Skip to main content
Log in

Clinical Pharmacokinetics of Drugs Used to Treat Urge Incontinence

  • Review Article
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

Urge incontinence (also known as overactive bladder) is a common form of urinary incontinence, occurring alone or as a component of mixed urinary incontinence, frequently together with stress incontinence. Because of the pathophysiology of urge incontinence, anticholinergic/antispasmodic agents form the cornerstone of therapy. Unfortunately, the pharmacological activity of these agents is not limited to the urinary tract, leading to systemic adverse effects that often promote nonadherence. Although the pharmacokinetics of flavoxate, propantheline, scopolamine, imipramine/desipramine, trospium chloride and propiverine are also reviewed here, only for oxybutynin and tolterodine are there adequate efficacy/tolerability data to support their use in urge incontinence.

Oxybutynin is poorly absorbed orally (2–11% for the immediate-release tablet formulation). Controlled-release oral formulations significantly prolong the time to peak plasma concentration and reduce the degree of fluctuation around the average concentration. Significant absorption occurs after intravesical (bladder) and transdermal administration, although concentrations of the active.N-desethyl metabolite are lower after transdermal compared with oral administration, possibly improving tolerability. Food has been found to significantly affect the absorption of one of the controlled-release formulations of oxybutynin, enhancing the rate of drug release. Oxybutynin is extensively metabolised, principally via N-demethylation mediated by the cytochrome P450 (CYP) 3A isozyme.

The pharmacokinetics of tolterodine are dependent in large part on the pharmacogenomics of the CYP2D6 and 3A4 isozymes. In an unselected population, oral bioavailability of tolterodine ranges from 10% to 74% (mean 33%) whereas in CYP2D6 extensive metabolisers and poor metabolisers mean bioavailabilities are 26% and 91%, respectively. Tolterodine is metabolised via CYP2D6 to the active metabolite 5-hydroxymethyl-tolterodine and via CYP3A to N-dealkylated metabolites. Urinary excretion of parent compound plays a minor role in drug disposition. Drug effect is based upon the unbound concentration of the so-called ‘active moiety’ (sum of tolterodine + 5-hydroxymethyl-tolterodine). Terminal disposition half-lives of tolterodine and 5-hydroxymethyl-tolterodine (in CYP2D6 extensive metabolisers) are 2–3 and 3–4 hours, respectively. Coadministration of antacid essentially converts the extended-release formulation into an immediate-release formulation.

Knowledge of the pharmacokinetics of these agents may improve the treatment of urge incontinence by allowing the identification of individuals at high risk for toxicity with ‘usual’ dosages. In addition, the use of alternative formulations (controlled-release oral, transdermal) may also facilitate adherence, not only by reducing the frequency of drug administration but also by enhancing tolerability by altering the proportions of parent compound and active metabolite in the blood.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Table I
Table II
Table III
Table IV
Table V
Table VI

Similar content being viewed by others

Notes

  1. Use of tradenames is for product identification only and does not imply endorsement.

References

  1. Rovner ES, Wyman J, Lackner T, Guay DRP. Urinary incontinence. In: Dipiro JT, Talbert RL, Yee GC, Matzke GR, Wells BG, Posey LM, editors. Pharmacotherapy, a pathophysiologic approach. 5th ed. New York: McGraw Hill, 2002: 1543–56

    Google Scholar 

  2. Blaivas JG, Heritz DM. Classification, diagnostic evaluation and treatment overview. In: Blaivas JG, editor. Topics in clinical urology -evaluation and treatment of urinary incontinence. New York: Igaku-Shoin, 1996: 22–45

    Google Scholar 

  3. Tolterodine [data on file]. Kalamazoo (MI): Pharmacia Upjohn, 2002.

  4. Fantl JA, Newman DK, Colling J, et al. Urinary incontinence in adults: acute and chronic management: clinical practice guideline, No. 2, 1996 update. Rockville (MD): Agency for Health Care Policy and Research, 1996

    Google Scholar 

  5. Ouslander JG, Schnelle JF, Uman G, et al. Does oxybutynin add to the effectiveness of prompted voiding for urinary incontinence among nursing home residents? J Am Geriatr Soc 1995; 43: 610–7

    PubMed  CAS  Google Scholar 

  6. Burgio KL, Locher JL, Goode PS, et al. Behavioral vs drug treatment for urge urinary incontinence in older women: a randomized controlled trial. JAMA 1998; 280: 1995–2000

    Article  PubMed  CAS  Google Scholar 

  7. Drutz HP, Appell RA, Gleason D, et al. Clinical efficacy and safety of tolterodine compared to oxybutynin and placebo in patients with overactive bladder. Int Urogynecol J Pelvic Floor Dysfunct 1999; 10: 283–9

    Article  PubMed  CAS  Google Scholar 

  8. Abrams P, Freeman R, Anderstrom C, et al. Tolterodine, a new antimuscarinic agent: as effective but better tolerated than oxybutynin in patients with an overactive bladder. Br J Urol 1998; 81: 801–10

    Article  PubMed  CAS  Google Scholar 

  9. Thuroff JW, Bunke B, Ebner A, et al. Randomized, double blind, multicentre trial on treatment of frequency, urgency and incontinence related to detrusor hyperactivity: oxybutynin versus propantheline versus placebo. J Urol 1991; 145: 813–7

    PubMed  CAS  Google Scholar 

  10. Schmidt RA, The Oxybutynin XL Study Group. Efficacy of controlled-release, once-a-day oxybutynin chloride for urge urinary incontinence. International Continence Society; 1998 Sep 14–17; Jerusalem: 188

  11. Oxybutynin XL [data on file]. Palo Alto (CA): ALZA, 2002

  12. Detrol® LA (tolterodine tartrate extended-release capsules) [prescribing information]. Kalamazoo (MI): Pharmacia & Upjohn, 2002

  13. Appell RA. Clinical efficacy and safety of tolterodine in the treatment of overactive bladder: a pooled analysis. Urology 1997; 50 Suppl. 6A: 90–6

    Article  PubMed  CAS  Google Scholar 

  14. Chancellor M, Freedman S, Mitcheson HD, et al. Tolterodine, an effective and well tolerated treatment for urge incontinence and other overactive bladder symptoms. Clin Drug Invest 2000; 19: 83–91

    Article  CAS  Google Scholar 

  15. Rentzhog L, Stanton SL, Cardozo L, et al. Efficacy and safety of tolterodine in patients with detrusor instability: a dose-ranging study. Br J Urol 1998; 81: 42–8

    Article  PubMed  CAS  Google Scholar 

  16. Millard R, Tuttle J, Moore K, et al. Clinical efficacy and safety of tolterodine compared to placebo in detrusor overactivity. J Urol 1999; 161: 1551–5

    Article  PubMed  CAS  Google Scholar 

  17. Appell RA, Sand P, Dmochowski R, et al. Prospective randomized controlled trial of extended-release oxybutynin chloride and tolterodine tartrate in the treatment of overactive bladder: results of the OBJECT study. Mayo Clin Proc 2001; 76: 358–63

    PubMed  CAS  Google Scholar 

  18. Van Kerrebroeck P, Kreder K, Jonas U, et al. Tolterodine once-daily: superior efficacy and tolerability in the treatment of the overactive bladder. Urology 2001; 57: 414–21

    Article  PubMed  Google Scholar 

  19. Nilsson CG, Lukkari E, Haarala M, et al. Comparison of a 10mg controlled release oxybutynin tablet with a 5mg oxybutynin tablet in urge incontinent patients. Neurourol Urodyn 1997; 16: 533–42

    Article  PubMed  CAS  Google Scholar 

  20. Birns J, Malone Lee JG, Oxybutynin CR Study Group. Controlled-release oxybutynin maintains efficacy with a 43% reduction in side effects compared with conventional oxybutynin treatment. Neurourol Urodyn 1997; 16: 429–30

    Google Scholar 

  21. Anderson RU, Mobley D, Blank B, et al. Once daily controlled versus immediate-release oxybutynin chloride for urge urinary incontinence. OROS Oxybutynin Study Group. J Urol 1999; 161: 1809–12

    Article  PubMed  CAS  Google Scholar 

  22. Katz IR, Sands LP, Bilker E, et al. Identification of medications that cause cognitive impairment in older people: the case of oxybutynin chloride. J Am Geriatr Soc 1998; 46: 8–13

    PubMed  CAS  Google Scholar 

  23. Ditropan XL® (oxybutynin chloride extended release tablets) [package insert]. Mountain View, CA: ALZA Corp., 2000

  24. Gleason DM, Susset J, White C. Evaluation of a new once-daily formulation of oxybutynin for the treatment of urinary urge incontinence. Urology 1999; 54: 420–3

    Article  PubMed  CAS  Google Scholar 

  25. Susset JG, Gleason DM, White CF, et al. Open-label safety and dose conversion/determination of once-daily OROS oxybutynin chloride for urge urinary incontinence [abstract]. J Urol 1998; 159 Suppl.: 36

    Google Scholar 

  26. Zinner NR. Patient-oriented outcomes with once-daily oxybutynin for urge incontinence [abstract]. Obstet Gynecol 1999; 93 Suppl.: 29

    Article  Google Scholar 

  27. Moore KH, Hay DM, Imrie AE, et al. Oxybutynin hydrochloride (3mg) in the treatment of women with idiopathic detrusor instability. Br J Urol 1990; 66: 479–85

    Article  PubMed  CAS  Google Scholar 

  28. Riva D, Casolati E. Oxybutynin chloride in the treatment of female idiopathic bladder instability. Clin Exp Obstet Gynecol 1984; 11: 37–42

    PubMed  CAS  Google Scholar 

  29. Davila GW, Daugherty CA, Sanders SW, et al. A short-term, multicenter, randomized, double-blind dose titration study of the efficacy and anticholinergic side effects of transdermal compared to immediate release oral oxybutynin treatment of patients with urge urinary incontinence. J Urol 2001; 166: 140–5

    Article  PubMed  CAS  Google Scholar 

  30. Dmochowski RR, Davila GW, Zinner NR, et al. Efficacy and safety of transdermal oxybutynin in patients with urge and mixed urinary incontinence. J Urol 2002; 168: 580–6

    Article  PubMed  CAS  Google Scholar 

  31. Oxytrol® (oxybutynin transdermal system) [prescribing information]. Corona, (CA): Watson Pharma, 2003

  32. Cova A, Setnikar I. Flavoxate and 3-methylflavone-8-carboxylic acid assay methods in blood and urine, plasma-red cells repartition, and stability. Arzneimittel Forschung 1975; 25: 1707–9

    PubMed  CAS  Google Scholar 

  33. Sheu MT, Yeh GC, Ke WT, et al. Development of a high-performance liquid Chromatographic method for bioequivalence study of flavoxate tablets. J Chromatogr 2001; 751: 79–86

    Article  CAS  Google Scholar 

  34. Zhang CX, Sun ZP, Ling DK, et al. Determination of 3-methyl-flavone-8-carboxylic acid, the main metabolite of flavoxate, in human urine by capillary electrophoresis with direct injection. J Chromatogr 1993; 612: 287–94

    Article  PubMed  CAS  Google Scholar 

  35. Conti M, Setnikar I. Protein binding of flavoxate and of 3-methylflavone-8-carboxylic acid. Arzneimittel Forschung 1975; 25: 1709–12

    PubMed  CAS  Google Scholar 

  36. Bertoli M, Conti F, Conti M, et al. Pharmacokinetics of flavoxate in man. Pharmacol Res Commun 1976; 8: 417–28

    Article  PubMed  CAS  Google Scholar 

  37. Saitoh H, Kobayashi Y, Miyazaki K, et al. A highly sensitive HPLC method for the assay of propantheline used to measure its uptake by rat intestinal brush border membrane vesicles. J Pharm Pharmacol 1987; 39: 9–12

    Article  PubMed  CAS  Google Scholar 

  38. Charles BG, Ravenscroft PJ, Jacobsen NW. Analysis of propantheline bromide in serum by high-performance liquid chromatography. J Chromatogr 1984; 306: 424–8

    Article  PubMed  CAS  Google Scholar 

  39. Charles BG, Ravenscroft PJ. A new method for assaying propantheline and its degradation product, xanthene-9-carboxylic acid using high-performance liquid chromatography. J Pharm Sci 1983; 72: 96–8

    Article  PubMed  CAS  Google Scholar 

  40. Ford GC, Grigson SJ, Haskins NJ, et al. The measurements of propantheline ion in biological fluids after administering propantheline bromide to man. Biomed Mass Spectrom 1977; 4: 94–7

    Article  PubMed  CAS  Google Scholar 

  41. Westerlund D, Karset KH. Fluorimetric determination of propantheline in human blood plasma by an ion-pair extraction method. Anal Chim Acta 1973; 67: 99–106

    Article  PubMed  CAS  Google Scholar 

  42. Vose CW, Stevens PM, Haskins NJ, et al. Plasma levels and urinary excretion of orally administered propantheline bromide in man. Eur J Drug Metab Pharmacokinet 1980; 5: 29–34

    Article  PubMed  CAS  Google Scholar 

  43. Rigby GV, Vose CW, Haskins NJ, et al. Propantheline bromide plasma levels, urinary excretion and pharmacological data in a comparison of the bioavailability of three oral formulations of Pro-Banthine. Eur J Drug Metab Pharmacokinet 1983; 8: 219–24

    Article  PubMed  CAS  Google Scholar 

  44. Vose CW, Ford GC, Grigson SJW, et al. Pharmacokinetics of propantheline bromide in normal man. Br J Clin Pharmacol 1979; 7: 89–93

    Article  PubMed  CAS  Google Scholar 

  45. Moses DK, Charles BG, Ravenscroft PJ, et al. Food reduces the oral bioavailability of propantheline bromide in healthy subjects [letter]. Br J Clin Pharmacol 1983; 16: 758–9

    Article  PubMed  CAS  Google Scholar 

  46. Gibaldi M, Grundhofer B. Biopharmaceutic influences on the anticholinergic effects of propantheline. Clin Pharmacol Ther 1975; 18: 457–61

    PubMed  CAS  Google Scholar 

  47. Beermann B, Hellstrom K, Rosen A. On the metabolism of propantheline in man. Clin Pharmacol Ther 1972; 13: 212–20

    PubMed  CAS  Google Scholar 

  48. Vose CW, Prout M, Haskins NJ, et al. Identification of some urinary metabolites of propantheline bromide in man. Xenobiotica 1978; 8: 745–52

    Article  PubMed  CAS  Google Scholar 

  49. Pfeffer M, Schor JM, Bolton S, et al. Human urinary excretion of the quaternary ammonium compounds anisotropine methyl-bromide and propantheline bromide. J Pharm Sci 1968; 57: 1375–9

    Article  PubMed  CAS  Google Scholar 

  50. Manninen V, Apajalahti A, Melin J, et al. Altered absorption of digoxin in patients given propantheline or metoclopramide. Lancet 1973; I: 398–400

    Article  Google Scholar 

  51. Kanto J, Allonen H, Jalonen H, et al. The effect of metoclopramide and propantheline on the gastrointestinal absorption of Cimetidine [letter]. Br J Clin Pharmacol 1981; 11: 629–31

    Article  PubMed  CAS  Google Scholar 

  52. Knadler MP, Bergstrom RF, Callaghan JT, et al. Absorption studies of the H2-blocker nizatidine. Clin Pharmacol Ther 1987; 42: 514–20

    Article  PubMed  CAS  Google Scholar 

  53. Gibbons DO, Lant AF. Effects of intravenous and oral propantheline and metoclopramide on ethanol absorption. Clin Pharmacol Ther 1975; 17: 578–84

    PubMed  CAS  Google Scholar 

  54. Nimmo J, Heading RC, Tothill P, et al. Pharmacological modification of gastric emptying: effects of propantheline and metoclopramide on paracetamol absorption. BMJ 1973; 1: 587–9

    Article  PubMed  CAS  Google Scholar 

  55. Chaput de Saintonge DM, Herxheimer A. Activated charcoal impairs propantheline absorption. Eur J Clin Pharmacol 1971; 4: 52–3

    Article  PubMed  CAS  Google Scholar 

  56. Oertel R, Richter K, Ebert U, et al. Determination of scopolamine in human serum and microdialysis samples by liquid chromatography: tandem mass spectrometry. J Chromatogr 2001; 750: 121–8

    Article  CAS  Google Scholar 

  57. Whelpton R, Hurst PR, Metcalfe RF, et al. Liquid Chromatographie determination of hyoscine (scopolamine) in urine using solid phase extraction. Biomed Chromatogr 1992; 6: 198–204

    Article  PubMed  CAS  Google Scholar 

  58. Oertel R, Richter K, Ebert U, et al. Determination of scopolamine in human serum by gas chromatography: ion trap tandem mass spectrometry. J Chromatogr 1996; 682: 259–64

    Article  CAS  Google Scholar 

  59. Vargas G, Havel J, Babackova L, et al. Determination of drugs used as anti-Parkinson’s disease drugs in urine and serum by capillary electrophoresis. J Capillary Electrophor 1998; 5: 153–8

    PubMed  CAS  Google Scholar 

  60. Hagemann K, Pick K, Stockigt J, et al. Monoclonal antibody-based enzyme immunoassay for the quantitative determination of the tropane alkaloid, scopolamine. Planta Med 1992; 58: 68–72

    Article  PubMed  CAS  Google Scholar 

  61. Stoll L, Fleckenstein P, Riemann D, et al. A simple but highly sensitive radioreceptor assay for the determination of scopolamine and biperiden in human plasma. Res Commun Chem Pathol Pharmacol 1989; 64: 59–68

    PubMed  CAS  Google Scholar 

  62. Ensing K, in’t Hout WG, Halma P, et al. Development and application of a radioreceptor assay for scopolamine. Arzneimittel Forschung 1988; 38: 106–11

    PubMed  CAS  Google Scholar 

  63. Cintron NM, Chen YM. A sensitive radioreceptor assay for determining scopolamine concentrations in plasma and urine. J Pharm Sci 1987; 76: 328–32

    Article  PubMed  CAS  Google Scholar 

  64. Bayne WF, Tao FT, Crisologo N. Submicrogram assay for scopolamine in plasma and urine. J Pharm Sci 1975; 64: 288–91

    Article  PubMed  CAS  Google Scholar 

  65. Scheurlen M, Bittiger H, Ammann B. A simple radioligand binding assay for the determination of urinary scopolamine. J Pharm Sci 1984; 73: 561–3

    Article  PubMed  CAS  Google Scholar 

  66. Putcha L, Tietze KJ, Bourne DWA, et al. Bioavailability of intranasal scopolamine in normal subjects. J Pharm Sci 1996; 85: 899–902

    Article  PubMed  CAS  Google Scholar 

  67. Putcha L, Cintron NM, Tsui J, et al. Pharmacokinetics and oral bioavailability of scopolamine in normal subjects. Pharm Res 1989; 6: 481–5

    Article  PubMed  CAS  Google Scholar 

  68. Golding JF, Gosden E, Gerrell J. Scopolamine blood levels following buccal versus ingested tablets. Aviat Space Environ Med 1991; 62: 521–6

    PubMed  CAS  Google Scholar 

  69. Ebert U, Oertel R, Kirch W. Influence of grapefruit juice on scopolamine pharmacokinetics and pharmacodynamics in healthy male and female subjects. Int J Clin Pharmacol Ther 2000; 38: 523–31

    PubMed  CAS  Google Scholar 

  70. Pihlajamaki KK, Kanto JH, Oksman-Caldenty K-M. Pharmacokinetics and clinical effects of scopolamine in caesarian section patients. Acta Pharmacol Toxicol 1986; 59: 259–62

    Article  CAS  Google Scholar 

  71. Ebert U, Siepmann M, Oertel R, et al. Pharmacokinetics and pharmacodynamics of scopolamine after subcutaneous administration. J Clin Pharmacol 1998; 38: 720–6

    PubMed  CAS  Google Scholar 

  72. Kentala E, Scheinin H, Kaila T, et al. Pharmacokinetics and clinical effects of intramuscular scopolamine plus morphine. Acta Anaesthesiol Scand 1998; 42: 323–8

    Article  PubMed  CAS  Google Scholar 

  73. Kentala E, Kaila T, Arola M, et al. Pharmacokinetics and clinical response of hyoscine plus morphine premedication in connection with cardiopulmonary bypass surgery. Eur J Anaesthesiol 1991; 8: 135–40

    PubMed  CAS  Google Scholar 

  74. Kanto J, Kentala E, Kaila T, et al. Pharmacokinetics of scopolamine during caesarian section: relationship between serum concentration and effect. Acta Anaesthesiol Scand 1989; 33: 482–6

    Article  PubMed  CAS  Google Scholar 

  75. Learned-Coughlin SM, Putcha L, Ramanathan R, et al. Pharmacokinetics (PK) of intravenous scopolamine (SCP) in healthy young male and female volunteers [abstract PIII-93]. Clin Pharmacol Ther 1998; 63: 230

    Google Scholar 

  76. Scheinin H, Helminen A, Huhtala S, et al. Spectral analysis of heart rate variability is a quantitative measure of parasympatholytic effect: integrated pharmacokinetics and pharmacodynamics of three anticholinergic drugs. Ther Drug Monit 1999; 21: 141–51

    Article  PubMed  CAS  Google Scholar 

  77. Lahdes K, Huupponen R, Kaila T, et al. Systemic absorption of ocular scopolamine in patients. J Ocular Pharmacol 1990; 6: 61–6

    Article  CAS  Google Scholar 

  78. Kentala E, Kaila T, Ali-Melkkila T, et al. β-Glucuronide and sulfate conjugation of scopolamine and glycopyrrolate. Int J Clin Pharmacol Ther Toxicol 1990; 28: 487–9

    PubMed  CAS  Google Scholar 

  79. Gleiter CH, Antonin K-H, Schoenleber W, et al. Interaction of alcohol and transdermally administered scopolamine. J Clin Pharmacol 1988; 28: 1123–7

    PubMed  CAS  Google Scholar 

  80. Massoud R, Federici G, Casciani S, et al. Extraction and determination of oxybutynin in human bladder samples by reversed-phase high-performance liquid chromatography. J Chromatogr 1999; 734: 163–7

    Article  CAS  Google Scholar 

  81. DeSchutter JA, DeMoerloose P. Determination of oxybutynin chloride in pharmaceuticals by reversed-phase ion-pair liquid chromatography with two counter-ions in the eluent. J Chromatogr 1988; 450: 337–42

    Article  CAS  Google Scholar 

  82. Hughes KM, Lang JCT, Lazare R, et al. Measurement of oxybutynin and its N-desethyl metabolite in plasma, and its application to pharmacokinetic studies in young, elderly and frail elderly volunteers. Xenobiotica 1992; 22: 859–69

    Article  PubMed  CAS  Google Scholar 

  83. Buyse G, Waldeck K, Verpoorten C, et al. Intravesical oxybutynin for neurogenic bladder dysfunction: less systemic side effects due to reduced first pass metabolism. J Urology 1998; 160: 892–6

    Article  CAS  Google Scholar 

  84. Shibukawa A, Ishizawa N, Kimura T, et al. Plasma protein binding study of oxybutynin by high performance frontal analysis. J Chromatogr 2002; 768: 177–88

    Article  CAS  Google Scholar 

  85. Shibukawa A, Yoshikawa Y, Kimura T, et al. Binding study of desethyloxybutynin using high performance frontal analysis method. J Chromatogr 2002; 768: 189–97

    Article  CAS  Google Scholar 

  86. Patrick KS, Markowitz JS, Jarvi EJ, et al. Gas chromatographic-mass spectrometric analysis of plasma oxybutynin using a deuterated internal standard. J Chromatogr 1989; 487: 91–8

    Article  PubMed  CAS  Google Scholar 

  87. Lindeke B, Hallstrom G, Johansson C, et al. Metabolism of oxybutynin: establishment of desethyloxybutynin and oxybutynin N-oxide formation in rat liver preparation using deuterium substitution and gas Chromatographie mass spectrometric analysis. Biomed Mass Spectrom 1981; 8: 506–13

    Article  PubMed  CAS  Google Scholar 

  88. Lindeke B, Brotell H, Karlen B, et al. Determination of oxybutynin (4-diethylaminobut-2-ynyl 2-cyclohexyl-2-phenylg-lycolate) in serum and urine by gas chromatography/mass spectrometry with single ion detection. Acta Pharm Suec 1981; 18: 25–34

    PubMed  CAS  Google Scholar 

  89. Aaltonen L, Allonen H, Iisalo E, et al. Antimuscarinic activity of oxybutynin in the human plasma quantitated by a radioreceptor assay. Acta Pharmacol Toxicol 1984; 55: 100–3

    Article  CAS  Google Scholar 

  90. Douchamps J, Derenne F, Stockis A, et al. The pharmacokinetics of oxybutynin in man. Eur J Clin Pharmacol 1988; 35: 515–20

    Article  PubMed  CAS  Google Scholar 

  91. Zobrist RH, Thomas H, Sanders SW. Pharmacokinetics and metabolism of transdermally administered oxybutynin [abstract WPIII-69]. Clin Pharmacol Ther 2002; 71: P94

    Google Scholar 

  92. Gupta SK, Sathyan G. Pharmacokinetics of an oral once-a-day controlled-release oxybutynin formulation compared with immediate-release oxybutynin. J Clin Pharmacol 1999; 39: 289–96

    PubMed  CAS  Google Scholar 

  93. Madersbacher H, Knoll M. Intravesical application of oxybutynine: mode of action in controlling detrusor hyperreflexia. Eur Urol 1995; 28: 340–4

    PubMed  CAS  Google Scholar 

  94. Lukkari E, Castren-Kortekangas P, Juhakoski A, et al. Effect of food on the bioavailability of oxybutynin from a controlled release tablet. Eur J Clin Pharmacol 1996; 50: 221–3

    Article  PubMed  CAS  Google Scholar 

  95. Lukkari E, Aranko K, Juhakoski A, et al. Effects of time interval between food and drug ingestion on the absorption of oxybutynin from controlled-release tablet. Pharmacol Toxicol 1997; 81: 31–4

    Article  PubMed  CAS  Google Scholar 

  96. Lehtoranta K, Tainio H, Lukkari-Lax E, et al. Pharmacokinetics, efficacy, and safety of intravesical formulation of oxybutynin in patients with detrusor overactivity. Scand J Urol Nephrol 2002; 36: 18–24

    Article  PubMed  CAS  Google Scholar 

  97. Madersbacker H. Control of detrusor hyperreflexia by the intravesical instillation of oxybutynine hydrochloride. Paraplegia 1991; 29: 84–90

    Article  Google Scholar 

  98. Koch P, McCullough JR, Blum PS, et al. Pharmacokinetics and safety of (S)-oxybutynin in normal healthy volunteers [abstract 825]. FASEB J 1998; 12: A142

    Google Scholar 

  99. Sathyan G, Hu W, Gupta SK. Lack of effect of food on the pharmacokinetics of an extended-release oxybutynin formulation. J Clin Pharmacol 2001; 41: 187–92

    Article  PubMed  CAS  Google Scholar 

  100. Lukkari E, Taavitsainen P, Juhakoski A, et al. Cytochrome P450 specificity of metabolism and interactions of oxybutynin in human liver microsomes. Pharmacol Toxicol 1998; 82: 161–6

    Article  PubMed  CAS  Google Scholar 

  101. Yaich M, Popon M, Medard Y, et al. In-vitro cytochrome P450 dependent metabolism of oxybutynin to N-deethyloxybutynin in humans. Pharmacogenetics 1998; 8: 449–51

    Article  PubMed  CAS  Google Scholar 

  102. Sanders SW, Thomas H, Zobrist RH. Population pharmaco-kinetics of transdermally administered oxybutynin [abstract MPI-109]. Clin Pharmacol Ther 2002; 71: P34

    Google Scholar 

  103. Springate JE. Oxybutynin does not affect cyclosporin blood levels. Ther Drug Monit 2001; 23: 155–6

    Article  PubMed  CAS  Google Scholar 

  104. Lukkari E, Hakonen T, Neuvonen PJ. The pharmacokinetics of oxybutynin is unaffected by gender and contraceptive steroids. Eur J Clin Pharmacol 1998; 53: 351–4

    Article  PubMed  CAS  Google Scholar 

  105. Grozinger M, Hartter S, Hiemke C, et al. Oxybutynin enhances the metabolism of clomipramine and dextrorphan possibly by induction of a cytochrome P450 isoenzyme [letter]. J Clin Psychopharmacol 1999; 19: 287–9

    Article  PubMed  CAS  Google Scholar 

  106. Lukkari E, Juhakoski A, Aranko K, et al. Itraconazole moderately increases serum concentrations of oxybutynin but does not affect those of the active metabolite. Eur J Clin Pharmacol 1997; 52: 403–6

    Article  PubMed  CAS  Google Scholar 

  107. Dmochowski R, Sathyan G, Ye C, et al. In vivo study of the effect of antacid on extended-release formulations of oxybutynin and tolterodine [abstract P75]. J Am Geriatr Soc 2002; 50: S39

    Google Scholar 

  108. Autret E, Jonville AP, Dutertre JP, et al. Plasma levels of oxybutynin chloride in children. Eur J Clin Pharmacol 1994; 46: 83–5

    PubMed  CAS  Google Scholar 

  109. Massad CA, Kogan BA, Trigo-Rocha FE. The pharmacokinetics of intravesical and oral oxybutynin chloride. J Urol 1992; 148: 595–7

    PubMed  CAS  Google Scholar 

  110. Amark P, Eksborg S, Juneskans O, et al. Pharmacokinetics and effects of intravesical oxybutynin on the paediatric neurogenic bladder. Br J Urol 1998; 82: 859–64

    Article  PubMed  CAS  Google Scholar 

  111. Swart R, Koivisto P, Markides KE. Capillary solid-phase extraction-tandem mass spectrometry for fast quantification of free concentrations of tolterodine and two metabolites in ultrafiltered plasma samples. J Chromatogr 1999; 736: 247–53

    Article  CAS  Google Scholar 

  112. Swart R, Koivisto P, Markides KE. Column switching in capillary liquid chromatography-tandem mass spectrometry for the quantitation of ng/L concentrations of the free basic drug tolterodine and its active 5-hydroxymethyl metabolite in microliter volumes of plasma. J Chromatogr 1998; 828: 209–18

    Article  CAS  Google Scholar 

  113. Palmer L, Andersson L, Andersson T, et al. Determination of tolterodine and the 5-hydroxymethyl metabolite in plasma, serum, and urine using gas chromatography-mass spectrometry. J Pharm Biomed Anal 1997; 16: 155–65

    Article  PubMed  CAS  Google Scholar 

  114. Olsson B, Szamosi J. Multiple dose pharmacokinetics of a new once daily extended release tolterodine formulation versus immediate release tolterodine. Clin Pharmacokinet 2001; 40: 227–35

    Article  PubMed  CAS  Google Scholar 

  115. Brynne N, Dalen P, Alvan G, et al. Influence of CYP2D6 polymorphism on the pharmacokinetics and pharmaco-dynamics of tolterodine. Clin Pharmacol Ther 1998; 63: 529–39

    Article  PubMed  CAS  Google Scholar 

  116. Brynne N, Stahl MMS, Hallen B, et al. Pharmacokinetics and pharmacodynamics of tolterodine in man. Int J Clin Pharmacol Ther 1997; 35: 287–95

    PubMed  CAS  Google Scholar 

  117. Olsson B, Brynne N, Johansson C, et al. Food increases the bioavailability of tolterodine but not effective exposure. J Clin Pharmacol 2001; 41: 298–304

    Article  PubMed  CAS  Google Scholar 

  118. Brynne N, Svanstrom C, Aberg-Wistedt A, et al. Fluoxetine inhibits the metabolism of tolterodine-pharmacokinetic implications and proposed clinical relevance. Br J Clin Pharmacol 1999; 48: 553–63

    Article  PubMed  CAS  Google Scholar 

  119. Brynne N, Forslund C, Hallen B, et al. Ketoconazole inhibits the metabolism of tolterodine in subjects with deficient CYP2D6 activity. Br J Clin Pharmacol 1999; 48: 564–72

    Article  PubMed  CAS  Google Scholar 

  120. Olsson B, Szamosi J. Food does not influence the pharmacokinetics of a new extended release formulation of tolterodine for once daily treatment of patients with overactive bladder. Clin Pharmacokinet 2001; 40: 135–43

    Article  PubMed  CAS  Google Scholar 

  121. Pahlman I, Gozzi P. Serum protein binding of tolterodine and its major metabolites in humans and several animal species. Biopharm Drug Dispos 1999; 20: 91–9

    Article  PubMed  CAS  Google Scholar 

  122. Andersson SHG, Lindgren A, Postlind H. Biotransformation of tolterodine, a new muscarinic receptor antagonist, in mice, rats, and dogs. Drug Metab Dispos 1998; 26: 528–35

    PubMed  CAS  Google Scholar 

  123. Postlind H, Danielson A, Lindgren A, et al. Tolterodine, a new muscarinic receptor antagonist, is metabolized by cytochromes P450 2D6 and 3A in human liver microsomes. Drug Metab Dispos 1998; 26: 289–93

    PubMed  CAS  Google Scholar 

  124. Colucci VJ, Rivey MP. Tolterodine-warfarin drug interaction. Ann Pharmacother 1999; 33: 1173–6

    Article  PubMed  CAS  Google Scholar 

  125. Rahimy M, Hallen B, Narang P. Effect of tolterodine on the anticoagulant actions and pharmacokinetics of single-dose warfarin in healthy volunteers. Arzneim Forsch 2002; 52: 890–5

    CAS  Google Scholar 

  126. Brynne N, Bottiger Y, Hallen B, et al. Tolterodine does not affect the human in vivo metabolism of the probe drugs caffeine, debrisoquine and omeprazole. Br J Clin Pharmacol 1999; 47: 145–50

    Article  PubMed  CAS  Google Scholar 

  127. Deng Y, Zhang H, Henion J. Chip-based capillary electrophoresis/mass spectrometry determination of drugs in human plasma. Anal Chem 2001; 73: 1432–9

    Article  PubMed  CAS  Google Scholar 

  128. Jinno K, Kawazoe M, Saito Y, et al. Sample preparation with fiber-in-tube solid-phase microextraction for capillary electro-phoretic separation of tricyclic antidepressant drugs in human urine. Electrophoresis 2001; 22: 3785–90

    Article  PubMed  CAS  Google Scholar 

  129. Heck HA, Flynn NW, Buttrill Jr SE, et al. Determination of imipramine in plasma by high pressure liquid chromatography and field ionization mass spectrometry: increased sensitivity in comparison with gas chromatography mass spectrometry. Biomed Mass Spectrometry 1978; 5: 250–7

    Article  CAS  Google Scholar 

  130. Aymard G, Livi P, Pham YT, et al. Sensitive and rapid method for the simultaneous quantification of five antidepressants with their respective metabolites in plasma using high-performance liquid chromatography with diode-array detection. J Chromatogr 1997; 700: 183–9

    Article  CAS  Google Scholar 

  131. Chen AG, Wing YK, Chiu H, et al. Simultaneous determination of imipramine, desipramine, and their 2- and 10-hydroxylated metabolites in human plasma and urine by high-performance liquid chromatography. J Chromatogr 1997; 693: 153–8

    Article  CAS  Google Scholar 

  132. el-Yazigi A, Raines DA. Concurrent liquid Chromatographic measurement of fluoxetine, amitriptyline, imipramine, and their active metabolites norfluoxetine, nortriptyline, and desipramine in plasma. Ther Drug Monit 1993; 15: 305–9

    Article  PubMed  CAS  Google Scholar 

  133. Nielsen KK, Brosen K. High-performance liquid chromatography of imipramine and six metabolites in human plasma and urine. J Chromatogr 1993; 612: 87–94

    Article  PubMed  CAS  Google Scholar 

  134. Koyama E, Kikuchi Y, Echizen H, et al. Simultaneous high-performance liquid chromatography-electrochemical detection determination of imipramine, desipramine, their 2-hydroxyl-ated metabolites, and imipramine N-oxide in human plasma and urine: preliminary application to oxidation pharmacogenetics. Ther Drug Monit 1993; 15: 224–35

    Article  PubMed  CAS  Google Scholar 

  135. Foglia JP, Sorisio D, Perel JM. Determination of imipramine, desipramine and their hydroxy metabolites by reversed-phase chromatography with ultraviolet and coulometric detection. J Chromatogr 1991; 572: 247–58

    Article  PubMed  CAS  Google Scholar 

  136. Zeugin TB, Brosen K, Meyer UA. Determination of imipramine and seven of its metabolites in human liver microsomes by a high-performance liquid Chromatographic method. Anal Biochem 1990; 189: 99–102

    Article  PubMed  CAS  Google Scholar 

  137. Pok Phak R, Conquy T, Gouezo F, et al. Determination of metapramine, imipramine, trimipramine and their metabolites in plasma by reversed-phase column liquid chromatography. J Chromatogr 1986; 375: 339–47

    Article  PubMed  CAS  Google Scholar 

  138. Messiha FS. Determination of carbamazepine by HPLC electrochemical detection and application for estimation of imipramine, desipramine, doxepin and nordoxepin. Alcohol 1986; 3: 135–8

    Article  PubMed  CAS  Google Scholar 

  139. Yufu N, Itoh M, Notomi A, et al. Simultaneous measurement of various antidepressants in the plasma of depressed patients by high performance liquid chromatography. Folia Psychiatr Neural Jpn 1984; 38: 57–64

    CAS  Google Scholar 

  140. Kobayashi A, Sugita S, Nakazawa K. High-performance liquid Chromatographic determination of imipramine and desipramine in human serum. J Chromatogr 1984; 336: 410–4

    Article  PubMed  CAS  Google Scholar 

  141. Breutzmann DA, Bowers LD. Reversed-phase liquid chromatography and gas chromatography/mass spectrometry compared for determination of tricyclic antidepressant drugs. Clin Chem 1981; 27: 1907–11

    PubMed  CAS  Google Scholar 

  142. Bannister SJ, van der Wal S, Dolan JW, et al. Liquid-chromato-graphic analysis for common tricyclic antidepressant drugs and their metabolites in serum or plasma with the Technicon FAST-LC system. Clin Chem 1981; 27: 849–55

    PubMed  CAS  Google Scholar 

  143. Kabra PM, Mar NA, Marton LJ. Simultaneous liquid Chromatographie analysis of amitriptyline, nortriptyline, imipramine, desipramine, doxepin, and nordoxepin. Clin Chim Acta 1981; 111: 123–32

    Article  PubMed  CAS  Google Scholar 

  144. Fekete J, del Castilho P, Kraak JC. Reversed-phase liquid chromatography for the separation of chlorpromazine, imipramine and some of their metabolites. J Chromatogr 1981; 204: 319–27

    Article  PubMed  CAS  Google Scholar 

  145. Godbillon J, Gauron S. Determination of clomipramine or imipramine and their mono-demethylated metabolites in human blood or plasma by high-performance liquid chromatography. J Chromatogr 1981; 204: 303–11

    Article  PubMed  CAS  Google Scholar 

  146. Dixon R, Marin D. Tricyclic antidepressants: a simplified approach for the routine clinical monitoring of parent drug and metabolites in plasma using HPLC. Res Commun Chem Pathol Pharmacol 1981; 33: 537–45

    PubMed  CAS  Google Scholar 

  147. Suckow RF, Cooper TB. Simultaneous determination of imipramine, desipramine, and their 2-hydroxy metabolites in plasma by ion-pair reversed-phase high-performance liquid chromatography with amperometric detection. J Pharm Sci 1981; 70: 257–61

    Article  PubMed  CAS  Google Scholar 

  148. Streator JT, Eichmeier LS, Caplis ME. Determination of tricyclic antidepressants in serum by high pressure liquid chromatography on a silica column. J Anal Toxicol 1980; 4: 58–62

    PubMed  CAS  Google Scholar 

  149. Reece PA, Zacest R, Barrow CG. Quantification of imipramine and desipramine in plasma by high-performance liquid chromatography and fluorescence detection. J Chromatogr 1979; 163: 310–4

    Article  PubMed  CAS  Google Scholar 

  150. Sutfin TA, Jusko WJ. High-performance liquid Chromatographie assay for imipramine, desipramine, and their 2-hydroxylated metabolites. J Pharm Sci 1979; 68: 703–5

    Article  PubMed  CAS  Google Scholar 

  151. Proelss HF, Lohmann HJ, Miles DG. High-performance liquid-chromatographic simultaneous determination of commonly used tricyclic antidepressants. Clin Chem 1978; 24: 1948–53

    PubMed  CAS  Google Scholar 

  152. Vandemark FL, Adams RF, Schmidt GJ. Liquid-chromatographic procedure for tricyclic drugs and their metabolites in plasma. Clin Chem 1978; 24: 87–91

    PubMed  CAS  Google Scholar 

  153. Adamczyk M, Fishpaugh JR, Harrington CA, et al. Immunoassay reagents for psychoactive drugs: pt 5. quantitative determination of imipramine and desipramine by fluorescence polarization immunoassay. Ther Drug Monit 1994; 16: 577–87

    Article  PubMed  CAS  Google Scholar 

  154. Karpinska J, Starczewska B. Simultaneous LC determination of some antidepressants combined with neuroleptics. J Pharm Biomed Anal 2002; 29: 519–25

    Article  PubMed  CAS  Google Scholar 

  155. De la Torre R, Ortuno J, Pascual JA, et al. Quantitative determination of tricyclic antidepressants and their metabolites in plasma by solid-phase extraction (Bond-Elut TCA) and separation by capillary gas chromatography with nitrogen-phosphorous detection. Ther Drug Monit 1998; 20: 340–6

    Article  PubMed  Google Scholar 

  156. Pommier F, Sioufi A, Godbillon J. Simultaneous determination of imipramine and its metabolite desipramine in human plasma by capillary gas chromatrography with mass-sensitive detection. J Chromatogr 1997; 703: 147–58

    Article  CAS  Google Scholar 

  157. Lee XP, Kumazawa T, Sato K, et al. Detection of tricyclic antidepressants in whole blood by headspace solid-phase microextraction and capillary gas chromatography. J Chromatogr Sci 1997; 35: 302–8

    PubMed  CAS  Google Scholar 

  158. Fujii T, Kurihara Y, Arimoto H, et al. Surface ionization organic mass spectrometry of imipramine, desipramine, clomipramine, and lidocaine. Anal Chem 1994; 66: 1884–9

    Article  PubMed  CAS  Google Scholar 

  159. Sasaki Y, Baba S. Simultaneous determination of imipramine, desipramine and their deuterium-labelled analogues in biological fluids by capillary gas chromatography-mass spectrometry. J Chromatogr 1988; 426: 93–101

    Article  PubMed  CAS  Google Scholar 

  160. Craig JC, Gruenke LD, Nguyen TL. Simultaneous analysis of imipramine and its metabolite desipramine in biological fluids. J Chromatogr 1982; 239: 81–6

    Article  PubMed  CAS  Google Scholar 

  161. Narasimhachari N, Saady J, Friedel RO. Quantitative mapping of metabolites of imipramine and desipramine in plasma samples by gas chromatography-mass spectrometry. Biol Psychiatry 1981; 16: 937–44

    PubMed  CAS  Google Scholar 

  162. Chinn DM, Jennison TA, Crouch DJ, et al. Quantitative analysis for tricyclic antidepressant drugs in plasma or serum by gas chromatography-chemical-ionization mass spectrometry. Clin Chem 1980; 26: 1201–4

    PubMed  CAS  Google Scholar 

  163. Midha KK, Charette C, Cooper JK, et al. Comparison of a new GLC-AFID method with a GLC-MS selected ion monitoring technique and a radioimmunoassay for the determination of plasma concentrations of imipramine and desipramine. J Anal Toxicol 1980; 4: 237–43

    PubMed  CAS  Google Scholar 

  164. Alkalay D, Volk J, Carlsen S. A sensitive method for the simultaneous determination in biological fluids of imipramine and desipramine or clomipramine and N-desmethyl-clomipramine by gas chromatography mass spectrometry. Biomed Mass Spectrom 1979; 6: 200–4

    Article  PubMed  CAS  Google Scholar 

  165. Bertrand M, Dupuis C, Gagnon MA, et al. Nanogram-range determination of plasma imipramine by gas-liquid chromatography using a selective nitrogen/phosphorus detector. Clin Biochem 1978; 11: 117–20

    Article  PubMed  CAS  Google Scholar 

  166. Bailey DN, Jatlow PI. Gas-chromatographic analysis for therapeutic concentration of imipramine and desipramine in plasma, with use of a nitrogen detector. Clin Chem 1976; 22: 1697–701

    PubMed  CAS  Google Scholar 

  167. Dubois JP, Kung W, Theobald W, et al. Measurement of clomipramine, N-desmethyl-clomipramine, imipramine, and dehydroimipramine in biological fluids by selective ion monitaring, and pharmacokinetics of clomipramine. Clin Chem 1976; 22: 892–7

    PubMed  CAS  Google Scholar 

  168. Cooper TB, Allen D, Simpson GM. A sensitive GLC method for the determination of imipramine and desmethylimipramine using a nitrogen detector. Psychopharmacol Commun 1975; 1: 445–54

    PubMed  CAS  Google Scholar 

  169. Belvedere G, Burti L, Frigerio A, et al. Gas Chromatographicmass fragmentographic determination of ‘teady-state’ plasma levels of imipramine and desipramine in chronically treated patients. J Chromatogr 1975; 111: 313–21

    Article  PubMed  CAS  Google Scholar 

  170. Gifford LA, Turner P, Pare CM. Sensitive method for the routine determination of tricyclic antidepressants in plasma using a specific nitrogen detector. J Chromatogr 1975; 105: 107–13

    Article  PubMed  CAS  Google Scholar 

  171. Pantarott C, Belvedere G, Frigerio A. Quantitative determination of imipramine and desmethylimipramine in human plasma by mass fragmentography. Z Klin Chem Klin Biochem 1974; 12: 224–5

    PubMed  CAS  Google Scholar 

  172. Frigerio A, Belvedere G, DeNadai F, et al. A method for the determination of imipramine in human plasma by gas-liquid chromatography-mass fragmentography. J Chromatogr 1972; 74: 201–8

    Article  PubMed  CAS  Google Scholar 

  173. Rovei V, Sanjuan M, Hrdina PD. Analysis of tricyclic antidepressant drugs by gas chromatography using nitrogen-selective detection with packed and capillary columns. J Chromatogr 1980; 182: 349–57

    Article  PubMed  CAS  Google Scholar 

  174. Misztal G, Hopkala H, Slawik T. Chromatographic analysis (TLC) of fluoxetine, doxepine, imipramine and opipranol in human plasma. Acta Pol Pharm 1997; 54: 257–9

    PubMed  CAS  Google Scholar 

  175. Baltova EJ, Shishkova A. Separation and identification of the antidepressants imipramine, amitriptyline and nomifensine by thin layer chromatography. Folia Med (Plovdiv) 1983; 25: 36–41

    CAS  Google Scholar 

  176. Sistovaris N, Dagrosa EE, Keller A. Thin-layer Chromatographic determination of imipramine and desipramine in human plasma and urine at single-dose levels. J Chromatogr 1983; 277: 273–81

    Article  PubMed  CAS  Google Scholar 

  177. Howarth AT. A simple method for the determination of therapeutic levels of clomipramine, imipramine, and desipramine. Postgrad Med J 1977; 53 Suppl. 4: 131–5

    PubMed  CAS  Google Scholar 

  178. Fenimore DC, Meyer CJ, Davis CM, et al. High-performance thin-layer Chromatographie determination of psychopharmacological agents in blood serum. J Chromatogr 1977; 142: 399–409

    Article  PubMed  CAS  Google Scholar 

  179. Fenimore DC, Davis CM, Meyer CJ. Determination of drugs in plasma by high-performance thin layer chromatography. Clin Chem 1978; 24: 1386–92

    PubMed  CAS  Google Scholar 

  180. Pankey S, Collins C, Jaklitsch A, et al. Quantitative homogenous enzyme immunoassays for amitriptyline, nortriptyline, imipramine, and desipramine. Clin Chem 1986; 32: 768–72

    PubMed  CAS  Google Scholar 

  181. el-Yazbi FA, Koramy MA, Bedair M. A sensitive colorimetric method for the determination of imipramine hydrochloride and desipramine hydrochloride. J Clin Hosp Pharm 1985; 10: 373–7

    PubMed  CAS  Google Scholar 

  182. Wallace JE, Biggs JD. Colorimetric determination of imipramine in biologic specimens. J Forensic Sci 1969; 14: 528–37

    PubMed  CAS  Google Scholar 

  183. Brunswick DJ, Needelman B, Mendels J. Radioimmunoassay of imipramine and desmethylimipramine. Life Sci 1978; 22: 137–46

    Article  PubMed  CAS  Google Scholar 

  184. Moody JP, Tait AC, Todrick A. Plasma levels of imipramine and desmethylimipramine during therapy. Br J Psychiatry 1967; 113: 183–93

    Article  PubMed  CAS  Google Scholar 

  185. Garcia Fraga JM, Jiminez Abizanda AI, Jiminez Moreno F, et al. Simultaneous determination of imipramine and amitriptyline by derivative spectrophotometry. J Pharm Biomed Anal 1991; 9: 109–15

    Article  PubMed  CAS  Google Scholar 

  186. Baltova E, Shishkov A. Extractional-spectrophotometric determination of microquantities of the antidepressant imipramine with picric acid. Folia Med (Plovdiv) 1984; 26: 53–8

    CAS  Google Scholar 

  187. Schneider M, Giardina EG. Interference by flexeril, a tricylic muscle relaxant, with liquid-chromatographic determination of imipramine [letter]. Clin Chem 1986; 32: 1599

    PubMed  CAS  Google Scholar 

  188. Wertz PG, Street TL. Thioridazine interference in Chromatographie and enzyme immunoassays for imipramine in serum [letter]. Clin Chem 1983; 29: 724–5

    PubMed  CAS  Google Scholar 

  189. Maynard GL, Soni P. Thioridazine interferences with imipramine metabolism and measurement. Ther Drug Monit 1996; 18: 729–31

    Article  PubMed  CAS  Google Scholar 

  190. Al-Mateen CS, Wolf II CE. Falsely elevated imipramine levels in a patient taking quetiapine [letter]. J Am Acad Child Adolesc Psychiatry 2002; 41: 5–6

    Article  PubMed  Google Scholar 

  191. Abernethy DR, Greenblatt DJ, Shader RI. Imipramine-cimetidine interaction: impairment of clearance and enhanced absolute bioavailability. J Pharmacol Exp Ther 1984; 229: 702–5

    PubMed  CAS  Google Scholar 

  192. Abernethy DR, Greenblatt DJ, Shader RI. Imipramine and desipramine disposition in the elderly. J Pharmacol Exp Ther 1985; 232: 183–8

    PubMed  CAS  Google Scholar 

  193. Abernethy DR, Divoll M, Greenblatt DJ, et al. Absolute bioavailability of imipramine: influence of food. Psychopharmacology 1984; 83: 104–6

    Article  Google Scholar 

  194. Goldberg MJ, Park GD, Spector R, et al. Lack of effect of oral activated charcoal on imipramine clearance. Clin Pharmacol Ther 1985; 38: 350–3

    Article  PubMed  CAS  Google Scholar 

  195. Nagy A, Johansson R. Plasma levels of imipramine and desipramine in man after different routes of administration. Naunyn Schmiedebergs Arch Pharmacol 1975; 290: 145–60

    Article  PubMed  CAS  Google Scholar 

  196. Gram LF, Andreasen PB, Overo KF, et al. Comparison of single dose kinetics of imipramine, nortriptyline, and antipyrine in man. Psychopharmacology 1976; 50: 21–7

    Article  PubMed  CAS  Google Scholar 

  197. Ciraulo DA, Barnhill JG, Jaffe JH. Clinical pharmacokinetics of imipramine and desipramine in alcoholics and normal volunteers. Clin Pharmacol Ther 1988; 43: 509–18

    Article  PubMed  CAS  Google Scholar 

  198. Ciraulo DA, Barnhill J, Boxenbaum H. Pharmacokinetic interaction of disulfiram and antidepressants. Am J Psychiatry 1985; 142: 1373–4

    PubMed  CAS  Google Scholar 

  199. Benetello P, Furlanut M, Zara G, et al. Imipramine pharmacokinetics in depressed geriatric patients. Int J Clin Pharmacol Res 1990; 10: 191–5

    PubMed  CAS  Google Scholar 

  200. Sutfin TA, DeVane CL, Jusko WJ. The analysis and disposition of imipramine and its active metabolites in man. Psychopharmacology 1984; 82: 310–7

    Article  PubMed  CAS  Google Scholar 

  201. Gram LF, Hansen MGJ, Sindrup SH, et al. Citalopram: interaction studies with levomepromazine, imipramine, and lithium. Ther Drug Monit 1993; 15: 18–24

    Article  PubMed  CAS  Google Scholar 

  202. Onyeji CO, Toriola TA, Ogunbona FA. Lack of pharmacokinetic interaction between chloroquine and imipramine. Ther Drug Monit 1993; 15: 43–6

    Article  PubMed  CAS  Google Scholar 

  203. Spina E, Pollicino MA, Avenoso A, et al. Effect of fluvoxamine on the pharmacokinetics of imipramine and desipramine in healthy subjects. Ther Drug Monit 1993; 15: 243–6

    Article  PubMed  CAS  Google Scholar 

  204. Potter WZ, Zavadil III AP, Kopin IJ, et al. Single-dose kinetics predict steady-state concentrations of imipramine and desipramine. Arch Gen Psychiatry 1980; 37: 314–20

    Article  PubMed  CAS  Google Scholar 

  205. Spina E, Avenoso A, Campo GM, et al. Effect of ketoconazole on the pharmacokinetics of imipramine and desipramine in healthy subjects. Br J Clin Pharmacol 1997; 43: 315–8

    Article  PubMed  CAS  Google Scholar 

  206. Wang J-S, Wang W, Xie H-G, et al. Effect of troleandomycin on the pharmacokinetics of imipramine in Chinese: the role of CYP3A. Br J Clin Pharmacol 1997; 44: 195–8

    Article  PubMed  CAS  Google Scholar 

  207. Grasela Jr TH, Antal EJ, Ereshefsky L, et al. An evaluation of population pharmacokinetics in therapeutic trials: pt II. detection of a drug-drug interaction. Clin Pharmacol Ther 1987; 42: 433–41

    Article  PubMed  Google Scholar 

  208. Giardina E-G, Louie M, Bigger Jr JT, et al. Antiarrhythmic plasma-concentration range of imipramine against ventricular premature contractions. Clin Pharmacol Ther 1983; 34: 284–9

    Article  PubMed  CAS  Google Scholar 

  209. Henauer SA, Hollister LE. Cimetidine interaction with imipramine and nortriptyline. Clin Pharmacol Ther 1984; 35: 183–7

    Article  PubMed  CAS  Google Scholar 

  210. Gagnon M-A, Dupuis C, Bertrand MJ, et al. Comparative biopharmaceutic performance of imipramine formulations in man. J Clin Pharmacol 1980; 20: 151–8

    PubMed  CAS  Google Scholar 

  211. Hrdina PD, Rovei V, Henry JF, et al. Comparison of single-dose pharmacokinetics of imipramine and maprotiline in the elderly. Psychopharmacology 1980; 70: 29–34

    Article  PubMed  CAS  Google Scholar 

  212. Sallee F, Stiller R, Perel J, et al. Targeting imipramine dose in children with depression. Clin Pharmacol Ther 1986; 40: 8–13

    Article  PubMed  CAS  Google Scholar 

  213. Hermann DJ, Krol TF, Dukes GE, et al. Comparison of Verapamil, diltiazem, and labetalol on the bioavailability and metabolism of imipramine. J Clin Pharmacol 1992; 32:176–83

    PubMed  CAS  Google Scholar 

  214. Albers LJ, Reist C, Vu RL, et al. Effect of venlafaxine on imipramine metabolism. Psychiatry Res 2000; 96: 235–43

    Article  PubMed  CAS  Google Scholar 

  215. Albers LT, Reist C, Helmeste D, et al. Paroxetine shifts imipramine metabolism. Psychiatry Res 1996; 59: 189–96

    Article  PubMed  CAS  Google Scholar 

  216. Callaghan JT, Cerimele BJ, Kassahum KJ, et al. Olanzapine: interaction study with imipramine. J Clin Pharmacol 1997; 37: 971–8

    PubMed  CAS  Google Scholar 

  217. Ullmann U, Lehnfeld R, Bliesath H, et al. Relative bioavailability of imipramine (Tofranil) coated tablets in healthy volunteers. Int J Clin Pharmacol Ther 2001; 39: 271–6

    PubMed  CAS  Google Scholar 

  218. Wells BG, Pieper JA, Self IH, et al. The effect of ranitidine and Cimetidine on imipramine disposition. Eur J Clin Pharmacol 1986; 31: 285–90

    Article  PubMed  CAS  Google Scholar 

  219. Bergstrom RF, Peyton AL, Lemberger L. Quantification and mechanism of the fluoxetine and tricyclic antidepressant interaction. Clin Pharmacol Ther 1992; 51: 239–48

    Article  PubMed  CAS  Google Scholar 

  220. Hitzenberger G, Schmid R, Braun W, et al. Vinpocetine therapy does not change imipramine pharmacokinetics in man. Int J Clin Pharmacol Ther Toxicol 1990; 28: 99–104

    PubMed  CAS  Google Scholar 

  221. Dell RB, Hein K, Ramakrishnan R, et al. Model for the kinetics of imipramine and its metabolites in adolescents. Ther Drug Monit 1990; 12: 450–9

    Article  PubMed  CAS  Google Scholar 

  222. Spina E, Avenoso A, Campo GM, et al. The effect of carbamazepine on the 2-hydroxylation of desipramine. Psychopharmacology 1995; 117: 413–6

    Article  PubMed  CAS  Google Scholar 

  223. Preskorn SH, Alderman J, Chung M, et al. Pharmacokinetics of desipramine coadministered with sertraline or fluoxetine. J Clin Psychopharmacol 1994; 14: 90–8

    PubMed  CAS  Google Scholar 

  224. Alexanderson B. Pharmacokinetics of desmethylimipramine and nortriptyline in man after single and multiple oral dose. Eur J Clin Pharmacol 1972; 5: 1–10

    Article  CAS  Google Scholar 

  225. Dencker H, Dencker SJ, Green A, et al. Intestinal absorption, demethylation, and enterohepatic circulation of imipramine. Clin Pharmacol Ther 1976; 19: 584–6

    PubMed  CAS  Google Scholar 

  226. Gram LF, Christiansen J. First-pass metabolism of imipramine in man. Clin Pharmacol Ther 1975; 17: 555–63

    PubMed  CAS  Google Scholar 

  227. Borga O, Azarnoff DL, Forshell GP, et al. Plasma protein binding of tricyclic antidepressants in man. Biochem Pharmacol 1969; 18: 2135–43

    Article  PubMed  CAS  Google Scholar 

  228. Abernethy DR, Kerzner L. Age effects on alpha-1-acid glycoprotein concentration and imipramine plasma protein binding. J Am Geriatr Soc 1984; 32: 705–8

    PubMed  CAS  Google Scholar 

  229. Piafsky KM, Borga O. Plasma protein binding of basic drugs. Clin Pharmacol Ther 1977; 22: 545–9

    PubMed  CAS  Google Scholar 

  230. Kristensen CB. Imipramine serum protein binding in healthy adults. Clin Pharmacol Ther 1983; 34: 689–94

    Article  PubMed  CAS  Google Scholar 

  231. Winsberg BG, Perel JM, Hurwic MJ, et al. Imipramine protein binding and pharmacokinetics in children. Adv Biochem Psychopharmacol 1974; 9: 425–31

    PubMed  CAS  Google Scholar 

  232. Javaid JI, Hendricks K, Coulson L, et al. Binding of imipramine to plasma in alcoholic patients [abstract 7516]. Fed Proc 1982; 41: 1556

    Google Scholar 

  233. Torres I, Suarez E, Rodriguez-Sasiain JM, et al. Differential effect of cancer on the serum protein binding of mianserin and imipramine. Eur J Drug Metab Pharmacokinet 1995; 20: 107–11

    Article  PubMed  CAS  Google Scholar 

  234. Kehoe WA, Kwentus JA, Sheffel WB, et al. Increased alpha-1-acid glycoprotein in depression lowers free fraction of imipramine. Biol Psychiatry 1991; 29: 489–93

    Article  PubMed  CAS  Google Scholar 

  235. Glassman AH, Hurwic MJ, Perel JM. Plasma binding of imipramine and clinical outcome. Am J Psychiatry 1973; 130: 1367–9

    PubMed  CAS  Google Scholar 

  236. Pruitt AW, Dayton PG. A comparison of the binding of drugs to adult and cord plasma. Eur J Clin Pharmacol 1971; 4: 59–62

    Article  PubMed  CAS  Google Scholar 

  237. Bloedow DC, Hansbrough JF, Hardin T, et al. Postburn serum drug binding and serum protein concentrations. J Clin Pharmacol 1986; 26: 147–51

    PubMed  CAS  Google Scholar 

  238. Martyn JAJ, Abernethy DR, Greenblatt DJ. Plasma protein binding of drugs after severe burn injury. Clin Pharmacol Ther 1984; 35: 535–9

    Article  PubMed  CAS  Google Scholar 

  239. Kristensen CB. Plasma protein binding of imipramine in patients with rheumatoid arthritis. Eur J Clin Pharmacol 1985; 28: 693–6

    Article  PubMed  CAS  Google Scholar 

  240. Danon A, Chen Z. Binding of imipramine to plasma proteins: effect of hyperlipidemia. Clin Pharmacol Ther 1979; 25: 316–21

    PubMed  CAS  Google Scholar 

  241. Freilich DI, Giardina E-G V. Imipramine binding to alpha-1-acid glycoprotein in normal subjects and cardiac patients. Clin Pharmacol Ther 1984; 35: 670–4

    Article  PubMed  CAS  Google Scholar 

  242. Javaid JI, Hendricks K, Davis JM. α1-Acid glycoprotein involvement in high affinity binding of tricyclic antidepressants to human plasma. Biochem Pharmacol 1983; 32: 1149–53

    Article  PubMed  CAS  Google Scholar 

  243. Abernethy DR, Greenblatt DJ, Shader RI. Imipramine disposition in users of oral contraceptive steroids. Clin Pharmacol Ther 1984; 35: 792–7

    Article  PubMed  CAS  Google Scholar 

  244. Szymura-Oleksiak J, Wyska E, Wasieczko A. Pharmacokinetic interaction between imipramine and carbamazepine in patients with major depression. Psychopharmacology 2001; 154: 38–42

    Article  PubMed  CAS  Google Scholar 

  245. Sovner R, Orsulak PJ. Excretion of imipramine and desipramine in human breast milk. Am J Psychiatry 1979; 136: 451–2

    PubMed  CAS  Google Scholar 

  246. Lemoine A, Gautier JC, Azoulay D, et al. Major pathway of imipramine metabolism is catalyzed by cytochromes P-450 1A2 and P-450 3A4 in human liver. Mol Pharmacol 1993; 43: 827–32

    PubMed  CAS  Google Scholar 

  247. Chiba K, Saitoh A, Koyama E, et al. The role of S-mephenytoin 4′-hydoxylase in imipramine metabolism by human liver microsomes: a two-enzyme kinetic analysis of N-demethylation and 2-hydroxylation. Br J Clin Pharmacol 1994; 37: 237–42

    Article  PubMed  CAS  Google Scholar 

  248. Koyama E, Chiba K, Tani M, et al. Reappraisal of human CYP isoforms involved in imipramine N-demethylation and 2-hydroxylation: a study using microsomes obtained from putative extensive and poor metabolizers of S-mephenytoin and eleven recombinant human CYPs. J Pharmacol Exp Ther 1997; 281: 1199–210

    PubMed  CAS  Google Scholar 

  249. Spina E, Birgersson C, von Bahr C, et al. Phenotypic consistency in hydroxylation of desmethylimipramine and debrisoquine in healthy subjects and in human liver microsomes. Clin Pharmacol Ther 1984; 36: 677–82

    Article  PubMed  CAS  Google Scholar 

  250. Brosen K, Zeugin T, Meyer UA. Role of P450IID6, the target of the sparteine-debrisoquin oxidation polymorphism, in the metabolism of imipramine. Clin Pharmacol Ther 1991; 49: 609–17

    Article  PubMed  CAS  Google Scholar 

  251. Skjelbo E, Brosen K. Inhibitors of imipramine metabolism by human liver microsomes. Br J Clin Pharmacol 1992; 34: 256–61

    Article  PubMed  CAS  Google Scholar 

  252. Ohmori S, Takeda S, Rikihisa T, et al. Studies on cytochrome P450 responsible for oxidative metabolism of imipramine in human liver microsomes. Biol Pharm Bull 1993; 16: 571–5

    Article  PubMed  CAS  Google Scholar 

  253. Yang TJ, Krausz KW, Sai Y, et al. Eight inhibiting monoclonal antibodies define the role of individual P-450s in human liver microsomal diazepam, 7-ethoxycoumarin, and imipramine metabolism. Drug Metab Dispos 1999; 27: 102–9

    PubMed  CAS  Google Scholar 

  254. Brosen K, Klysner R, Gram LF, et al. Steady-state concentrations of imipramine and its metabolites in relation to the sparteine/debrisoquine polymorphism. Eur J Clin Pharmacol 1986; 30: 679–84

    Article  PubMed  CAS  Google Scholar 

  255. Koyama E, Tanaka T, Chiba K, et al. Steady-state plasma concentrations of imipramine and desipramine in relation to S-mephenytoin 4′-hydroxylation status in Japanese depressive patients. J Clin Psychopharmacol 1996; 16: 286–93

    Article  PubMed  CAS  Google Scholar 

  256. Steiner E, Dumont E, Spina E, et al. Inhibition of desipramine 2-hydroxylation by quinidine and quinine. Clin Pharmacol Ther 1987; 43: 577–81

    Article  Google Scholar 

  257. Morinobu S, Tanaka T, Kawakatsu S, et al. Effects of genetic defects in the CYP2C19 gene on the N-demethylation of imipramine, and clinical outcome of imipramine therapy. Psychiatry Clin Neurosci 1997; 51: 253–7

    Article  PubMed  CAS  Google Scholar 

  258. Brosen K, Gram LF. First-pass metabolism of imipramine and desipramine: impact of the sparteine oxidation phenotype. Clin Pharmacol Ther 1988; 43: 400–6

    Article  PubMed  CAS  Google Scholar 

  259. Brosen K, Otton SV, Gram LF. Imipramine demethylation and hydroxylation: impact of sparteine oxidation phenotype. Clin Pharmacol Ther 1986; 40: 543–9

    Article  PubMed  CAS  Google Scholar 

  260. Koyama E, Sohn D-R, Shin S-G, et al. Metabolic disposition of imipramine in Oriental subjects: relation to metoprolol α-hydroxylation and S-mephenytoin 4′-hydroxylation phenotypes. J Pharmacol Exp Ther 1994; 271: 860–7

    PubMed  CAS  Google Scholar 

  261. Skjelbo E, Brosen K, Hallas J, et al. The mephenytoin oxidation polymorphism is partially responsible for the N-demethylation of imipramine. Clin Pharmacol Ther 1991; 49: 18–23

    Article  PubMed  CAS  Google Scholar 

  262. Skjelbo E, Gram LF, Brosen K. The N-demethylation of imipramine correlates with the oxidation of S-mephenytoin (S/R ratio). Br J Clin Pharmacol 1993; 35: 331–4

    PubMed  CAS  Google Scholar 

  263. Brosen K, Gram LF, Klysner R, et al. Steady-state levels of imipramine and its metabolites: significance of dose-dependent kinetics. Eur J Clin Pharmacol 1986; 30: 43–9

    Article  PubMed  CAS  Google Scholar 

  264. Sindrup SH, Brosen K, Gram LF. Nonlinear kinetics of imipramine in low and medium plasma level ranges. Ther Drug Monit 1990; 12: 445–9

    Article  PubMed  CAS  Google Scholar 

  265. Nagy A, Johansson R. The demethylation of imipramine and clomipramine as apparent from their plasma kinetics. Psychopharmacology 1977; 54: 125–31

    Article  PubMed  CAS  Google Scholar 

  266. Gram LF, Sondergaard IB, Christiansen J, et al. Steady-state kinetics of imipramine in patients. Psychopharmacology 1977; 54: 255–61

    Article  PubMed  CAS  Google Scholar 

  267. Potter WZ, Calil HM, Sutfin TA, et al. Active metabolites of imipramine and desipramine in man. Clin Pharmacol Ther 1982; 31: 393–401

    Article  PubMed  CAS  Google Scholar 

  268. Sutfin TA, Perini Gl, Molnar G, et al. Multiple-dose pharmacokinetics of imipramine and its major active and conjugated metabolites in depressed patients. J Clin Psychopharmacol 1988; 8: 48–53

    Article  PubMed  CAS  Google Scholar 

  269. DeVane CL, Jusko WJ. Plasma concentration monitoring of hydroxylated metabolites of imipramine and desipramine. Drug Intell Clin Pharm 1981; 15: 263–6

    PubMed  CAS  Google Scholar 

  270. Christiansen J, Gram LF, Kofod B, et al. Imipramine metabolism in man. Psychopharmacology 1967; 11: 255–64

    Article  CAS  Google Scholar 

  271. Crammer JL, Scott B, Rolfe B. Metabolism of14C-imipramine: II. urinary metabolites in man. Psychopharmacology 1969; 15: 207–25

    CAS  Google Scholar 

  272. Gram LF, Kofod B, Christiansen J, et al. Imipramine metabolism: pH-dependent distribution and urinary excretion. Clin Pharmacol Ther 1971; 12: 239–44

    PubMed  CAS  Google Scholar 

  273. Rosenstein DL, Takeshita J, Nelson JC. Fluoxetine-induced elevation and prolongation of tricyclic levels in overdose [letter]. Am J Psychiatry 1991; 148: 807

    PubMed  CAS  Google Scholar 

  274. Preskorn SH, Beber JH, Faul JC, et al. Serious adverse effects of combining fluoxetine and tricyclic antidepressants [letter]. Am J Psychiatry 1990; 147: 532

    PubMed  CAS  Google Scholar 

  275. Vandel S, Bertschy G, Bonin B, et al. Tricyclic antidepressant plasma levels after fluoxetine addition. Neuropsychobiology 1992; 25: 202–7

    Article  PubMed  CAS  Google Scholar 

  276. Spina E, Campo GM, Avenoso A, et al. Interaction between fluvoxamine and imipramine/desipramine in four patients. Ther Drug Monit 1992; 14: 194–6

    Article  PubMed  CAS  Google Scholar 

  277. Leroi I, Walentynowicz MA. Fluoxetine-imipramine interaction [letter]. Can J Psychiatry 1996; 41: 318–9

    PubMed  CAS  Google Scholar 

  278. Lydiard RB, Anton RF, Cunningham T. Interactions between sertraline and tricyclic antidepressants [letter]. Am J Psychiatry 1993; 150: 1125–6

    PubMed  CAS  Google Scholar 

  279. Maskall DD, Lam RW. Increased plasma concentration of imipramine following augmentation with fluvoxamine [letter]. Am J Psychiatry 1993; 150: 1566

    PubMed  CAS  Google Scholar 

  280. Ball SE, Ahern D, Scatina J, et al. Venlafaxine: in vitro inhibition of CYP2D6 dependent imipramine and desipramine metabolism; comparative studies with selected SSRIs, and effects on human hepatic CYP3A4, CYP2C9 and CYP1A2. Br J Clin Pharmacol 1997; 43: 619–26

    Article  PubMed  CAS  Google Scholar 

  281. Von Moltke LL, Greenblatt DJ, Cotreau-Bibbo MM, et al. Inhibition of desipramine hydroxylation in vitro by serotonin-reuptake inhibitor antidepressants, and by quinidine and ketoconazole: a model system to predict drug interactions in vivo. J Pharmacol Exp Ther 1994; 268: 1278–83

    Google Scholar 

  282. Brosen K, Skjelbo E. Fluoxetine and norfluoxetine are potent inhibitors of P450IID6: the source of the sparteine/debrisoquin oxidation polymorphism [letter]. Br J Clin Pharmacol 1991; 32: 136–7

    Article  PubMed  CAS  Google Scholar 

  283. Brosen K, Hansen JG, Nielsen KK, et al. Inhibition by paroxetine of desipramine metabolism in extensive but not in poor metabolizers of sparteine. Eur J Clin Pharmacol 1993; 44: 349–55

    Article  PubMed  CAS  Google Scholar 

  284. Spina E, Pollicino AM, Avenoso A, et al. Fluvoxamine-induced alterations in plasma concentrations of imipramine and desipramine in depressed patients. Int J Clin Pharmacol Res 1993; 13: 167–71

    PubMed  CAS  Google Scholar 

  285. Spina E, Koike Y. Differential effects of Cimetidine and ranitidine on imipramine demethylation and desmethylimipramine hydroxylation by human liver microsomes. Eur J Clin Pharmacol 1986; 30: 239–42

    Article  PubMed  CAS  Google Scholar 

  286. Brosen K, Gram LF. Quinidine inhibits the 2-hydroxylation of imipramine and desipramine but not the demethylation of imipramine. Eur J Clin Pharmacol 1989; 37: 155–60

    Article  PubMed  CAS  Google Scholar 

  287. O’Reardon JP, Hetznecker JM, Rynn MA, et al. Desipramine toxicity with terbinafine [letter]. Am J Psychiatr 2002; 159: 492

    Article  PubMed  Google Scholar 

  288. Teitelbaum ML, Pearson VE. Imipramine toxicity and terbinafine [letter]. Am J Psychiatr 2001; 158: 2086

    Article  PubMed  CAS  Google Scholar 

  289. Madani S, Barilla D, Cramer J, et al. Effect of terbinafine on the pharmacokinetics and pharmacodynamics of desipramine in healthy volunteers identified as cytochrome P450 2D6 (CYP 2D6) extensive metabolizers. J Clin Pharmacol 2002; 42: 1211–8

    Article  PubMed  CAS  Google Scholar 

  290. Hewick DS, Sparks RG, Stevenson IH, et al. Induction of imipramine metabolism following barbiturate administration [abstract]. Br J Clin Pharmacol 1977; 4: 399P

    Article  PubMed  CAS  Google Scholar 

  291. Spina E, Avenoso A, Campo GM, et al. Phenobarbital induces the 2-hydroxylation of desipramine. Ther Drug Monit 1996; 18: 60–4

    Article  PubMed  CAS  Google Scholar 

  292. Brown CS, Wells BG, Cold JA, et al. Possible influence of carbamazepine on plasma imipramine concentrations in children with attention deficit hyperactivity disorder. J Clin Psychopharmacol 1990; 10: 359–62

    PubMed  CAS  Google Scholar 

  293. Garbutt J, Malekpour B, Brunswick D, et al. Effects of triiodothyronine on drug levels and cardiac function in depressed patients treated with imipramine. Am J Psychiatry 1979; 136: 980–2

    PubMed  CAS  Google Scholar 

  294. Potkin SG, Thyrum PT, Alva G, et al. Effect of fluoxetine and imipramine on the pharmacokinetics and tolerability of the antipsychotic quetiapine. J Clin Psychopharmacol 2002; 22: 174–82

    Article  PubMed  CAS  Google Scholar 

  295. Gillette DW, Tannery LP. Beta blocker inhibits tricyclic metabolism. J Am Acad Child Adolesc Psychiatry 1994; 33: 223–4

    Article  PubMed  CAS  Google Scholar 

  296. Cook PE, Dermer SW, Cardamone J. Imipramine: flupenthixol decanoate interaction. Can J Psychiatry 1986; 31: 235–7

    PubMed  CAS  Google Scholar 

  297. Siris SG, Cooper TB, Rifkin AE, et al. Plasma imipramine concentrations in patients receiving concomitant fluphenazine decanoate. Am J Psychiatry 1982; 139: 104–6

    PubMed  CAS  Google Scholar 

  298. Gram LF, Fredricson Overo K. Drug interaction: inhibitory effect of neuroleptics on metabolism of tricyclic antidepressants in man. BMJ 1972; 1: 463–5

    Article  PubMed  CAS  Google Scholar 

  299. Bjerre M, Gram LF, Kragh-Sorensen P, et al. Dose-dependent kinetics of imipramine in elderly patients. Psychopharmacology 1981;75:354–7

    Article  PubMed  CAS  Google Scholar 

  300. Shad MU, Preskorn SH. A possible bupropion and imipramine interaction [letter]. J Clin Psychopharmacol 1997; 17: 118–9

    Article  PubMed  CAS  Google Scholar 

  301. Benet LZ, Hoener B-A. Changes in plasma protein binding have little clinical relevance. Clin Pharmacol Ther 2002; 71:115–21

    Article  PubMed  CAS  Google Scholar 

  302. Rapoport JL, Mikkelsen EJ, Zavadil A, et al. Childhood enuresis. Arch Gen Psychiatry 1980; 37: 1146–52

    Article  PubMed  CAS  Google Scholar 

  303. Jorgensen OS, Lober M, Christiansen J, et al. Plasma concentration and clinical effect in imipramine treatment of childhood enuresis. Clin Pharmacokinet 1980; 5: 386–93

    Article  PubMed  CAS  Google Scholar 

  304. Furlanut M, Montanari G, Benetello P, et al. Steady-state serum concentrations of imipramine, its main metabolites and clinical results in primary enuresis. Pharmacol Res 1989; 21: 561–6

    Article  PubMed  CAS  Google Scholar 

  305. Fernandez de Gatta M, Garcia MJ, Acosta A, et al. Monitoring of serum levels of imipramine and desipramine and individualization of dose in enuretic children. Ther Drug Monit 1984; 6: 438–43

    Article  Google Scholar 

  306. Manglick MP, Buchanan N. Imipramine in primary nocturnal enuresis and the value of blood level measurement [letter]. Med J Aust 1992; 156: 68–9

    PubMed  CAS  Google Scholar 

  307. DeVane CL, Walker III RD, Sawyer WP, et al. Concentrations of imipramine and its metabolites during enuresis therapy. Pediatr Pharmacol (New York) 1984; 4: 245–51

    CAS  Google Scholar 

  308. Lieberman JA, Cooper TB, Suckow RF, et al. Tricyclic antidepressant and metabolite levels in chronic renal failure. Clin Pharmacol Ther 1985; 37: 301–7

    Article  PubMed  CAS  Google Scholar 

  309. Nies A, Robinson DS, Freidman MJ, et al. Relationship between age and tricyclic antidepressant plasma levels. Am J Psychiatry 1977; 134: 790–3

    PubMed  CAS  Google Scholar 

  310. Weiler EB, Weller RA, Preskorn SH, et al. Steady-state plasma imipramine levels in prepubertal depressed children. Am J Psychiatry 1982; 139: 506–8

    Google Scholar 

  311. Tamayo M, Fernandez de Gatta MM, Garcia MJ, et al. Population pharmacokinetics of imipramine in children. Eur J Clin Pharmacol 1992; 43: 89–92

    Article  PubMed  CAS  Google Scholar 

  312. Preskorn SH, Weiler EB, Weller RA, et al. Plasma levels of imipramine and adverse effects in children. Am J Psychiatry 1983; 140: 1332–5

    PubMed  CAS  Google Scholar 

  313. Preskorn SH, Bupp SJ, Weller EB, et al. Plasma levels of imipramine and metabolites in 68 hospitalized children. J Am Acad Child Adolesc Psychiatry 1989; 28: 373–5

    Article  PubMed  CAS  Google Scholar 

  314. Langguth P, Spahn H, Mutschler E, et al. An approach to reduce the number of skin samples in testing the transdermal permeation of drugs. J Pharm Pharmacol 1986; 38: 726–30

    Article  PubMed  CAS  Google Scholar 

  315. Schladitz-Kiel G, Spahn H, Mutschler E. Fluorimetric determination of the quaternary compound trospium and its metabolite in biological material after derivatization with benoxaprofen chloride. J Chromatogr 1985; 345: 99–110

    Article  Google Scholar 

  316. Schladitz-Kiel G, Spahn H, Mutschier E. Determination of the bioavailability of the quaternary compound trospium chloride in man from urinary excretion data. Arzneimittel Forschung 1986; 36: 984–7

    Google Scholar 

  317. Zerres K, Zaigler M, Rietbrock S, et al. Pharmacokinetics of single and multiple dose trospium chloride in elderly volunteers using a replicative design [abstract 687]. Naunyn Schmiedebergs Arch Pharmacol 1998; 357 Suppl.: R175

    Google Scholar 

  318. Hofner K, Oelke M, Machtens S, et al. Trospium chloride: an effective drug in the treatment of overactive bladder and detrusor hyperreflexia. World J Urol 2001; 19: 336–43

    Article  PubMed  CAS  Google Scholar 

  319. Walter P, Grosse J, Bihr AM, et al. Bioavailability of trospium chloride after intravesical instillation in patients with neurogenic lower urinary tract dysfunction. Neurourol Urodyn 1999; 18: 447–53

    Article  PubMed  CAS  Google Scholar 

  320. Haustein K-O, Huiler G. On the pharmacokinetics and metabolism of propiverine in man. Eur J Drug Metab Pharmacokinet 1988; 13: 81–90

    Article  PubMed  CAS  Google Scholar 

  321. Siepmann M, Nokhodian A, Thummler D, et al. Pharmacokinetics and safety of propiverine in patients with fatty liver disease. Eur J Clin Pharmacol 1998; 54: 767–71

    Article  PubMed  CAS  Google Scholar 

  322. Fusgen I, Hauri D. Trospium chloride: an effective option for medical treatment of bladder overactivity. Int J Clin Pharmacol Ther 2000; 38: 223–34

    PubMed  CAS  Google Scholar 

  323. Beckmann-Knopp S, Rietbrock S, Weyhenmeyer R, et al. Inhibitory effects of trospium chloride on cytochrome P450 enzymes in human liver microsomes. Pharmacol Toxicol 1999; 85: 299–304

    Article  PubMed  CAS  Google Scholar 

  324. Richter K, Scheithauer S, Thummler D. High-performance liquid Chromatographic determination of propiverine and its N-oxide in human serum. J Chromatogr 1998; 708: 325–9

    Article  CAS  Google Scholar 

  325. Marunaka T, Umeno Y, Minami Y, et al. Gas chromatographicmass fragmentographic determination of propiverine and its metabolites in plasma and urine. J Chromatogr 1987; 420: 43–52

    Article  PubMed  CAS  Google Scholar 

  326. Meisel P, Langner S, Siegmund W. In vitro binding of propiverine hydrochloride and some of its metabolites to serum albumin in man. J Pharm Pharmacol 1997; 49: 270–2

    Article  PubMed  CAS  Google Scholar 

  327. Huiler G, Haustein KO, Scheithauer S. Studies on the metabolic pattern of propiverine in urine after single administration. Pharmazie 1988; 43: 91–5

    Google Scholar 

  328. Muller C, Siegmund W, Huupponen R, et al. Kinetics of propiverine as assessed by radioreceptor assay in poor and extensive metabolizers of debrisoquine. Eur J Drug Metab Pharmacokinet 1993; 18: 265–72

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

No sources of funding were used to assist in the preparation of this manuscript. The author has no conflicts of interest that are directly relevant to the content of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David R. P. Guay.

Appendix

Appendix

Further tables relating to this review are available direct from the author under these headings: (i) Mean imipramine pharmacokinetic parameters after administration of imipramine by various routes; (ii) Plasma protein binding of imipramine and desipramine; (iii) Pharmacogenomic effects on imipramine/desipramine pharmacokinetic parameters; (iv) Pharmacokinetic drug interactions with imipramine and desipramine; (v) Steady-state plasma imipramine and desipramine kinetic parameters in paediatric patients.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guay, D.R.P. Clinical Pharmacokinetics of Drugs Used to Treat Urge Incontinence. Clin Pharmacokinet 42, 1243–1286 (2003). https://doi.org/10.2165/00003088-200342140-00004

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003088-200342140-00004

Keywords

Navigation