1996; 59(1): 7–13

    Article  PubMed  CAS  Google Scholar 

  253. Villikka K, Kivisto KT, Backman JT, et al. Triazolam is ineffective in patients taking rifampin. Clin Pharmacol Ther 1997; 61(1): 8–14

    Article  PubMed  CAS  Google Scholar 

  254. Daniels NJ, Dover JS, Schachter RK. Interaction between cyclosporin and rifampicin [letter]. Lancet 1984; II(8403): 639

    Article  Google Scholar 

  255. Van Buren D, Wideman CA, Ried M, et al. The antagonistic effect of rifampin upon cyclosporine bioavailability. Transplant Proc 1984; 16(6): 1642–5

    PubMed  Google Scholar 

  256. Cassidy MJ, Van Zyl-Smit R, Pascoe MD, et al. Effect of rifampicin on cyclosporin A blood levels in a renal transplant recipient [letter]. Nephron 1985; 41(2): 207–8

    Article  PubMed  CAS  Google Scholar 

  257. Offermann G, Keller F, Molzahn M. Low cyclosporin A blood levels and acute graft rejection in a renal transplant recipient during rifampin treatment. Am J Nephrol 1985; 5(5): 385–7

    Article  PubMed  CAS  Google Scholar 

  258. Howard P, Bixler TJ, Gill B. Cyclosporine-rifampin drug interaction [letter]. Drug Intell Clin Pharm 1985; 19(10): 763–4

    PubMed  CAS  Google Scholar 

  259. Allen RD, Hunnisett AG, Morris PJ. Cyclosporin and rifampicin in renal transplantation [letter]. Lancet 1985; I(8435): 980

    Article  Google Scholar 

  260. Hebert MF, Roberts JP, Prueksaritanont T, et al. Bioavailability of cyclosporine with concomitant rifampin administration is markedly less than predicted by hepatic enzyme induction. Clin Pharmacol Ther 1992; 52(5): 453–7

    Article  PubMed  CAS  Google Scholar 

  261. Kolars JC, Schmiedlin-Ren P, Schuetz JD, et al. Identification of rifampin-inducible P450IIIA4 (CYP3A4) in human small bowel enterocytes. J Clin Invest 1992; 90(5): 1871–8

    Article  PubMed  CAS  Google Scholar 

  262. Kim YH, Yoon YR, Kim YW, et al. Effects of rifampin on cyclosporine disposition in kidney recipients with tuberculosis. Transplant Proc 1998; 30(7): 3570–2

    Article  PubMed  CAS  Google Scholar 

  263. Furlan V, Perello L, Jacquemin E, et al. Interactions between FK506 and rifampicin or erythromycin in pediatric liver recipients. Transplantation 1995; 59(8): 1217–8

    PubMed  CAS  Google Scholar 

  264. Furlan V, Parquin F, Penaud JF, et al. Interaction between tacrolimus and itraconazole in a heart-lung transplant recipient. Transplant Proc 1998; 30(1): 187–8

    Article  PubMed  CAS  Google Scholar 

  265. Chenhsu RY, Loong CC, Chou MH, et al. Renal allograft dysfunction associated with rifampin-tacrolimus interaction. Ann Pharmacother 2000; 34(1): 27–31

    Article  PubMed  CAS  Google Scholar 

  266. Hebert MF, Fisher RM, Marsh CL, et al. Effects of rifampin on tacrolimus pharmacokinetics in healthy volunteers. J Clin Pharmacol 1999; 39(1): 91–6

    Article  PubMed  CAS  Google Scholar 

  267. Lampen A, Christians U, Guengerich FP, et al. Metabolism of the immunosuppressant tacrolimus in the small intestine: cytochrome P450, drug interactions, and interindividual variability. Drug Metab Dispos 1995; 23(12): 1315–24

    PubMed  CAS  Google Scholar 

  268. Salphati L, Benet LZ. Modulation of P-glycoprotein expression by cytochrome P450 3A inducers in male and female rat livers. Biochem Pharmacol 1998; 55(4): 387–95

    Article  PubMed  CAS  Google Scholar 

  269. Barbarash RA. Verapamil-rifampin interaction. Drug Intell Clin Pharm 1985; 19(7-8): 559–60

    PubMed  CAS  Google Scholar 

  270. Barbarash RA, Bauman JL, Fischer JH, et al. Near-total reduction in verapamil bioavailability by rifampin. Electrocardiographic correlates. Chest 1988; 94(5): 954–9

    Article  PubMed  CAS  Google Scholar 

  271. Fromm MF, Busse D, Kroemer HK, et al. Differential induction of prehepatic and hepatic metabolism of verapamil by rifampin. Hepatology 1996; 24(4): 796–801

    Article  PubMed  CAS  Google Scholar 

  272. Tsuchihashi K, Fukami K, Kishimoto H, et al. A case of variant angina exacerbated by administration of rifampicin. Heart Vessels 1987; 3(4): 214–7

    Article  PubMed  CAS  Google Scholar 

  273. Tada Y, Tsuda Y, Otsuka T, et al. Case report: nifedipine-rifampicin interaction attenuates the effect on blood pressure in a patient with essential hypertension. Am J Med Sci 1992; 303(1): 25–7

    Article  PubMed  CAS  Google Scholar 

  274. Holtbecker N, Fromm MF, Kroemer HK, et al. The nifedipinerifampin interaction. Evidence for induction of gut wall metabolism. Drug Metab Dispos 1996; 24(10): 1121–3

    PubMed  CAS  Google Scholar 

  275. Lacarelle B, Rahmani R, de Sousa G, et al. Metabolism of digoxin, digoxigenin digitoxosides and digoxigenin in human hepatocytes and liver microsomes. Fundam Clin Pharmacol 1991; 5(7): 567–82

    Article  PubMed  CAS  Google Scholar 

  276. Dilger K, Greiner B, Fromm MF, et al. Consequences of rifampicin treatment on propafenone disposition in extensive and poor metabolizers of CYP2D6. Pharmacogenetics 1999; 9(5): 551–9

    Article  PubMed  CAS  Google Scholar 

  277. Dilger K, Hofmann U, Klotz U. Enzyme induction in the elderly: effect of rifampin on the pharmacokinetics and pharmacodynamics of propafenone. Clin Pharmacol Ther 2000; 67(5): 512–20

    Article  PubMed  CAS  Google Scholar 

  278. Damkier P, Hansen LL, Brosen K. Rifampicin treatment greatly increases the apparent oral clearance of quinidine. Pharmacol Toxicol 1999; 85(6): 257–62

    Article  PubMed  CAS  Google Scholar 

  279. Jaruratanasirikul S, Sriwiriyajan S. Effect of rifampicin on the pharmacokinetics of itraconazole in normal volunteers and AIDS patients. Eur J Clin Pharmacol 1998; 54(2): 155–8

    Article  PubMed  CAS  Google Scholar 

  280. Apseloff G, Hilligoss DM, Gardner MJ, et al. Induction of fluconazole metabolism by rifampin: in vivo study in humans. J Clin Pharmacol 1991; 31(4): 358–61

    PubMed  CAS  Google Scholar 

  281. Nicolau DP, Crowe HM, Nightingale CH, et al. Rifampinfluconazole interaction in critically ill patients. Ann Pharmacother 1995; 29(10): 994–6

    PubMed  CAS  Google Scholar 

  282. Wallace Jr RJ, Brown BA, Griffith DE, et al. Reduced serum levels of clarithromycin in patients treated with multidrug regimens including rifampin or rifabutin for Mycobacterium avium-M. intracellulare infection. J Infect Dis 1995; 171(3): 747–50

    Article  PubMed  Google Scholar 

  283. Gillum JG, Sesler JM, Bruzzese VL, et al. Induction of theophylline clearance by rifampin and rifabutin in healthy male volunteers. Antimicrob Agents Chemother 1996; 40(8): 1866–9

    PubMed  CAS  Google Scholar 

  284. Backman JT, Kivisto KT, Olkkola KT, et al. The area under the plasma concentration-time curve for oral midazolam is 400-fold larger during treatment with itraconazole than with rifampicin. Eur J Clin Pharmacol 1998; 54(1): 53–8

    Article  PubMed  CAS  Google Scholar 

  285. Ndanusa BU, Mustapha A, Abdu-Aguye I. The effect of single does of rifampicin on the pharmacokinetics of oral nifedipine. J Pharm Biomed Anal 1997; 15(9-10): 1571–5

    Article  PubMed  CAS  Google Scholar 

  286. Kunze KL, Wienkers LC, Thummel KE, et al. Warfarinfluconazole. I. Inhibition of the human cytochrome P450-dependent metabolism of warfarin by fluconazole: in vitro studies. Drug Metab Dispos 1996; 24(4): 414–21

    PubMed  CAS  Google Scholar 

  287. O’Reilly RA, Goulart DA, Kunze KL, et al. Mechanisms of the stereoselective interaction between miconazole and racemic warfarin in human subjects. Clin Pharmacol Ther 1992; 51(6): 656–67

    Article  PubMed  Google Scholar 

  288. Back DJ, Stevenson P, Tjia JF. Comparative effects of two antimycotic agents, ketoconazole and terbinafine on the metabolism of tolbutamide, ethinyloestradiol, cyclosporin and ethoxycoumarin by human liver microsomes in vitro. Br J Clin Pharmacol 1989; 28(2): 166–70

    Article  PubMed  CAS  Google Scholar 

  289. Wienkers LC, Wurden CJ, Storch E, et al. Formation of (R)-8-hydroxy warfarin in human liver microsomes. A new metabolic marker for the (S)-mephenytoin hydroxylase, P4502C19. Drug Metab Dispos 1996; 24(5): 610–4

    PubMed  CAS  Google Scholar 

  290. Hall SD, Guengerich FP, Branch RA, et al. Characterization and inhibition of mephenytoin 4-hydroxylase activity in human liver microsomes. J Pharmacol Exp Ther 1987; 240(1): 216–22

    PubMed  CAS  Google Scholar 

  291. Maurice M, Pichard L, Daujat M, et al. Effects of imidazole derivatives on cytochromes P450 from human hepatocytes in primary culture. FASEB J 1992; 6(2): 752–8

    PubMed  CAS  Google Scholar 

  292. von Moltke LL, Greenblatt DJ, Schmider J, et al. Midazolam hydroxylation by human liver microsomes in vitro: inhibition by fluoxetine, norfluoxetine, and by azole antifungal agents. J Clin Pharmacol 1996; 36(9): 783–91

    Google Scholar 

  293. Morita K, Konishi H, Shimakawa H. Fluconazole: a potent inhibitor of cytochrome P-450-dependent drug-metabolism in mice and humans in vivo. Comparative study with ketoconazole. Chem Pharm Bull Tokyo 1992; 40(5): 1247–51

    Article  PubMed  CAS  Google Scholar 

  294. Lomaestro BM, Piatek MA. Update on drug interactions with azole antifungal agents. Ann Pharmacother 1998; 32(9): 915–28

    Article  PubMed  CAS  Google Scholar 

  295. Albengres E, Le Louet H, Tillement JP. Systemic antifungal agents. Drug interactions of clinical significance. Drug Saf 1998; 18(2): 83–97

    Article  PubMed  CAS  Google Scholar 

  296. Strolin Benedetti M, Bani M. Metabolism-based drag interactions involving oral azole antifungals in humans. Drug Metab Rev 1999; 31(3): 665–717

    Article  PubMed  CAS  Google Scholar 

  297. Olkkola KT, Backman JT, Neuvonen PJ. Midazolam should be avoided in patients receiving the systemic antimycotics ketoconazole or itraconazole. Clin Pharmacol Ther 1994; 55(5): 481–5

    Article  PubMed  CAS  Google Scholar 

  298. Ahonen J, Olkkola KT, Neuvonen PJ. Effect of itraconazole and terbinafine on the pharmacokinetics and pharmacodynamics of midazolam in healthy volunteers. Br J Clin Pharmacol 1995; 40(3): 270–2

    PubMed  CAS  Google Scholar 

  299. Ahonen J, Olkkola KT, Neuvonen PJ. The effect of the antimycotic itraconazole on the pharmacokinetics and pharmacodynamics of diazepam. Fundam Clin Pharmacol 1996; 10(3): 314–8

    Article  PubMed  CAS  Google Scholar 

  300. Ahonen J, Olkkola KT, Neuvonen PJ. Effect of route of administration of fluconazole on the interaction between fluconazole and midazolam. Eur J Clin Pharmacol 1997; 51(5): 415–9

    Article  PubMed  CAS  Google Scholar 

  301. Vanakoski J, Mattila MJ, Vainio P, et al. 150 mg fluconazole does not substantially increase the effects of 10 mg midazolam or the plasma midazolam concentrations in healthy subjects. Int J Clin Pharmacol Ther 1995; 33(9): 518–23

    PubMed  CAS  Google Scholar 

  302. Olkkola KT, Ahonen J, Neuvonen PJ. The effects of the systemic antimycotics, itraconazole and fluconazole, on the pharmacokinetics and pharmacodynamics of intravenous and oral midazolam. Anesth Analg 1996; 82(3): 511–6

    PubMed  CAS  Google Scholar 

  303. Ahonen J, Olkkola KT, Takala A, et al. Interaction between fluconazole and midazolam in intensive care patients. Acta Anaesthesiol Scand 1999; 43(5): 509–14

    Article  PubMed  CAS  Google Scholar 

  304. Varhe A, Olkkola KT, Neuvonen PJ. Oral triazolam is potentially hazardous to patients receiving systemic antimycotics ketoconazole or itraconazole. Clin Pharmacol Ther 1994; 56(6): 601–7

    Article  PubMed  CAS  Google Scholar 

  305. Varhe A, Olkkola KT, Neuvonen PJ. Fluconazole, but not terbinafine, enhances the effects of triazolam by inhibiting its metabolism. Br J Clin Pharmacol 1996; 41(4): 319–23

    Article  PubMed  CAS  Google Scholar 

  306. Greenblatt DJ, Wright CE, von Moltke LL, et al. Ketoconazole inhibition of triazolam and alprazolam clearance: differential kinetic and dynamic consequences. Clin Pharmacol Ther 1998; 64(3): 237–47

    Article  PubMed  CAS  Google Scholar 

  307. Varhe A, Olkkola KT, Neuvonen PJ. Effect of fluconazole dose on the extent of fluconazole-triazolam interaction. Br J Clin Pharmacol 1996; 42(4): 465–70

    Article  PubMed  CAS  Google Scholar 

  308. Yasui N, Kondo T, Otani K, et al. Effect of itraconazole on the single oral dose pharmacokinetics and pharmacodynamics of alprazolam. Psychopharmacology (Berl) 1998; 139(3): 269–73

    Article  CAS  Google Scholar 

  309. Ahonen J, Olkkola KT, Neuvonen PJ. Lack of effect of antimycotic itraconazole on the pharmacokinetics or pharmacodynamics of temazepam. Ther Drag Monit 1996; 18(2): 124–7

    Article  CAS  Google Scholar 

  310. Albengres E, Tillement JP. Cyclosporin and ketoconazole, drag interaction or therapeutic association? Int J Clin Pharmacol Ther Toxicol 1992; 30(12): 555–70

    PubMed  CAS  Google Scholar 

  311. Gomez DY, Wacher VJ, Tomlanovich SJ, et al. The effects of ketoconazole on the intestinal metabolism and bioavailability of cyclosporine. Clin Pharmacol Ther 1995; 58(1): 15–9

    Article  PubMed  CAS  Google Scholar 

  312. First MR, Schroeder TJ, Weiskittel P, et al. Concomitant administration of cyclosporin and ketoconazole in renal transplant recipients. Lancet 1989; II(8673): 1198–201

    Article  Google Scholar 

  313. Butman SM, Wild JC, Nolan PE, et al. Prospective study of the safety and financial benefit of ketoconazole as adjunctive therapy to cyclosporine after heart transplantation. J Heart Lung Transplant 1991; 10(3): 351–8

    PubMed  CAS  Google Scholar 

  314. First MR, Schroeder TJ, Michael A, et al. Cyclosporine-ketoconazole interaction. Long-term follow-up and preliminary results of a randomized trial. Transplantation 1993; 55(5): 1000–4

    Article  PubMed  CAS  Google Scholar 

  315. Patton PR, Branson ME, Pfaff WW, et al. A preliminary report of diltiazem and ketoconazole. Their cyclosporine-sparing effect and impact on transplant outcome. Transplantation 1994; 57(6): 889–92

    Article  PubMed  CAS  Google Scholar 

  316. Keogh A, Spratt P, McCosker C, et al. Ketoconazole to reduce the need for cyclosporine after cardiac transplantation. N Engl J Med 1995; 333(10): 628–33

    Article  PubMed  CAS  Google Scholar 

  317. Odocha O, Kelly B, Trimble S, et al. Cost-containment strategies in transplantation: the utility of cyclosporine-ketoconazole combination therapy. Transplant Proc 1996; 28(2): 907–9

    PubMed  CAS  Google Scholar 

  318. Foradori A, Mezzano S, Videla C, et al. Modification of the pharmacokinetics of cyclosporine A and metabolites by the concomitant use of Neoral and diltiazem or ketoconazole in stable adult kidney transplants. Transplant Proc 1998; 30(5): 1685–7

    Article  PubMed  CAS  Google Scholar 

  319. Sugar AM, Saunders C, Idelson BA, et al. Interaction of fluconazole and cyclosporine [letter]. Ann Intern Med 1989; 110(10): 844

    PubMed  CAS  Google Scholar 

  320. Collignon P, Hurley B. Interaction between fluconazole and cyclosporin [letter]. Lancet 1989; II(8667): 867–8

    Article  Google Scholar 

  321. Kruger HU, Schuler U, Zimmermann R, et al. Absence of significant interaction of fluconazole with cyclosporin. J Antimicrob Chemother 1989; 24(5): 781–6

    Article  PubMed  CAS  Google Scholar 

  322. Lazar JD, Wilner KD. Drug interactions with fluconazole. Rev Infect Dis 1990; 12 Suppl. 3: S327–33

    Article  PubMed  CAS  Google Scholar 

  323. Torregrosa V, De la Torre M, Campistol JM, et al. Interaction of fluconazole with ciclosporin A [letter]. Nephron 1992; 60(1): 125–6

    Article  PubMed  CAS  Google Scholar 

  324. Lopez-Gil JA. Fluconazole-cyclosporine interaction: a dose-dependent effect? Ann Pharmacother 1993; 27(4): 427–30

    PubMed  CAS  Google Scholar 

  325. Canafax DM, Graves NM, Hilligoss DM, et al. Interaction between cyclosporine and fluconazole in renal allograft recipients. Transplantation 1991; 51(5): 1014–8

    Article  PubMed  CAS  Google Scholar 

  326. Kwan JT, Foxall PJ, Davidson DG, et al. Interaction of cyclosporin and itraconazole [letter]. Lancet 1987; II(8553): 282

    Article  Google Scholar 

  327. Trenk D, Brett W, Jahnchen E, et al. Time course of cyclosporin/itraconazole interaction [letter]. Lancet 1987; II(8571): 1335–6

    Article  Google Scholar 

  328. Kramer MR, Merin G, Rudis E, et al. Dose adjustment and cost of itraconazole prophylaxis in lung transplant recipients receiving cyclosporine and tacrolimus (FK 506). Transplant Proc 1997; 29(6): 2657–9

    Article  PubMed  CAS  Google Scholar 

  329. Kramer MR, Marshall SE, Denning DW, et al. Cyclosporine and itraconazole interaction in heart and lung transplant recipients. Ann Intern Med 1990; 113(4): 327–9

    PubMed  CAS  Google Scholar 

  330. Floren LC, Bekersky I, Benet LZ, et al. Tacrolimus oral bioavailability doubles with coadministration of ketoconazole. Clin Pharmacol Ther 1997; 62(1): 41–9

    Article  PubMed  CAS  Google Scholar 

  331. Assan R, Fredj G, Larger E, et al. FK 506/fluconazole interaction enhances FK 506 nephrotoxicity. Diabetes Metab 1994; 20(1): 49–52

    CAS  Google Scholar 

  332. Manez R, Martin M, Raman D, et al. Fluconazole therapy in transplant recipients receiving FK506. Transplantation 1994; 57(10): 1521–3

    PubMed  CAS  Google Scholar 

  333. Hairhara Y, Makuuchi M, Kawarasaki H, et al. Effect of fluconazole on blood levels of tacrolimus. Transplant Proc 1999; 31(7): 2767

    Article  PubMed  CAS  Google Scholar 

  334. Osowski CL, Dix SP, Lin LS, et al. Evaluation of the drag interaction between intravenous high-dose fluconazole and cyclosporine or tacrolimus in bone marrow transplant patients. Transplantation 1996; 61(8): 1268–72

    Article  PubMed  CAS  Google Scholar 

  335. Dhawan A, Tredger JM, North-Lewis PJ, et al. Tacrolimus (FK506) malabsorption: management with fluconazole coadministration. Transpl Int 1997; 10(4): 331–4

    Article  PubMed  CAS  Google Scholar 

  336. Billaud EM, Guillemain R, Tacco F, et al. Evidence for a pharmacokinetic interaction between itraconazole and tacrolimus in organ transplant patients [letter]. Br J Clin Pharmacol 1998; 46(3): 271–2

    PubMed  CAS  Google Scholar 

  337. Outeda Macias M, Salvador P, Hurtado JL, et al. Tacrolimusitraconazole interaction in a kidney transplant patient [letter]. Ann Pharmacother 2000; 34(4): 536

    Article  PubMed  CAS  Google Scholar 

  338. Ideura T, Muramatsu T, Higuchi M, et al. Tacrolimus/itraconazole interactions: a case report of ABO-incompatible livingrelated renal transplantation. Nephrol Dial Transplant 2000; 15(10): 1721–3

    Article  PubMed  CAS  Google Scholar 

  339. Palkama VJ, Isohanni MH, Neuvonen PJ, et al. The effect of intravenous and oral fluconazole on the pharmacokinetics and pharmacodynamics of intravenous alfentanil. Anesth Analg 1998; 87(1): 190–4

    PubMed  CAS  Google Scholar 

  340. Palkama VJ, Neuvonen PJ, Olkkola KT. The CYP 3A4 inhibitor itraconazole has no effect on the pharmacokinetics of i.V. fentanyl. Br J Anaesth 1998; 81(4): 598–600

    Article  PubMed  CAS  Google Scholar 

  341. Touchette MA, Chandrasekar PH, Milad MA, et al. Contrasting effects of fluconazole and ketoconazole on phenytoin and testosterone disposition in man. Br J Clin Pharmacol 1992; 34(1): 75–8

    Article  PubMed  CAS  Google Scholar 

  342. Ducharme MP, Slaughter RL, Warbasse LH, et al. Itraconazole and hydroxyitraconazole serum concentrations are reduced more than tenfold by phenytoin. Clin Pharmacol Ther 1995; 58(6): 617–24

    Article  PubMed  CAS  Google Scholar 

  343. Spina E, Arena D, Scordo MG, et al. Elevation of plasma carbamazepine concentrations by ketoconazole in patients with epilepsy. Ther Drug Monit 1997; 19(5): 535–8

    Article  PubMed  CAS  Google Scholar 

  344. Rex J. Itraconazole-digoxin interaction [letter]. Ann Intern Med 1992; 116(6): 525

    PubMed  CAS  Google Scholar 

  345. Kauffman CA, Bagnasco FA. Digoxin toxicity associated with itraconazole therapy [letter]. Clin Infect Dis 1992; 15(5): 886–7

    Article  PubMed  CAS  Google Scholar 

  346. Alderman CP, Jersmann HP. Digoxin-itraconazole interaction [letter]. Med J Aust 1993; 159(11-12): 838–9

    PubMed  CAS  Google Scholar 

  347. Sachs MK, Blanchard LM, Green PJ. Interaction of itraconazole and digoxin. Clin Infect Dis 1993; 16(3): 400–3

    Article  PubMed  CAS  Google Scholar 

  348. McClean KL, Sheehan GJ. Interaction between itraconazole and digoxin [letter]. Clin Infect Dis 1994; 18(2): 259–60

    Article  PubMed  CAS  Google Scholar 

  349. Cone LA, Himelman RB, Hirschberg JN, et al. Itraconazole-related amaurosis and vomiting due to digoxin toxicity [letter]. West J Med 1996; 165(5): 322

    PubMed  CAS  Google Scholar 

  350. Jalava KM, Partanen J, Neuvonen PJ. Itraconazole decreases renal clearance of digoxin. Ther Drug Monit 1997; 19(6): 609–13

    Article  PubMed  CAS  Google Scholar 

  351. Partanen J, Jalava KM, Neuvonen PJ. Itraconazole increases serum digoxin concentration. Pharmacol Toxicol 1996; 79(5): 274–6

    Article  PubMed  CAS  Google Scholar 

  352. Woodland C, Ito S, Koren G. A model for the prediction of digoxin-drug interactions at the renal tubular cell level. Ther Drug Monit 1998; 20(2): 134–8

    Article  PubMed  CAS  Google Scholar 

  353. Seaton TL, Celum CL, Black DJ. Possible potentiation of warfarin by fluconazole. Drug Intell Clin Pharm 1990; 24(12): 1177–8

    CAS  Google Scholar 

  354. Black DJ, Kunze KL, Wienkers LC, et al. Warfarin-fluconazole. II. A metabolically based drug interaction: in vivo studies. Drug Metab Dispos 1996; 24(4): 422–8

    PubMed  CAS  Google Scholar 

  355. Jalava KM, Olkkola KT, Neuvonen PJ. Itraconazole greatly increases plasma concentrations and effects of felodipine. Clin Pharmacol Ther 1997; 61(4): 410–5

    Article  PubMed  CAS  Google Scholar 

  356. Kaukonen KM, Olkkola KT, Neuvonen PJ. Itraconazole increases plasma concentrations of quinidine. Clin Pharmacol Ther 1997; 62(5): 510–7

    Article  PubMed  CAS  Google Scholar 

  357. Kremens B, Brendel E, Bald M, et al. Loss of blood pressure control on withdrawal of fluconazole during nifedipine therapy [letter]. Br J Clin Pharmacol 1999; 47(6): 707–8

    PubMed  CAS  Google Scholar 

  358. Tailor SA, Gupta AK, Walker SE, et al. Peripheral edema due to nifedipine-itraconazole interaction: a case report [letter]. Arch Dermatol 1996; 132(3): 350–2

    Article  PubMed  CAS  Google Scholar 

  359. Heusner JJ, Dukes GE, Rollins DE, et al. Effect of chronically administered ketoconazole on the elimination of theophylline in man. Drug Intell Clin Pharm 1987; 21(6): 514–7

    PubMed  CAS  Google Scholar 

  360. Blum RA, Wilton JH, Hilligoss DM, et al. Effect of fluconazole on the disposition of phenytoin. Clin Pharmacol Ther 1991; 49(4): 420–5

    Article  PubMed  CAS  Google Scholar 

  361. Luscombe DK, Nicholls PJ. Possible interaction between cephacetrile and frusemide in rabbits and rats. J Antimicrob Chemother 1975; 1(1): 67–77

    Article  PubMed  CAS  Google Scholar 

  362. Norrby R, Stenqvist K, Elgefors B. Interaction between cephaloridine and furosemide in man. Scand J Infect Dis 1976; 8(3): 209–12

    PubMed  CAS  Google Scholar 

  363. Tilstone WJ, Semple PF, Lawson DH, et al. Effects of furosemide on glomerular filtration rate and clearance of practolol, digoxin, cephaloridine, and gentamicin. Clin Pharmacol Ther 1977; 22(4): 389–94

    PubMed  CAS  Google Scholar 

  364. Trollfors B, Norrby R. Effect of frusemide on the elimination of cefuroxime and cefoxitin [letter]. J Antimicrob Chemother 1980; 6(3): 405–7

    Article  PubMed  CAS  Google Scholar 

  365. Morgant C, Contrepois A, Chau NP, et al. Effects of furosemide, piretanide, and water loading on urinary excretion of cefazolin in humans. Antimicrob Agents Chemother 1984; 25(5): 618–21

    Article  PubMed  CAS  Google Scholar 

  366. Korn A, Eichler HG, Gasic S. A drug interaction study of ceftriaxone and frusemide in healthy volunteers. Int J Clin Pharmacol Ther Toxicol 1986; 24(5): 262–4

    PubMed  CAS  Google Scholar 

  367. Carbon C, Contrepois A, Vigneron AM, et al. Effects of furosemide on extravascular diffusion, protein binding and urinary excretion of cephalosporins and aminoglycosides in rabbits. J Pharmacol Exp Ther 1980; 213(3): 600–6

    PubMed  CAS  Google Scholar 

  368. Chrysos G, Gargalianos P, Lelekis M, et al. Pharmacokinetic interactions of ceftazidime and frusemide. J Chemother 1995; 7 Suppl. 4: 107–10

    PubMed  Google Scholar 

  369. Gyselynck AM, Forrey A, Cutler R. Pharmacokinetics of gentamicin: distribution and plasma and renal clearance. J Infect Dis 1971; Suppl. 124: 70–6

    Article  Google Scholar 

  370. Whiting PH, Barber HE, Petersen J. The effect of frusemide and piretanide on the renal clearance of gentamicin in man. Br J Clin Pharmacol 1981; 12(6): 795–9

    Article  PubMed  CAS  Google Scholar 

  371. Carbon C, Dromer F, Brion N, et al. Renal disposition of ceftazidime illustrated by interferences by probenecid, furosemide, and indomethacin in rabbits. Antimicrob Agents Chemother 1984; 26(3): 373–7

    Article  PubMed  CAS  Google Scholar 

  372. Lawson DH, Tilstone WJ, Gray JM, et al. Effect of furosemide on the pharmacokinetics of gentamicin in patients. J Clin Pharmacol 1982; 22(5-6): 254–8

    PubMed  CAS  Google Scholar 

  373. Pea F, Porreca L, Baraldo M, et al. High vancomycin dosage regimens required by intensive care unit patients cotreated with drugs to improve haemodynamics following cardiac surgical procedures. J Antimicrob Chemother 2000; 45(3): 329–35

    Article  PubMed  CAS  Google Scholar 

  374. Nivoche Y, Contrepois A, Cremieux AC, et al. Vancomycin in rabbits: pharmacokinetics, extravascular diffusion, renal excretion and interactions with furosemide. J Pharmacol Exp Ther 1982; 222(1): 237–40

    PubMed  CAS  Google Scholar 

  375. Reeves DS, MacGowan AP. Once-daily aminoglycoside dosing [letter]. Lancet 1993; 341(8849): 895–6

    PubMed  CAS  Google Scholar 

  376. MacGowan AP. Pharmacodynamics, pharmacokinetics, and therapeutic drug monitoring of glycopeptides. Ther Drug Monit 1998; 20(5): 473–7

    Article  PubMed  CAS  Google Scholar 

  377. Begg EJ, Barclay ML, Kirkpatrick CJ. The therapeutic monitoring of antimicrobial agents. Br J Clin Pharmacol 1999; 47(1): 23–30

    Article  PubMed  CAS  Google Scholar 

  378. Triggs E, Charles B. Pharmacokinetics and therapeutic drug monitoring of gentamicin in the elderly. Clin Pharmacokinet 1999; 37(4): 331–41

    Article  PubMed  CAS  Google Scholar 

  379. MacGowan AP, White LO, Brown NM, et al. Serum ciprofloxacin concentrations in patients with severe sepsis being treated with ciprofloxacin 200 mg i.V. bd irrespective of renal function. J Antimicrob Chemother 1994; 33(5): 1051–4

    Article  PubMed  CAS  Google Scholar 

  380. Mimoz O, Binter V, Jacolot A, et al. Pharmacokinetics and absolute bioavailability of ciprofloxacin administered through a nasogastric tube with continuous enterai feeding to critically ill patients. Intensive Care Med 1998; 24(10): 1047–51

    Article  PubMed  CAS  Google Scholar 

  381. Pea F, Milaneschi R, Baraldo M, et al. Ciprofloxacin disposition in elderly patients with LRTI being treated with sequential therapy (200 mg intravenously twice daily followed by 500 mg per os twice daily): comparative pharmacokinetics and the role of therapeutic drug monitoring. Ther Drug Monit 2000; 22(4): 386–91

    Article  PubMed  CAS  Google Scholar 

  382. Reeves DS, MacGowan AP, Holt HA, et al. Therapeutic monitoring of antimicrobials: a summary of the information presented at the UK NEQAS for antibiotic assays meeting for participants, October 1993. J Antimicrob Chemother 1995; 35(1): 213–26

    Article  PubMed  CAS  Google Scholar 

  383. Summers KK, Hardin TC, Gore SJ, et al. Therapeutic drug monitoring of systemic antifungal therapy. J Antimicrob Chemother 1997; 40(6): 753–64

    Article  PubMed  CAS  Google Scholar 

  384. Burton ME, Gentle DL, Vasko MR. Evaluation of a Bayesian method for predicting vancomycin dosing. Drug Intell Clin Pharm 1989; 23(4): 294–300

    CAS  Google Scholar 

  385. Rodvold KA, Pryka RD, Garrison M, et al. Evaluation of a two-compartment Bayesian forecasting program for predicting vancomycin concentrations. Ther Drug Monit 1989; 11(3): 269–75

    Article  PubMed  CAS  Google Scholar 

  386. Hurst AK, Yoshinaga MA, Mitani GH, et al. Application of a Bayesian method to monitor and adjust vancomycin dosage regimens. Antimicrob Agents Chemother 1990; 34(6): 1165–71

    Article  PubMed  CAS  Google Scholar 

  387. Pryka RD, Rodvold KA, Erdman SM. An updated comparison of drug dosing methods. Part IV: vancomycin. Clin Pharmacokinet 1991; 20(6): 463–76

    Article  PubMed  CAS  Google Scholar 

  388. Erdman SM, Rodvold KA, Pryka RD. An updated comparison of drug dosing methods. Part III: aminoglycoside antibiotics. Clin Pharmacokinet 1991; 20(5): 374–88

    Article  PubMed  CAS  Google Scholar 

  389. Jelliffe RW, Iglesias T, Hurst AK, et al. Individualising gentamicin dosage regimens. A comparative review of selected models, data fitting methods and monitoring strategies. Clin Pharmacokinet 1991; 21(6): 461–78

    Article  PubMed  CAS  Google Scholar 

  390. Mohler JL, Barton SD, Blouin RA, et al. The evaluation of creatinine clearance in spinal cord injury patients. J Urol 1986; 136(2): 366–9

    PubMed  CAS  Google Scholar 

  391. Pea F, Furlanut M, Bianchi L. Systemic vancomycin overexposure in a patient with spinal cord injury who had staphylococcal sepsis and Clostridium difficile colitis [letter]. Ther Drug Monit 2000; 22(2): 233–4

    Article  PubMed  CAS  Google Scholar 

  392. Forrest A, Nix DE, Ballow CH, et al. Pharmacodynamics of intravenous ciprofloxacin in seriously ill patients. Antimicrob Agents Chemother 1993; 37(5): 1073–81

    Article  PubMed  CAS  Google Scholar 

  393. Schentag JJ. Clinical pharmacology of the fluoroquinolones: studies in human dynamic/kinetic models. Clin Infect Dis 2000; 31 Suppl. 2: S40–4

    Article  PubMed  CAS  Google Scholar 

  394. Craig WA. Interrelationship between pharmacokinetics and pharmacodynamics in determining dosage regimens for broad-spectrum cephalosporins. Diagn Microbiol Infect Dis 1995; 22(1-2): 89–96

    Article  PubMed  CAS  Google Scholar 

  395. Craig WA. Pharmacokinetic/pharmacodynamic parameters: rationale for antibacterial dosing of mice and men. Clin Infect Dis 1998; 26(1): 1–10

    Article  PubMed  CAS  Google Scholar 

  396. Cars O. Efficacy of beta-lactam antibiotics: integration of pharmacokinetics and pharmacodynamics. Diagn Microbiol Infect Dis 1997; 27(1-2): 29–33

    Article  PubMed  CAS  Google Scholar 

  397. Walson PD. Therapeutic drug monitoring in special populations. Clin Chem 1998; 44(2): 415–9

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Their was no conflict of interest in the preparation of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Federico Pea.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pea, F., Furlanut, M. Pharmacokinetic Aspects of Treating Infections in the Intensive Care Unit. Clin Pharmacokinet 40, 833–868 (2001). https://doi.org/10.2165/00003088-200140110-00004

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003088-200140110-00004

Keywords

Navigation