Skip to main content
Log in

Stereoselectivity in the Pharmacodynamics and Pharmacokinetics of the Chiral Antimalarial Drugs

  • Review Article
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

Several of the antimalarial drugs are chiral and administered as the racemate. These drugs include chloroquine, hydroxychloroquine, quinacrine, primaquine, mefloquine, halofantrine, lumefantrine and tafenoquine. Quinine and quinidine are also stereoisomers, although they are given separately rather than in combination.

From the perspective of antimalarial activity, most of these agents demonstrate little stereoselectivity in their effects in vitro. Mefloquine, on the other hand, displays in vitro stereoselectivity against some strains of P. falciparum, with a eudismic ratio of almost 2: 1 in favour of the (+)-enantiomer. Additionally, for some of these agents (e.g. halofantrine, primaquine, chloroquine), stereoselectivity has been noted in the ability of the enantiomers to cause certain adverse effects.

In recent years, stereospecific analytical methods capable of measuring the individual enantiomers after the administration of racemic drugs have been reported for a number of chiral antimalarial drugs. These assays have revealed that almost all the studied antimalarial drugs display stereoselectivity in their pharmacokinetics, leading to enantioselectivity in their plasma concentrations. Whereas the oral absorption of these agents appears to be non-stereoselective, stereoselectivity is often seen in their volume of distribution and/or clearance. With regard to distribution, plasma protein binding of some chiral antimalarial drugs exhibits a significant degree of stereoselectivity, leading to stereoselective distribution to blood cells and other tissues. Because of their low hepatic extraction ratios, stereoselective plasma protein binding also contributes to the stereoselectivity in the metabolism of these drugs. Chiral metabolites are formed from some parent antimalarial drugs, although stereoselective aspects of the pharmacokinetics of the metabolites are not well understood.

It is concluded that knowledge of the stereoselective aspects of these agents may be helpful in better understanding their mechanisms of action and possibly optimising their clinical safety and/or effectiveness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Table I
Table II
Table III
Table IV
Table V
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Anon. World malaria situation in 1994: Pt I. Population at risk. Wkly Epidemiol Rec 1997; 72: 269–74

  2. Anon. Malaria, 1982–1997. Wkly Epidemiol Rec 1999; 74: 265-70

  3. Anon. Malaria: general information. National Center for Infectious Diseases Travellers’s Health 2000

  4. Hoffman SL, Subramanian GM, Collins FH, et al. Plasmodium, human and Anopheles genomics and malaria. Nature 2002; 415: 702–9

    Article  PubMed  CAS  Google Scholar 

  5. Baird JK. Resurgent malaria at the millennium: control strategies in crisis. Drugs 2000; 59: 719–43

    Article  PubMed  CAS  Google Scholar 

  6. Ridley RG. Medical need, scientific opportunity and the drive for antimalarial drugs. Nature 2002; 415: 686–93

    Article  PubMed  CAS  Google Scholar 

  7. Brocks DR, Jamali F. Stereochemical aspects of pharmacotherapy. Pharmacotherapy 1995; 15: 551–64

    PubMed  CAS  Google Scholar 

  8. Jamali F, Mehvar R, Pasutto FM. Enantioselective aspects of drug action and disposition: therapeutic pitfalls. J Pharm Sci 1989; 78: 695–715

    Article  PubMed  CAS  Google Scholar 

  9. Tracy TS. Stereochemistry in pharmacotherapy: when mirror images are not identical. Ann Pharmacother 1995; 29: 161–5

    PubMed  CAS  Google Scholar 

  10. Wainer IW, Marcotte AA. Stereochemical terms and concepts, an overview. In: Wainer IW, editor. Drug stereochemistry: analytical methods and pharmacology. 2nd ed. New York: Dekker, 1993: 25–34

    Google Scholar 

  11. Ducharme J, Farinotti R. Clinical pharmacokinetics and metabolism of chloroquine: focus on recent advancements. Clin Pharmacokinet 1996; 31: 257–74

    Article  PubMed  CAS  Google Scholar 

  12. Krishna S, White NJ. Pharmacokinetics of quinine, chloroquine and amodiaquine: clinical implications. Clin Pharmacokinet 1996; 30: 263–99

    Article  PubMed  CAS  Google Scholar 

  13. White NJ. Clinical pharmacokinetics of antimalarial drugs. Clin Pharmacokinet 1985; 10: 187–215

    Article  PubMed  CAS  Google Scholar 

  14. Edwards G, Winstanley PA, Ward SA. Clinical pharmacokinetics in the treatment of tropical diseases: some applications and limitations. Clin Pharmacokinet 1994; 27: 150–65

    Article  PubMed  CAS  Google Scholar 

  15. White NJ. Antimalarial pharmacokinetics and treatment regimens. Br J Clin Pharmacol 1992; 34: 1–10

    Article  PubMed  CAS  Google Scholar 

  16. Tracy JW, Webster Jr LT. Drugs used in the chemotherapy of protozoal diseases: malaria. In: Hardman JG, Limbird LE, Goodman Gilman A, editors. Goodman and Gilmans’s the pharmacological basis of therapeutics. 10th ed. New York: McGraw-Hill, 2001: 1069–96

    Google Scholar 

  17. Miller LH, Baruch DI, Marsh K, et al. The pathogenic basis of malaria. Nature 2002; 415: 673–9

    Article  PubMed  CAS  Google Scholar 

  18. Noedl H, Allmendinger T, Prajakwong S, et al. Desbutyl-benflumetol, a novel antimalarial compound: in vitro activity in fresh isolates of Plasmodium falciparum from Thailand. Antimicrob Agents Chemother 2001; 45: 2106–9

    Article  PubMed  CAS  Google Scholar 

  19. Karbwang J, Na Bangchang K. Clinical pharmacokinetics of halofantrine. Clin Pharmacokinet 1994; 27: 104–19

    Article  PubMed  CAS  Google Scholar 

  20. Bray PG, Janneh O, Raynes KJ, et al. Cellular uptake of chloroquine is dependent on binding to ferriprotoporphyrin IX and is independent of NHE activity in Plasmodium falciparum. J Cell Biol 1999; 145: 363–76

    Article  PubMed  CAS  Google Scholar 

  21. Bray PG, Mungthin M, Ridley RG, et al. Access to hematin: the basis of chloroquine resistance. Mol Pharmacol 1998; 54: 170–9

    PubMed  CAS  Google Scholar 

  22. Gabay T, Krugliak M, Shalmiev G, et al. Inhibition by anti-malarial drugs of haemoglobin denaturation and iron release in acidified red blood cell lysates: a possible mechanism of their anti-malarial effect? Parasitology 1994; 108 (Pt 4): 371–81

    Article  PubMed  CAS  Google Scholar 

  23. Mungthin M, Bray PG, Ridley RG, et al. Central role of hemoglobin degradation in mechanisms of action of 4-amino-quinolines, quinoline methanols, and phenanthrene methanols. Antimicrob Agents Chemother 1998; 42: 2973–7

    PubMed  CAS  Google Scholar 

  24. Foley M, Tilley L. Quinoline antimalarials: mechanisms of action and resistance and prospects for new agents. Pharmacol Ther 1998; 79: 55–87

    Article  PubMed  CAS  Google Scholar 

  25. Wong LT, Smyth DD, Sitar DS. Stereoselective inhibition of renal organic cation transport in human kidney. Br J Clin Pharmacol 1992; 34: 438–40

    Article  PubMed  CAS  Google Scholar 

  26. Basco LK, Gillotin C, Gimenez F, et al. In vitro activity of the enantiomers of mefloquine, halofantrine and enpiroline against Plasmodium falciparum. Br J Clin Pharmacol 1992; 33: 517–20

    Article  PubMed  CAS  Google Scholar 

  27. Fu S, Bjorkman A, Wahlin B, et al. In vitro activity of chloroquine, the two enantiomers of chloroquine, desethyl-chloroquine and pyronaridine against Plasmodium falciparum. Br J Clin Pharmacol 1986; 22: 93–6

    PubMed  CAS  Google Scholar 

  28. Webster RV, Craig JC, Shyamala V, et al. Antimalarial activity of optical isomers of quinacrine dihydrochloride against chloroquine-sensitive and -resistant Plasmodium falciparum in vitro. Biochem Pharmacol 1991; 42 Suppl.: S225–7

    Article  PubMed  CAS  Google Scholar 

  29. Karle JM, Olmeda R, Gerena L, et al. Plasmodium falciparum: role of absolute stereochemistry in the antimalarial activity of synthetic amino alcohol antimalarial agents. Exp Parasitol 1993; 76: 345–51

    Article  PubMed  CAS  Google Scholar 

  30. Wernsdorfer WH, Landgraf B, Kilimali VA, et al. Activity of benflumetol and its enantiomers in fresh isolates of Plasmodium falciparum from East Africa. Acta Trop 1998; 70: 9–15

    Article  PubMed  CAS  Google Scholar 

  31. Scaria PV, Craig JC, Shafer RH. Differential binding of the enantiomers of chloroquine and quinacrine to polynucleotides: implications for stereoselective metabolism. Biopolymers 1993; 33: 887–95

    Article  PubMed  CAS  Google Scholar 

  32. Bates MD, Meshnick SR, Sigler CI, et al. In vitro effects of primaquine and primaquine metabolites on exoerythrocytic stages of Plasmodium berghei. Am J Trop Med Hyg 1990; 42: 532–7

    PubMed  CAS  Google Scholar 

  33. Schmidt LH, Alexander S, Allen L, et al. Comparison of the curative antimalarial activities and toxicities of primaquine and its d and l isomers. Antimicrob Agents Chemother 1977; 12: 51–60

    Article  PubMed  CAS  Google Scholar 

  34. Brossi A, Millet P, Landau I, et al. Antimalarial activity and inhibition of monoamine oxidases A and B by exo-erythrocytic antimalarials: optical isomers of primaquine, N-acylated congeners, primaquine metabolites and 5-phenoxy-substituted analogues. FEBS Lett 1987; 214: 291–4

    Article  PubMed  CAS  Google Scholar 

  35. Bjorkman A, Willcox M, Marbiah N, et al. Susceptibility of Plasmodium falciparum to different doses of quinine in vivo and to quinine and quinidine in vitro in relation to chloroquine in Liberia. Bull World Health Organ 1991; 69: 459–65

    PubMed  CAS  Google Scholar 

  36. Philipps J, Radloff PD, Wernsdorfer W, et al. Follow-up of the susceptibility of Plasmodium falciparum to antimalarials in Gabon. Am J Trop Med Hyg 1998; 58: 612–8

    PubMed  CAS  Google Scholar 

  37. Menezes CM, Kirchgatter K, Di Santi SM, et al. In vitro evaluation of quinidine sensitivity in Brazilian Plasmodium falciparum isolates: comparative analysis to quinine and chloroquine. Rev Inst Med Trop Sao Paulo 2001; 43: 221–6

    Article  PubMed  CAS  Google Scholar 

  38. Karle JM, Karle IL, Gerena L, et al. Stereochemical evaluation of the relative activities of the cinchona alkaloids against Plasmodium falciparum. Antimicrob Agents Chemother 1992; 36: 1538–44

    Article  PubMed  CAS  Google Scholar 

  39. Quatraro A, Consoli G, Magno M, et al. Hydroxychloroquine in decompensated, treatment-refractory noninsulin-dependent diabetes mellitus: a new job for an old drug? Ann Intern Med 1990; 112: 678–81

    PubMed  CAS  Google Scholar 

  40. Emami J, Pasutto FM, Mercer JR, et al. Inhibition of insulin metabolism by hydroxychloroquine and its enantiomers in cytosolic fraction of liver homogenates from healthy and diabetic rats. Life Sci 1999; 64: 325–35

    Article  PubMed  CAS  Google Scholar 

  41. Phillips RE, Looareesuwan S, White NJ, et al. Hypoglycaemia and antimalarial drugs: quinidine and release of insulin. Br Med J (Clin Res Ed) 1986; 292: 1319–21

    Article  CAS  Google Scholar 

  42. Davis TM, Karbwang J, Looareesuwan S, et al. Comparative effects of quinine and quinidine on glucose metabolism in healthy volunteers. Br J Clin Pharmacol 1990; 30: 397–403

    Article  PubMed  CAS  Google Scholar 

  43. Ryou C, Legname G, Peretz D, et al. Differential inhibition of prion propagation by enantiomers of quinacrine. Lab Invest 2003; 83(6): 837–43

    PubMed  CAS  Google Scholar 

  44. Wesche DL, Schuster BG, Wang WX, et al. Mechanism of cardiotoxicity of halofantrine. Clin Pharmacol Ther 2000; 67: 521–9

    Article  PubMed  CAS  Google Scholar 

  45. Donatelli P, Marchi G, Giuliani L, et al. Stereoselective inhibition by chloroquine of histamine N-methyltransferase in the human liver and brain. Eur J Clin Pharmacol 1994; 47: 345–9

    Article  PubMed  CAS  Google Scholar 

  46. Tagoe CN, Ofori-Adjei D. Effects of chloroquine and its enantiomers on the development of rat embryos in vitro. Teratology 1995; 52: 137–42

    Article  PubMed  CAS  Google Scholar 

  47. Augustijns P, Jongsma HW, Verbeke N. Transplacental distribution of chloroquine in sheep. Dev Pharmacol Ther 1991; 17: 191–9

    PubMed  CAS  Google Scholar 

  48. Costedoat-Chalumeau N, Amoura Z, Aymard G, et al. Evidence of transplacental passage of hydroxychloroquine in humans. Arthritis Rheum 2002; 46: 1123–4

    Article  PubMed  Google Scholar 

  49. Wolfe MS, Cordero JF. Safety of chloroquine in chemosuppression of malaria during pregnancy. Br Med J (Clin Res Ed) 1985; 290: 1466–7

    Article  CAS  Google Scholar 

  50. McGready R, Thwai KL, Cho T, et al. The effects of quinine and chloroquine antimalarial treatments in the first trimester of pregnancy. Trans R Soc Trop Med Hyg 2002; 96: 180–4

    Article  PubMed  CAS  Google Scholar 

  51. Agarwal S, Gupta UR, Daniel CS, et al. Susceptibility of glucose-6-phosphate dehydrogenase deficient red cells to primaquine, primaquine enantiomers, and its two putative metabolites: II. effect on red blood cell membrane, lipid peroxidation, MC-540 staining, and scanning electron microscopic studies. Biochem Pharmacol 1991; 41: 17–21

    Article  PubMed  CAS  Google Scholar 

  52. Agarwal S, Gupta UR, Gupta RC, et al. Susceptibility of glucose-6-phosphate dehydrogenase deficient red cells to primaquine enantiomers and two putative metabolites: I. effect on reduced glutathione, methemoglobin content and release of hemoglobin. Biochem Pharmacol 1988; 37: 4605–9

    Article  PubMed  CAS  Google Scholar 

  53. Shanks GD, Kain KC, Keystone JS. Malaria chemoprophylaxis in the age of drug resistance: II. drugs that may be available in the future. Clin Infect Dis 2001; 33: 381–5

    Article  PubMed  CAS  Google Scholar 

  54. Basco LK, Peytavin G, Gimenez F, et al. In vitro activity of the enantiomers of N-desbutyl derivative of halofantrine. Trop Med Parasitol 1994; 45: 45–6

    PubMed  CAS  Google Scholar 

  55. Basco LK, Gillotin C, Gimenez F, et al. Absence of antimalarial activity or interaction with mefloquine enantiomers in vitro of the main human metabolite of mefloquine. Trans R Soc Trop Med Hyg 1991; 85: 208–9

    Article  PubMed  CAS  Google Scholar 

  56. Aderounmu AF. In vitro assessment of the antimalarial activity of chloroquine and its major metabolites. Ann Trop Med Parasitol 1984; 78: 581–5

    PubMed  CAS  Google Scholar 

  57. Muller D, Blaschke G. Enantioselective assay of chloroquine and its main metabolite deethyl chloroquine in human plasma by capillary electrophoresis. J Chromatogr Sci 2000; 38: 435–40

    PubMed  CAS  Google Scholar 

  58. McLachlan AJ, Tett SE, Cutler DJ. High-performance liquid chromatographic separation of the enantiomers of hydroxychloroquine and its major metabolites in biological fluids using an alpha 1-acid glycoprotein stationary phase. J Chromatogr 1991; 570: 119–27

    Article  PubMed  CAS  Google Scholar 

  59. Iredale J, Wainer IW. Determination of hydroxychloroquine and its major metabolites in plasma using sequential achiral-chiral high-performance liquid chromatography. J Chromatogr 1992; 573: 253–8

    Article  PubMed  CAS  Google Scholar 

  60. Wei Y, Nygard GA, Khalil SKW. A HPLC method for the separation and quantification of the enantiomers of hydroxychloroquine and its three major metabolites. J Liq Chromatogr 1994; 17: 3479–90

    Article  CAS  Google Scholar 

  61. Ofori-Adjei D, Ericsson O, Lindstrom B, et al. Enantioselective analysis of chloroquine and desethylchloroquine after oral administration of racemic chloroquine. Ther Drug Monit 1986; 8: 457–61

    Article  PubMed  CAS  Google Scholar 

  62. Gorichon E, Martin C, Bangchang KN, et al. Chiral chromatographic method to determine the enantiomers of halofantrine and its main chiral desbutyl metabolite in erythrocytes. J Chromatogr B Biomed Sci Appl 1998; 712: 259–62

    Article  PubMed  CAS  Google Scholar 

  63. Terefe H, Blaschke G. Direct determination of the enantiomers of the antimalarial drug halofantrine and its active metabolite N-desbutylhalofantrine in human plasma. J Chromatogr B Biomed Appl 1994; 657: 238–42

    Article  PubMed  CAS  Google Scholar 

  64. Gimenez F, Aubry AF, Farinotti R, et al. The determination of the enantiomers of halofantrine and monodesbutylhalofantrine in plasma and whole blood using sequential achiral/chiral high-performance liquid chromatography. J Pharm Biomed Anal 1992; 10: 245–50

    Article  PubMed  CAS  Google Scholar 

  65. Gimenez F, Farinotti R, Thuillier A, et al. Determination of the enantiomers of mefloquine in plasma and whole blood using a coupled achiral-chiral high-performance liquid chromatographic system. J Chromatogr 1990; 529: 339–46

    Article  PubMed  CAS  Google Scholar 

  66. Brocks DR, Pasutto FM, Jamali F. Analytical and semi-preparative high-performance liquid chromatographic separation and assay of hydroxychloroquine enantiomers. J Chromatogr 1992; 581: 83–92

    Article  PubMed  CAS  Google Scholar 

  67. Karle JM, Olmeda R, Freeman SG, et al. Quantification of the individual enantiomer plasma concentrations of the candidate antimalarial agent N4-[2,6-dimethoxy-4-methyl-5-[(3-trifluoromethyl)phenoxy]-8-quinolinyl]-1,4-pentanediamine (WR 238,605). J Chromatogr B Biomed Appl 1995; 670: 251–7

    Article  PubMed  CAS  Google Scholar 

  68. Brocks DR, Dennis MJ, Schaefer WH. A liquid chromatographic assay for the stereospecific quantitative analysis of halofantrine in human plasma. J Pharm Biomed Anal 1995; 13: 911–8

    Article  PubMed  CAS  Google Scholar 

  69. Wallen L, Ericsson O, Wikstrom I, et al. High-performance liquid chromatographic method for the enantioselective analysis of mefloquine in plasma and urine. J Chromatogr B Biomed Appl 1994; 655: 153–7

    Article  PubMed  CAS  Google Scholar 

  70. Souri E, Farsam H, Jamali F. Stereospecific determination of mefloquine in biological fluids by high-performance liquid chromatography. J Chromatogr B Biomed Sci Appl 1997; 700: 215–22

    Article  PubMed  CAS  Google Scholar 

  71. Midha KK, Hubbard JW, Rawson MJ, et al. The roles of stereochemistry and partial areas in a parallel design study to assess the bioequivalence of two formulations of hydroxychloroquine: a drug with a very long half life. Eur J Pharm Sci 1996; 28: 283–92

    Article  Google Scholar 

  72. McLachlan AJ, Tett SE, Cutler DJ, et al. Disposition of the enantiomers of hydroxychloroquine in patients with rheumatoid arthritis following multiple doses of the racemate. Br J Clin Pharmacol 1993; 36: 78–81

    Article  PubMed  CAS  Google Scholar 

  73. Augustijns P, Verbeke N. Stereoselective pharmacokinetic properties of chloroquine and de-ethyl-chloroquine in humans. Clin Pharmacokinet 1993; 24: 259–69

    Article  PubMed  CAS  Google Scholar 

  74. Tett SE, McLachlan AJ, Cutler DJ, et al. Pharmacokinetics and pharmacodynamics of hydroxychloroquine enantiomers in patients with rheumatoid arthritis receiving multiple doses of racemate. Chirality 1994; 6: 355–9

    Article  PubMed  CAS  Google Scholar 

  75. Ducharme J, Fieger H, Ducharme MP, et al. Enantioselective disposition of hydroxychloroquine after a single oral dose of the racemate to healthy subjects. Br J Clin Pharmacol 1995; 40: 127–33

    Article  PubMed  CAS  Google Scholar 

  76. Abernethy DR, Wesche DL, Barbey JT, et al. Stereoselective halofantrine disposition and effect: concentration-related QTc prolongation. Br J Clin Pharmacol 2001; 51: 231–7

    Article  PubMed  CAS  Google Scholar 

  77. Bourahla A, Martin C, Gimenez F, et al. Stereoselective pharmacokinetics of mefloquine in young children. Eur J Clin Pharmacol 1996; 50: 241–4

    Article  PubMed  CAS  Google Scholar 

  78. Gimenez F, Pennie RA, Koren G, et al. Stereoselective pharmacokinetics of mefloquine in healthy Caucasians after multiple doses. J Pharm Sci 1994; 83: 824–7

    Article  PubMed  CAS  Google Scholar 

  79. Martin C, Gimenez F, Bangchang KN, et al. Whole blood concentrations of mefloquine enantiomers in healthy Thai volunteers. Eur J Clin Pharmacol 1994; 47: 85–7

    Article  PubMed  CAS  Google Scholar 

  80. Khaliq Y, Gallicano K, Tisdale C, et al. Pharmacokinetic interaction between mefloquine and ritonavir in healthy volunteers. Br J Clin Pharmacol 2001; 51: 591–600

    Article  PubMed  CAS  Google Scholar 

  81. Svensson US, Alin H, Karlsson MO, et al. Population pharmacokinetic and pharmacodynamic modelling of artemisinin and mefloquine enantiomers in patients with falciparum malaria. Eur J Clin Pharmacol 2002; 58: 339–51

    Article  PubMed  CAS  Google Scholar 

  82. Gimenez F, Gillotin C, Basco LK, et al. Plasma concentrations of the enantiomers of halofantrine and its main metabolite in malaria patients. Eur J Clin Pharmacol 1994; 46: 561–2

    Article  PubMed  CAS  Google Scholar 

  83. Hellgren U, Jastrebova J, Jerling M, et al. Comparison between concentrations of racemic mefloquine, its separate enantiomers and the carboxylic acid metabolite in whole blood serum and plasma. Eur J Clin Pharmacol 1996; 51: 171–3

    Article  PubMed  CAS  Google Scholar 

  84. Karbwang J, Davis TM, Looareesuwan S, et al. A comparison of the pharmacokinetic and pharmacodynamic properties of quinine and quinidine in healthy Thai males. Br J Clin Pharmacol 1993; 35: 265–71

    Article  PubMed  CAS  Google Scholar 

  85. McLachlan AJ, Tett SE, Cutler DJ, et al. Disposition and absorption of hydroxychloroquine enantiomers following a single dose of the racemate. Chirality 1994; 6: 360–4

    Article  PubMed  CAS  Google Scholar 

  86. Humberstone AJ, Porter CJ, Charman WN. A physicochemical basis for the effect of food on the absolute oral bioavailability of halofantrine. J Pharm Sci 1996; 85: 525–9

    Article  PubMed  CAS  Google Scholar 

  87. Milton KA, Edwards G, Ward SA, et al. Pharmacokinetics of halofantrine in man: effects of food and dose size. Br J Clin Pharmacol 1989; 28: 71–7

    Article  PubMed  CAS  Google Scholar 

  88. Brocks DR, Toni JW. Pharmacokinetics of halofantrine in the rat: stereoselectivity and interspecies comparisons. Biopharm Drug Dispos 1999; 20: 165–9

    Article  PubMed  CAS  Google Scholar 

  89. Brocks DR, Wasan KM. The influence of lipids on stereoselective pharmacokinetics of halofantrine: important implications in food-effect studies involving drugs that bind to lipoproteins. J Pharm Sci 2002; 91: 1817–26

    Article  PubMed  CAS  Google Scholar 

  90. Shackleford DM, Porter CJ, WN Charman. Does stereoselective lymphatic absorption contribute to the enantioselective pharmacokinetics of halofantrine in vivo? Biopharm Drug Dispos 2003; 24(4): 153–7

    Article  PubMed  CAS  Google Scholar 

  91. Ezzet F, van Vugt M, Nosten F, et al. Pharmacokinetics and pharmacodynamics of lumefantrine (benflumetol) in acute falciparum malaria. Antimicrob Agents Chemother 2000; 44: 697–704

    Article  PubMed  CAS  Google Scholar 

  92. Brocks DR, Skeith KJ, Johnston C, et al. Hematologic disposition of hydroxychloroquine enantiomers. J Clin Pharmacol 1994; 34: 1088–97

    PubMed  CAS  Google Scholar 

  93. Ofori-Adjei D, Ericsson O, Lindstrom B, et al. Protein binding of chloroquine enantiomers and desethylchloroquine. Br J Clin Pharmacol 1986; 22: 356–8

    Article  PubMed  CAS  Google Scholar 

  94. McLachlan AJ, Cutler DJ, Tett SE. Plasma protein binding of the enantiomers of hydroxychloroquine and metabolites. Eur J Clin Pharmacol 1993; 44: 481–4

    Article  PubMed  CAS  Google Scholar 

  95. Notterman DA, Drayer DE, Metakis L, et al. Stereoselective renal tubular secretion of quinidine and quinine. Clin Pharmacol Ther 1986; 40: 511–7

    Article  PubMed  CAS  Google Scholar 

  96. Brocks DR. Stereoselective halofantrine and desbutylhalofantrine disposition in the rat: cardiac and plasma concentrations and plasma protein binding. Biopharm Drug Dispos 2002; 23: 9–15

    Article  PubMed  CAS  Google Scholar 

  97. Mansor SM, Molyneux ME, Taylor TE, et al. Effect of Plasmodium falciparum malaria infection on the plasma concentration of α1-acid glycoprotein and the binding of quinine in Malawian children. Br J Clin Pharmacol 1991; 32: 317–21

    Article  PubMed  CAS  Google Scholar 

  98. Wanwimolruk S, Denton JR. Plasma protein binding of quinine: binding to human serum albumin, α1-acid glycoprotein and plasma from patients with malaria. J Pharm Pharmacol 1992; 44: 806–11

    Article  PubMed  CAS  Google Scholar 

  99. Dodoo D, Omer FM, Todd J, et al. Absolute levels and ratios of proinflammatory and anti-inflammatory cytokine production in vitro predict clinical immunity to Plasmodium falciparum malaria. J Infect Dis 2002; 185: 971–9

    Article  PubMed  CAS  Google Scholar 

  100. Wainer IW, Chen JC, Parenteau H, et al. Distribution of the enantiomers of hydroxychloroquine and its metabolites in ocular tissues of the rabbit after oral administration of racemic-hydroxychloroquine. Chirality 1994; 6: 347–54

    Article  PubMed  CAS  Google Scholar 

  101. Bertagnolio S, Tacconelli E, Camilli G, et al. Case report: retinopathy after malaria prophylaxis with chloroquine. Am J Trop Med Hyg 2001; 65: 637–8

    PubMed  CAS  Google Scholar 

  102. Wei Y, Nygard GA, Ellertson SL, et al. Stereoselective disposition of hydroxychloroquine and its metabolite in rats. Chirality 1995; 7: 598–604

    Article  PubMed  CAS  Google Scholar 

  103. Brocks DR, Ramaswamy M, MacInnes AI, et al. The stereoselective distribution of halofantrine enantiomers within human, dog, and rat plasma lipoproteins. Pharm Res 2000; 17: 427–31

    Article  PubMed  CAS  Google Scholar 

  104. Colussi D, Parisot C, Legay F, et al. Binding of artemether and lumefantrine to plasma proteins and erythrocytes. Eur J Pharm Sci 1999; 9: 9–16

    Article  PubMed  CAS  Google Scholar 

  105. Thummell KE, Shen DD. Appendix II. Design and optimization of dosage regimens: pharmacokinetic data. In: Hardman JG, Limbird LE, Goodman Gilman A, editors. Goodman and Gilmans’s the pharmacological basis of therapeutics. 10th ed. New York: McGraw-Hill, 2001: 1917–2023

    Google Scholar 

  106. Vidrequin S, Gimenez F, Basco LK, et al. Uptake of mefloquine enantiomers into uninfected and malaria-infected erythrocytes. Drug Metab Dispos 1996; 24: 689–91

    PubMed  CAS  Google Scholar 

  107. Potasman I, Beny A, Seligmann H. Neuropsychiatric problems in 2,500 long-term young travelers to the tropics. J Travel Med 2000; 7: 5–9

    Article  PubMed  CAS  Google Scholar 

  108. Javorsky DJ, Tremont G, Keitner GI, et al. Cognitive and neuropsychiatric side effects of mefloquine [letter]. J Neuropsychiatry Clin Neurosci 2001; 13: 302

    Article  PubMed  CAS  Google Scholar 

  109. Pham YT, Nosten F, Farinotti R, et al. Cerebral uptake of mefloquine enantiomers in fatal cerebral malaria. Int J Clin Pharmacol Ther 1999; 37: 58–61

    PubMed  CAS  Google Scholar 

  110. Karbwang J, White NJ. Clinical pharmacokinetics of mefloquine. Clin Pharmacokinet 1990; 19: 264–79

    Article  PubMed  CAS  Google Scholar 

  111. Baudry S, Pham YT, Baune B, et al. Stereoselective passage of mefloquine through the blood-brain barrier in the rat. J Pharm Pharmacol 1997; 49: 1086–90

    Article  PubMed  CAS  Google Scholar 

  112. Czuba MA, Morgan DJ, Ching MS, et al. Disposition of the diastereoisomers quinine and quinidine in the ovine fetus. J Pharm Sci 1991; 80: 445–8

    Article  PubMed  CAS  Google Scholar 

  113. Nicholl DD, Edwards G, Ward SA, et al. The disposition of primaquine in the isolated perfused rat liver: stereoselective formation of the carboxylic acid metabolite. Biochem Pharmacol 1987; 36: 3365–9

    Article  PubMed  CAS  Google Scholar 

  114. Baune B, Flinois JP, Furlan V, et al. Halofantrine metabolism in microsomes in man: major role of CYP 3A4 and CYP 3A5. J Pharm Pharmacol 1999; 51: 419–26

    Article  PubMed  CAS  Google Scholar 

  115. Fontaine F, de Sousa G, Burcham PC, et al. Role of cytochrome P450 3A in the metabolism of mefloquine in human and animal hepatocytes. Life Sci 2000; 66: 2193–212

    Article  PubMed  CAS  Google Scholar 

  116. Hellgren U, Berggren-Palme I, Bergqvist Y, et al. Enantioselective pharmacokinetics of mefloquine during long-term intake of the prophylactic dose. Br J Clin Pharmacol 1997; 44: 119–24

    Article  PubMed  CAS  Google Scholar 

  117. Lu L, Leonessa F, Baynham MT, et al. The enantioselective binding of mefloquine enantiomers to P-glycoprotein determined using an immobilized P-glycoprotein liquid chromatographic stationary phase. Pharm Res 2001; 18: 1327–30

    Article  PubMed  CAS  Google Scholar 

  118. Humberstone AJ, Porter CJ, Edwards GA, et al. Association of halofantrine with postprandially derived plasma lipoproteins decreases its clearance relative to administration in the fasted state. J Pharm Sci 1998; 87: 936–42

    Article  PubMed  CAS  Google Scholar 

  119. Krishna S, ter Kuile F, Supanaranond S, et al. Pharmacokinetics, efficacy and toxicity of parenteral halofantrine in uncomplicated malaria. Br J Clin Pharmacol 1993; 36: 585–91

    Article  PubMed  CAS  Google Scholar 

  120. Ueda CT. Qunidine, chapter 23. In: Evans WE, Schentag JJ, Jusko WJ, editors. Applied pharmacokinetics: principles of therapeutic drug monitoring. 2nd ed. Vancouver: Applied Therapeutics Inc., 1993: 23-1-23-2

  121. Fieger H, Iredale J, Wainer IW. Enantioselective determination of hydroxychloroquine and its major metabolites in urine and the observation of a reversal in the (+)/(−)-hydroxychloroquine ratio. Chirality 1993; 5: 65–70

    Article  PubMed  CAS  Google Scholar 

  122. Tajerzadeh H, Cutler DJ. Blood to plasma ratio of mefloquine: interpretation and pharmacokinetic implications. Biopharm Drug Dispos 1993; 14: 87–91

    Article  PubMed  CAS  Google Scholar 

  123. Karbwang J, Bunnag D, Harinasuta T, et al. Pharmacokinetics of quinine, quinidine and cinchonine when given as combination. Southeast Asian J Trop Med Public Health 1992; 23: 773–6

    PubMed  CAS  Google Scholar 

  124. Miller DR, Fiechtner JJ, Carpenter JR, et al. Plasma hydroxychloroquine concentrations and efficacy in rheumatoid arthritis. Arthritis Rheum 1987; 30: 567–71

    Article  PubMed  CAS  Google Scholar 

  125. Hedman A, Angelin B, Arvidsson A, et al. Interactions in the renal and biliary elimination of digoxin: stereoselective difference between quinine and quinidine. Clin Pharmacol Ther 1990; 47: 20–6

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported, in part, by the Burroughs Wellcome Foundation and AFPE (AACP-NIP Grant). The authors have provided no information on conflicts of interest directly relevant to this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dion R. Brocks.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brocks, D.R., Mehvar, R. Stereoselectivity in the Pharmacodynamics and Pharmacokinetics of the Chiral Antimalarial Drugs. Clin Pharmacokinet 42, 1359–1382 (2003). https://doi.org/10.2165/00003088-200342150-00004

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003088-200342150-00004

Keywords

Navigation