Skip to main content
Log in

Clinical Pharmacokinetics of Amfetamine and Related Substances

Monitoring in Conventional and Non-Conventional Matrices

  • Review Article
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

Consumption of amfetamine-type stimulants, including classical amfetamines and ‘designer drugs’, has been recognised as one of the most significant trends in drug abuse at the end of the past century and at the beginning of the current one. The first cause is the increasing consumption amongst youth of methylenedioxy- and methoxy-substituted amfetamines, of which the pharmacology in humans is currently under investigation. Secondly, the abuse of more classical amfetamines, such as amfetamine itself and metamfetamine, continues to be highly prevalent in some geographical regions.

Amfetamines are powerful psychostimulants, producing increased alertness, wakefulness, insomnia, energy and self-confidence in association with decreased fatigue and appetite as well as enhanced mood, well-being and euphoria. From a clinical pharmacokinetic perspective, amfetamine-type stimulants are rather homogeneous. Their oral bioavailability is good, with a high distribution volume (4 L/kg) and low binding to plasma proteins (less than 20%). The elimination half-life is 6–12 hours. Both hepatic and renal clearance contribute to their elimination from the body. Hepatic metabolism is extensive in most cases, but a significant percentage of the drug always remains unaltered.

Amfetamine and related compounds are weak bases, with a pKa around 9.9, and a relatively low molecular weight. These characteristics allow amfetamine-type stimulants to diffuse easily across cell membranes and lipid layers and to those tissues or biological substrates with a more acidic pH than blood, facilitating their detection in alternative matrices at relatively high concentrations. In most cases, the concentrations found are higher than expected from the Henderson-Hasselbach equation. Drug monitoring in non-conventional biological matrices (e.g. saliva, hair, nails, sweat) has recently gained much attention because of its possible applications in clinical and forensic toxicology. An individual’s past history of medication, compliance or drug abuse can be obtained from testing of hair and nails, whereas data on current status of drug use can be provided by analysis of sweat and saliva.

Because of the physicochemical properties of amfetamine-type stimulants, this group of drugs is one of the most suitable for drug testing in non-conventional matrices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Table I
Fig. 1
Fig. 2
Table II
Table III
Table IV
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Jenkins AJ, Cone EJ. Pharmacokinetics: drug absorption, distribution, and elimination. In: Steven B, Karch MD, editors. Drug abuse handbook. San Francisco, (CA): CRC Press, 1998: 151–202

    Google Scholar 

  2. Edeleano L. Über einige derivate der phenylmethacrylsäure und der phenyliso-buttersäure. Chem Ges 1887; 20: 616–22

    Article  Google Scholar 

  3. Martin WR, editor. Medical toxicology: drug addiction II. New York: Springer Verlag, 1977: 283–4

    Google Scholar 

  4. Gilman AG, Rall TW, Nies AS, et al. editors. Goodman and Gilman’s the pharmacological bases of therapeutics. 8th ed. Elmsford, (NY): Pergamon, 1990: 1703

    Google Scholar 

  5. Wright JD, Pearl L. Knowledge and experience of young people regarding drug misuse: 1969–94. BMJ 1995; 310: 20–4

    Article  PubMed  CAS  Google Scholar 

  6. Nichols DE. Differences between the mechanism of action of MDMA, MBDB, and the classic hallucinogens. Identification of a new therapeutic class: entactogens. J Psychoactive Drugs 1986; 18: 305–13

    Article  PubMed  CAS  Google Scholar 

  7. Peroutka SJ, Newman H, Harris H. Subjective effects of 3,4-methylenedioxy-methamphetamine in recreational users. Neuropsychopharmacology 1988; 1: 273–7

    PubMed  CAS  Google Scholar 

  8. World Drug Report. United Nations International Drug Control Program. Oxford University Press, 1997: 38-43

  9. United Nations Office for Drug Control and Crime Prevention. Global illicit drug trends 2000. New York: United Nations Publications, 2000: 10–16

    Google Scholar 

  10. Baden KL, Valtier S, Cody JT. Metabolic production of amphetamine following multidose administration of clobenzorex. J Anal Toxicol 1999; 23: 511–7

    PubMed  CAS  Google Scholar 

  11. Reynolds DP, Elsworth JD, Blau K, et al. Deprenyl is metabolized to methamphetamine and amphetamine in man. J Clin Pharmacol 1978; 6: 542–4

    CAS  Google Scholar 

  12. Musshoff F. Illegal or legitimate use?: precursor compounds to amphetamine or methamphetamine. Drug Metab Rev 2000; 32: 15–44

    Article  PubMed  CAS  Google Scholar 

  13. Kraemer T, Maurer HH. Determination of amphetamine, methamphetamine and amphetamine-derived designer drugs or medicaments in blood and urine. J Chromatogr B Biomed Sci Appl 1998; 713: 163–87

    Article  PubMed  CAS  Google Scholar 

  14. Kintz P, Samyn N. Determination of ‘Ecstasy’ components in alternative biologic specimens. J Chromatogr B Biomed Sci Appl 1999; 733: 137–43

    Article  PubMed  CAS  Google Scholar 

  15. Jacob P, Shulgin AT. Structure-activity relationships of the classic hallucinogens and their analogs. In: Lin GC, Glennon RA, editors. Hallucinogens: an update. Rockville, (MD): NIDA Research Monograph 146, 1994: 74–91

    Google Scholar 

  16. Beckett AH, Rowland M. Urinary excretion of methylamphetamine in man. Nature 1965; 206: 1260–1

    Article  PubMed  CAS  Google Scholar 

  17. Shappell SA, Kearns GL, Valentine JL, et al. Chronopharmacokinetics and chronopharmacodynamics of dextromethamphetamine in man. J Clin Pharmacol 1996; 36: 1051–63

    Article  PubMed  CAS  Google Scholar 

  18. Carpi C, Giaroli M. Comparative pharmacodynamic activity of 3 anorexic drugs: D-amphetamine, phenmetrazine, diethylpropion. I: behaviour, toxicity, spontaneous activity. Boll Soc Ital Biol Sper 1964; 40: 1083–6

    PubMed  CAS  Google Scholar 

  19. Maurer HH, Kraemer T. Toxicological detection of selegiline and its metabolites in urine using fluorescence polarization immunoassay (FPIA) and gas chromatography-mass spectrometry (GC-MS) and differentiation by enantioselective GC-MS of the intake of selegiline from abuse of methamphetamine or amphetamine. Arch Toxicol 1992; 66: 675–8

    Article  PubMed  CAS  Google Scholar 

  20. Romberg RW, Needleman SB, Snyder JJ, et al. Methamphetamine and amphetamine derived from the metabolism of selegiline. J Forensic Sci 1995; 40: 1100–2

    PubMed  CAS  Google Scholar 

  21. Kraemer T, Theis GA, Maurer HH, et al. Studies on the metabolism and toxicology detection of the amphetamine-like anorectic fenproporex in human urine by gas chromatographymass spectrometry and fluorescence polarization immunoassay. J Chromatogr B Biomed Sci Appl 2000; 738: 107–18

    Article  PubMed  CAS  Google Scholar 

  22. Cody JT, Valtier S. Detection of amphetamine following administration of fenproporex. J Anal Toxicol 1996; 20: 425–31

    PubMed  CAS  Google Scholar 

  23. Beckett AH, Tucker GT, Moffat AC. Routine detection and identification in urine of stimulants and other drugs, some of which may used to modify performance in sport. J Pharm Pharmacol 1967; 19: 273–94

    Article  PubMed  CAS  Google Scholar 

  24. Marsel J, Doring G, Remberg G, et al. Methamphetamine in metabolite der appetitzugler benzphetamine und furfenorex. Z Rechtsmed 1972; 70: 245–50

    Article  PubMed  CAS  Google Scholar 

  25. Inoue T, Suzuki S. The metabolism of 1-phenyl-2-(N-methyl-N-benzamino)propane (benzphetamine) and 1-phenyl-2-(N-me-thyl-N-furfurylamino)propane (furfenorex) in man. Xenobiotica 1986; 16: 691–8

    Article  PubMed  CAS  Google Scholar 

  26. Kraemer T, Vernaleken I, Maurer HH, et al. Studies on the metabolism and toxicology detection of the amphetamine-like anorectic mefenorex in human urine by gas chromatography-mass spectrometry and fluorescence polarization immunoassay. J Chromatogr B Biomed Sci Appl 1997; 702: 93–102

    Article  PubMed  CAS  Google Scholar 

  27. Ellison T, Levy L, Bolger JW, et al. The metabolic fate of 3H-fenethylline in man. Eur J Pharmacol 1970; 13: 123–8

    Article  PubMed  CAS  Google Scholar 

  28. Yoshimura H, Yoshimitsu T, Yamada H, et al. Metabolic fate of fenethylline in rat and man. Xenobiotica 1988; 18: 929–40

    Article  PubMed  CAS  Google Scholar 

  29. Maurer HH, Kraemer T, Ledvinka O, et al. Gas chromatography-mass spectrometry (GC-MS) and liquid chromatographymass spectrometry (LC-MS) in toxicological analysis: studies on the detection of clobenzorex and its metabolites within a systematic toxicological analysis procedure by GC-MS and by immunoassay and studies on the detection of alpha- and beta- amanitin in urine by atmospheric pressure ionization electrospray LC-MS. J Chromatogr B Biomed Sci Appl 1997; 689: 81–9

    Article  PubMed  CAS  Google Scholar 

  30. Tarver JA. Amphetamine-positive drug screens from use of clobenzorex hydrochlorate [letter]. J Anal Toxicol 1994; 18: 183

    PubMed  CAS  Google Scholar 

  31. Beckett AH, Shenoy EVB, Salmon JA. The influence of replacement of the N-ethyl group on the absorption, distribution and metabolism of (±)-ethylamphetamine in man. J Pharm Pharmacol 1972; 24: 194–202

    Article  PubMed  CAS  Google Scholar 

  32. Neugebauer M. Some new urinary metabolites of famprofazone and morazone in man. J Pharm Biomed Anal 1984; 19: 161–6

    Google Scholar 

  33. Shin HS, Park JS, Park BP, et al. Detection and identification of famprofazone and its metabolite in human urine. J Chromatogr B Biomed Sci Appl 1994; 661: 255–61

    Article  CAS  Google Scholar 

  34. Yoo Y, Chung H, Choy H. Urinary methamphetamine concentration following famprofazone administration. J Anal Toxicol 1994; 18: 265–8

    PubMed  CAS  Google Scholar 

  35. Simons FE, Gu X, Watson WT, et al. Pharmacokinetics of the orally administered decongestants pseudoephedrine and phenylpropanolamine in children. J Pediatr 1996; 129: 729–34

    Article  PubMed  CAS  Google Scholar 

  36. Rao VV, Rambhau D, Rao BR, et al. Pharmacokinetics of a single dose of phenylpropanolamine following oral administration at two different times of the day. Arzneimittel Forschung 1998; 48: 1087–90

    PubMed  CAS  Google Scholar 

  37. Kramer T, Roditis SK, Peters FT, et al. Amphetamine concentrations in human urine following single-dose administration of the calcium antagonist prenylamine-studies using flourescence polarization immunoassay (FPIA) and GCMS. J Anal Toxicol 2003; 27: 68–73

    Google Scholar 

  38. Berlin I, Warot D, Aymard G, et al. Pharmacodynamics and pharmacokinetics of a single nasal (5mg and 10mg) and oral (50mg) doses of ephedrine in healthy subjects. Eur J Clin Pharmacol 2001; 57: 447–55

    Article  PubMed  CAS  Google Scholar 

  39. Sever PS, Dring LG, Williams RT. The metabolism of (−)-ephedrine in man. Eur J Clin Pharmacol 1975; 9: 193–8

    Article  PubMed  CAS  Google Scholar 

  40. Vermeulen NP, Teunissen MW, Breimer DD. Pharmacokinetics of pemoline in plasma, saliva and urine following oral administration. Br J Clin Pharmacol 1979; 8: 459–63

    Article  PubMed  CAS  Google Scholar 

  41. DeVane CL, Markowitz JS, Carson SW, et al. Single-dose pharmacokinetics of methylphenidate in CYP2D6 extensive and poor metabolizers. J Clin Psychopharmacol 2000; 20: 347–9

    Article  PubMed  CAS  Google Scholar 

  42. Modi NB, Lindemulder B, Gupta SK. Single and multiple-dose pharmacokinetics of an oral once-a-day osmotic controlled-release OROS (methylphenidate HC1) formulation. J Clin Pharmacol 2000; 40: 379–88

    Article  PubMed  CAS  Google Scholar 

  43. Kimko HC, Cross JT, Abernethy DR. Pharmacokinetics and clinical effectiveness of methylphenidate. Clin Pharmacokinet 1999; 37: 457–70

    Article  PubMed  CAS  Google Scholar 

  44. Franklin RB, Dring LG, Williams RT. The metabolism of phenmetrazine in man and laboratory animals. Drug Metab Dispos 1977; 5: 223–33

    PubMed  CAS  Google Scholar 

  45. Muller FO, Hundt HK, Gosling JA. Availability of phendimetrazine from non-sustained actions formulations. S Afr Med J 1975; 49: 135–9

    PubMed  CAS  Google Scholar 

  46. Dangor CM, Beckett AH, Veltman AM. Bioavailability of amfepramone hydrochloride sustained release pellets formulation in healthy subjects. Arzneimittel Forschung 1987; 37: 736–9

    PubMed  CAS  Google Scholar 

  47. Cheymol G, Weissenburger J, Poirier JM, et al. The pharmacokinetics of dexfenfluramine in obese and non-obese subjects. Br J Clin Pharmacol 1995; 39: 684–7

    PubMed  CAS  Google Scholar 

  48. Young R. Aminorex produces stimulus effects similar to amphetamine and unlike those of fenfluramine. Pharmacol Biochem Behav 1992; 42: 175–8

    Article  PubMed  CAS  Google Scholar 

  49. Groenewoud G, Schall R, Hundt HK, et al. Steady-state pharmacokinetics of phentermine extended-release capsules. Int J Clin Pharmacol Ther Toxicol 1993; 31: 368–72

    PubMed  CAS  Google Scholar 

  50. Beckett AH, Belanger PM. The metabolism, distribution and elimination of chlorphentermine in man. Br J Clin Pharmacol 1977; 4: 193–200

    Article  PubMed  CAS  Google Scholar 

  51. Thiessen PN, Cook DA. The properties of 3,4-methylenedioxy-amphetamine (MDA). I: a review of the literature. Clin Toxicol 1973; 6: 45–52

    Article  PubMed  CAS  Google Scholar 

  52. Schmidt CJ, Wu L, Lovenberg W. Methylenedioxymethamphetamine: a potentially neurotoxic amphetamine analogue. Eur J Pharmacol 1986; 124: 175–8

    Article  PubMed  CAS  Google Scholar 

  53. Hermle L, Spitzer M, Borchardt D, et al. Psychological effects of MDE in normal subjects: are entactogens a new class of psychoactive agents? Neuropsychopharmacology 1993; 8: 171–6

    PubMed  CAS  Google Scholar 

  54. Felgate HE, Felgate PD, James RA, et al. Recent paramethoxyamphetamine deaths. J Anal Toxicol 1998; 22(2): 169–72

    PubMed  CAS  Google Scholar 

  55. Poortman AJ, Lock E. Analytical profile of 4-methylthioamphetamine (4-MTA), a new street drug. Forensic Sci Int 1999; 100: 221–33

    Article  PubMed  CAS  Google Scholar 

  56. Holland GF, Buck CJ, Weissman A. Anorexigenic agents: aromatic substituted 1-phenyl-2-propylamines. J Med Chem 1963; 51: 9–24

    Google Scholar 

  57. Van Rossum JM, Simons F. Locomotor activity and anorexigen action. Psychopharmacologia 1969; 14: 248–54

    Article  PubMed  Google Scholar 

  58. Daly JW, Creveling CR, Witkop B. The chemorelease of norephedrine from mouse hearts: structure-activity relationships. I: Sympathomimetic and related amines. J Med Chem 1966; 9: 280–4

    Article  PubMed  CAS  Google Scholar 

  59. Cho AK, Segal DS, editors. Amphetamine and its analogs. San Diego (CA): Academic Press, 1994: 3–34

    Google Scholar 

  60. Shin H, Donike M. Stereospecific derivatization of amphetamines, phenol alkylamines, and hydroxyamines and quantification of the enantiomers by capillary GC/MS. Anal Chem 1996; 68: 3015–20

    Article  PubMed  CAS  Google Scholar 

  61. Spitzer M, Franke B, Walter H, et al. Enantio-selective cognitive and brain activation effects of N-ethyl-3,4-methylenedioxyamphetamine in humans. Neuropharmacology 2001; 41: 263–71

    Article  PubMed  CAS  Google Scholar 

  62. Martin SB, Wan SH, Knight JB. Quantitative determination of enantiomeric compounds. I: simultaneous measurement of the optical isomers of amphetamine in human plasma and saliva using chemical ionization mass spectrometry. Biomed Mass Spectrom 1977; 4: 118–21

    Article  Google Scholar 

  63. Ramseier A, Caslavska J, Thormann W. Stereoselective screening for and confirmation of urinary enantiomers of amphetamine, methamphetamine, designer drugs, methadone and selected metabolites by capillary electrophoresis. Electrophoresis 1999; 20(13): 2726–38

    Article  PubMed  CAS  Google Scholar 

  64. Pizarro N, Ortuño J, Farré M, et al. Determination of MDMA and its metabolites in blood and urine by gas chromatographymass spectrometry and analysis of enantiomers by capillary electrophoresis. J Anal Toxicol 2002; 26: 157–65

    PubMed  CAS  Google Scholar 

  65. Baselt RC, Cravey RH, editors. Disposition of toxic drugs and chemicals in man. 4th ed. Foster City (CA): Chemical Toxicology Institute, 1995

    Google Scholar 

  66. Moffat AC, Jackson JV, Moss MS, Widdop B, editors. Clarke’s isolation and identification of drugs. 2nd ed. London: The Pharmaceutical Press, 1986

    Google Scholar 

  67. Swiss Pharmaceutical Society, editor. Index nominum: international drug directory 1992/1993. Frankfurt: Med Pharm Scientific Publishers, 1992

    Google Scholar 

  68. Änggård E. General pharmacology of amphetamine-like drugs. A: pharmacokinetics and metabolism. In: Martin WR, editor. Drug addiction II. New York: Springer Verlag, 1977: 6–7

    Google Scholar 

  69. Dollery C, editor. Therapeutic drugs. Vols. 1, 2, 3. London: Churchill Livingston, 1991

    Google Scholar 

  70. O’Neil MJ, Smith A, Heckelman PE, Budavari S, editors. The Merck index. 13th ed. Whitehouse Station (NJ): Merck Research Laboratories, 2001

    Google Scholar 

  71. Beckett AH, Brookes LG. The metabolism and urinary excretion in man of phentermine and the influence of N-methyl and p-chloro-substitution. J Pharm Pharmacol 1971; 23: 288–94

    Article  PubMed  CAS  Google Scholar 

  72. Beckett AH. Kinetics of the absorption and elimination of ‘amphetamines’ in normal humans. In: Sjoqvist F, Tottie M, editors. Abuse of central stimulants. Stockholm: Almqvist and Wiksell, 1969: 375, 408

    Google Scholar 

  73. Ghysel M-H. Amphétamines et dérivés. In: Kintz P, editor. Toxicologie et pharmacologie médicolégales. Paris: Éditions scientifiques et médicales Elsevier, 1998: 465–541

    Google Scholar 

  74. Pichini S, Altieri I, Zuccaro P, et al. Drug monitoring in non-conventional biologic fluids and matrices. Clin Pharmacokinet 1996; 30: 211–28

    Article  PubMed  CAS  Google Scholar 

  75. Seiden LS, Sabol KE, Ricaurte GA. Amphetamine: effects on catecholamine systems and behaviour. Annu Rev Pharmacol Toxicol 1993; 32: 639–77

    Article  Google Scholar 

  76. Parrott AC. Human psychopharmacology of ecstasy (MDMA): a review of 15 years of empirical research. Hum Psychopharmacol Clin Exp 2001; 16: 557–77

    Article  CAS  Google Scholar 

  77. White SR, Obradovic T, Imel KM, et al. The effects of methylenedioxymethamphetamine (MDMA, ‘’Ecstasy’) on monoaminergic neurotransmission in the central nervous system. Prog Neurobiol 1996; 49: 455–79

    Article  PubMed  CAS  Google Scholar 

  78. European Monitoring Center for Drugs and Drug Addiction. Report on risk assessment of 4-MTA in the framework of the joint action on new synthetic drugs. Luxemburg: European Communities Publication, 1999

    Google Scholar 

  79. Green AR, Mechan AO, Elliott JM, et al. The pharmacology and clinical pharmacology of 3,4-methylenedioxymethamphetamine (MDMA, ecstasy). Pharmacol Rev 2003; 55: 463–508

    Article  PubMed  CAS  Google Scholar 

  80. Carni J, Farre M. Drug addiction. N Engl J Med 2003; 349: 975–86

    Article  Google Scholar 

  81. Hoffman BB, Lefkowitz RJ. Catecholamines, sympathomimetic drugs, and adrenergic receptor antagonists. In: Hardman JG, Limbird LE, Molinoff PB et al., editors. Goodman and Gilman’s the pharmacological basis of therapeutics. 9th ed. New York: McGraw-Hill, 1996: 199–248

    Google Scholar 

  82. Carní J, Farré M, Mas M, et al. Human pharmacology of 3,4-methylenedioxymethamphetamine (’ecstasy’): psychomotor performance and subjective effects. J Clin Psychopharmacol 2000; 20: 455–66

    Article  Google Scholar 

  83. Markowitz JS, Morrison SD, DeVane CL. Drug interactions with psychostimulants. Int Clin Psychopharmacol 1999; 14: 1–18

    Article  PubMed  CAS  Google Scholar 

  84. Perez-Reyes M, White WR, McDonald SA, et al. Interaction between ethanol and dextroamphetamine: effects on psychomotor performance. Alcohol Clin Exp Res 1992; 16: 75–81

    Article  PubMed  CAS  Google Scholar 

  85. Mendelson J, Jones RT, Upton R, et al. Methamphetamine and ethanol interactions in humans. Clin Pharmacol Ther 1995; 57: 559–68

    Article  PubMed  CAS  Google Scholar 

  86. Shimosato K. Urinary excretion of p-hydroxylated methamphetamine metabolites in man. II: effect of alcohol intake on methamphetamine metabolism. Pharmacol Biochem Behav 1988; 29: 733–40

    Article  PubMed  CAS  Google Scholar 

  87. Hernandez-Lopez C, Farré M, Roset PN, et al. 3,4-Methylenedioxymethamphetamine (ecstasy) and alcohol interactions in humans: psychomotor performance, subjective effects, and pharmacokinetics. J Pharmacol Exp Ther 2002; 300: 236–44

    Article  PubMed  CAS  Google Scholar 

  88. Baggott M, Heifets B, Jones RT, et al. Chemical analysis of ecstasy pills [letter]. JAMA 2000; 284: 2190

    Article  PubMed  CAS  Google Scholar 

  89. Henry JA, Hill IR. Fatal interaction between ritonavir and MDMA. Lancet 1998; 352: 1751–2

    Article  PubMed  CAS  Google Scholar 

  90. Liechti ME, Baumann C, Gamma A, et al. Acute psychological effects of 3,4-methylenedioxymethamphetamine (MDMA, ‘Ecstasy’) are attenuated by the serotonin uptake inhibitor citalopram. Neuropsychopharmacology 2000; 22: 513–21

    Article  PubMed  CAS  Google Scholar 

  91. Liechti ME, Vollenweider FX. The serotonin uptake inhibitor citalopram reduces acute cardiovascular and vegetative effects of 3,4-methylenedioxymethamphetamine (’Ecstasy’) in healthy volunteers. J Psychopharmacol 2000; 14: 269–74

    Article  PubMed  CAS  Google Scholar 

  92. Liechti ME, Vollenweider FX. Acute psychological and physiological effects of MDMA (’Ecstasy’) after haloperidol pretreatment in healthy humans. Eur Neuropsychopharmacol 2000; 10: 289–95

    Article  PubMed  CAS  Google Scholar 

  93. Liechti ME, Saur MR, Gamma A, et al. Psychological and physiological effects of MDMA (’Ecstasy’) after pre-treatment with the 5-HT2 antagonist ketanserin in healthy humans. Neuropsychopharmacology 2000; 23: 396–404

    Article  PubMed  CAS  Google Scholar 

  94. Dukes MNG, Aronson JK, editors. Meyler’s side effects of drugs. 14th ed. Amsterdam: Elsevier, 2000

    Google Scholar 

  95. Henry J. Medical risks associated with MDMA use. In: Holland J, editor. Ecstasy: the complete guide. Rochester: Park Street Press, 2001: 71–86

    Google Scholar 

  96. Ricaurte GA, Schuster CR, Seiden LS. Further evidence that amphetamines produce long-lasting dopamine neurochemical deficits by destroying dopamine nerve fibers. Brain Res 1984; 303: 359–64

    Article  PubMed  CAS  Google Scholar 

  97. Volkow ND, Chang L, Wang GJ, et al. Higher cortical and lower subcortical metabolism in detoxified methamphetamine abusers. Am J Psychiatry 2001; 158: 377–82

    Article  PubMed  CAS  Google Scholar 

  98. Volkow ND, Chang L, Wang GJ, et al. Association of dopamine transporter reduction with psychomotor impairment in methamphetamine abusers. Am J Psychiatry 2001; 158: 383–9

    Article  PubMed  CAS  Google Scholar 

  99. Volkow ND, Chang L, Wang GJ, et al. Loss of dopamine transporters in methamphetamine abusers recovers with protracted abstinence. J Nerosci 2001; 21: 9414–8

    CAS  Google Scholar 

  100. Boot BP, McGregor IS, Hall W. MDMA (Ecstasy) neurotoxicity: assessing and communicating the risks. Lancet 2000; 355: 1818–21

    Article  PubMed  CAS  Google Scholar 

  101. Hegadoren KM, Baker GB, Bourin M. 3,4-Methylenedioxymethamphetamine analogues in humans: defining the risks to humans. Neurosci Biobehav Rev 1999; 23: 539–53

    Article  PubMed  CAS  Google Scholar 

  102. Ricaurte GA, Yuan J, McCann UD. 3,4-Methylenedioxymethamphetamine (’Ecstasy’)-induced serotonin neurotoxicity: studies in animals. Neuropsychobiology 2000; 42: 5–10

    Article  PubMed  CAS  Google Scholar 

  103. Davidson C, Gow AJ, Lee TH, et al. Amphetamine neurotoxicity: necrotic and apoptotic mechanisms and relevance to human abuse and treatment. Brain Res Rev 2001; 36: 1–22

    Article  PubMed  CAS  Google Scholar 

  104. Wilson JM, Kalasinsky KS, Levey AI. Striatal dopamine nerve terminal markers in human, chronic methamphetamine users. Nat Med 1996; 2: 699–703

    Article  PubMed  CAS  Google Scholar 

  105. Seiden LS, Sabol KE. Methamphetamine and methylenedioxymethamphetamine neurotoxicity: possible mechanisms of cell destruction. NIDA Res Monogr 1996; 163: 251–76

    PubMed  CAS  Google Scholar 

  106. Schanker LS. The passage of drugs across the body membranes. Pharmacol Rev 1962; 14: 501–30

    PubMed  CAS  Google Scholar 

  107. Caldwell J, Wainer IW. Stereochemistry: definitions and a note on nomenclature. Hum Psychopharmacol 2001; 16: 105–7

    Article  CAS  Google Scholar 

  108. Pizarro N, Ortuño J, Segura J, et al. Quantification of amphetamine in plasma concentrations by gas chromatography coupled to mass spectrometry. J Pharm Biomed Anal 1999; 21: 739–47

    Article  PubMed  CAS  Google Scholar 

  109. Angrist B, Corwin J, Bartlik B, et al. Early pharmacokinetics and clinical effects of oral D-amphetamine in normal subjects. Biol Psychiatry 1987; 22: 1357–68

    Article  PubMed  CAS  Google Scholar 

  110. Wan SH, Matin SB, Azarnoff DL. Kinetics, salivary excretion of amphetamine isomers, and effect of urinary pH. Clin Pharmacol Ther 1978; 23(5): 585–90

    PubMed  CAS  Google Scholar 

  111. Cook CE, Jeffcoat R, Hill JM, et al. Pharmacokinetics of methamphetamine self-administered to human subjects by smoking S-(+)-methamphetamine hydrochloride. Drug Metab Dispos 1993; 21(4): 717–23

    PubMed  CAS  Google Scholar 

  112. Perez-Reyes M, White WR, McDonald SA, et al. Clinical effects of methamphetamine vapour inhalation. Life Sci 1991; 49: 953–9

    Article  PubMed  CAS  Google Scholar 

  113. Perez-Reyes M, White WR, McDonald SA, et al. Clinical effects of daily methamphetamine administration. Clin Neuropharmacol 1991; 14: 352–8

    Article  PubMed  CAS  Google Scholar 

  114. Cook C, Jeffcoat AR, Sadler BM, et al. Pharmacokinetics of oral methamphetamine and effects of repeated daily dosing in humans. Drug Metab Dispos 1992; 20: 856–62

    PubMed  CAS  Google Scholar 

  115. Harris DS, Boxenbaum H, Everhart ET, et al. The bioavailability of intranasal and smoked methamphetamine. Clin Pharmacol Ther 2003; 74: 475–86

    Article  PubMed  CAS  Google Scholar 

  116. Schepers RJ, Oyler JM, Joseph JR RE, et al. Methamphetamine and amphetamine pharmacokinetics in oral fluid and plasma after controlled oral methamphetamine administration to human volunteers. Clin Chem 2003; 49: 121–32

    Article  PubMed  CAS  Google Scholar 

  117. Samyn N, De Boeck G, Wood M, et al. Plasma, oral fluid and sweat wipe ecstasy concentrations in controlled and real life conditions. Forensic Sci Int 2002; 128: 90–7

    Article  PubMed  CAS  Google Scholar 

  118. de la Torre R, Farré M, Ortuño J, et al. Non-linear pharmacokinetics of MDMA (’ecstasy’) in humans. Br J Clin Pharmacol 2000; 49: 104–9

    Article  PubMed  Google Scholar 

  119. Mas M, Farré M, de la Torre R, et al. Cardiovascular and neuroendocrine effects and pharmacokinetics of 3,4methylenedioxymethamphetamine in humans. J Pharmacol Exp Ther 1999; 290: 136–45

    PubMed  CAS  Google Scholar 

  120. Helmlin HJ, Bracher K, Bourquin D, et al. Analysis of 3,4-methylenedioxymethamphetamine (MDMA) and its metabolites in plasma and urine by HPLC-DAD and GC-MS. J Anal Toxicol 1996; 20: 432–40

    PubMed  CAS  Google Scholar 

  121. Navarro M, Pichini S, Farré M, et al. Usefulness of saliva for measurement of 3,4-methylenedioxymethamphetamine and its metabolites: correlation with plasma drug concentrations and effect of urinary pH. Clin Chem 2001; 47: 1788–95

    PubMed  CAS  Google Scholar 

  122. Fallon JK, Kicman AT, Henry JA, et al. Stereospecific analysis and enantiomeric disposition of 3,4-methylenedioxymethamphetamine (ecstasy) in humans. Clin Chem 1999; 45: 1058–69

    PubMed  CAS  Google Scholar 

  123. Brunnenberg M, Lindenblatt H, Gouzoulis Mayfrank E, et al. Quantitation of N-ethyl-3,4-methylenedioxyamphetamine and its major metabolites in human plasma by high-performance liquid chromatography and fluorescence detection. J Chromatogr B Biomed Sci Appl 1998; 719: 79–85

    Article  PubMed  CAS  Google Scholar 

  124. Elliott SP. Fatal poisoning with a new phenylethylamine: 4-methylthioamphetamine (4-MTA). J Anal Toxicol 2000; 24: 85–9

    PubMed  CAS  Google Scholar 

  125. Quinn DI, Wodak A, Day RO. Pharmacokinetic and pharmacodynamic principles of illicit drug use and treatment of illicit drug users. Clin Pharmacokinet 1997; 33: 344–400

    Article  PubMed  CAS  Google Scholar 

  126. Cho AK. Ice: a new dosage form of an old drug. Science 1990; 249: 631–4

    Article  PubMed  CAS  Google Scholar 

  127. Jeffcoat AR, Perez-Reyes M, Hill JM, et al. Cocaine disposition in humans after intravenous injection, nasal insufflations (snorting) or smoking. Drug Metab Dispos 1989; 17: 153–9

    PubMed  CAS  Google Scholar 

  128. Zhao H, Brenneisen R, Scholer A, et al. Profiles of urine samples taken from Ecstasy users at rave parties: analysis by immunoassays, HPLC, and GC-MS. J Anal Toxicol 2001; 25: 258–69

    PubMed  CAS  Google Scholar 

  129. Midha KK, MacGilveray IJ, Bhatnager SP, et al. GLC identification and determination of 3,4-methylenedioxyamphetamine in vivo in dog and monkey. Drug Metab Dispos 1978; 6: 623–30

    PubMed  CAS  Google Scholar 

  130. Kintz P. Excretion of MBDB and BDB in urine, saliva and sweat following single oral administration. J Anal Toxicol 1997; 21: 570–5

    PubMed  CAS  Google Scholar 

  131. Ricaurte GA, Finnegan KF, Nichols DE, et al. Methylenedioxyethylamphetamine (MDE) a novel analogue of MDMA, produces long-lasting depletion of serotonin in rat brain. Eur J Pharmacol 1987; 137: 265–8

    Article  PubMed  CAS  Google Scholar 

  132. Decaestecker T, De Letter E, Clauwaert K, et al. Fatal 4-MTA intoxication: development of a liquid chromatographic-tandem mass spectrometry assay for multiple matrices. J Anal Toxicol 2001; 25: 705–10

    PubMed  CAS  Google Scholar 

  133. Elliott SP. Analysis of 4-methylthioamphetamine in clinical specimens. Ann Clin Biochem 2001; 38: 339–47

    Article  PubMed  CAS  Google Scholar 

  134. Änggård E, Gunne LM, Jonsson LE. Relationships between pharmacokinetic and clinical parameters in chronic amphetamine abuse [letter]. Acta Pharmacol Toxicol (Copenh) 1970; 28: 92

    Google Scholar 

  135. Rowland M. Amphetamine blood and urine levels in man. J Pharm Sci 1969; 58: 508–9

    Article  PubMed  CAS  Google Scholar 

  136. Busto U, Bendayan R, Sellers EM. Clinical pharmacokinetics of non-opiate abused drugs. Clin Pharmacokinet 1989; 16: 1–26

    Article  PubMed  CAS  Google Scholar 

  137. Änggård E, Jonsson LE, Hogmark AL. Amphetamine metabolism in amphetamine psychosis. Clin Pharmacol Ther 1973; 14: 870–80

    PubMed  Google Scholar 

  138. Kidwell D, Holland J, Athanaselis S. Testing for drugs of abuse in saliva and sweat. J Chromatogr B Biomed Sci Appl 1998; 713: 111–35

    Article  PubMed  CAS  Google Scholar 

  139. Pötsch L, Skopp G, Moeller M. Biochemical approach on the conservation of drug molecules during hair fiber formation. Forensic Sci Int 1997; 84: 25–35

    Article  PubMed  Google Scholar 

  140. Shuster S, Munro CS. Single dose treatment of fungal nail disease [letter]. Lancet 1992; 339: 1066

    Article  PubMed  CAS  Google Scholar 

  141. LeGros Clark WE, Dudley Buxton LH. Studies in nail growth. Br J Dermatol 1938; 50: 221–35

    Article  Google Scholar 

  142. Marquet P, Lotfi H, Debord J, et al. Dosage des drogues illicites dans la salive: revue de la literature. Toxicorama 1996; 7: 23–8

    Google Scholar 

  143. Samyn N, Van Haeren C. On-site testing of saliva and sweat with Drugwipe and determination of concentrations of drugs of abuse in saliva, plasma and urine of suspected users. Int J Legal Med 2000; 113: 150–4

    Article  PubMed  CAS  Google Scholar 

  144. Fogerson R, Schoendorfer D, Fay J, et al. Qualitative detection of opiates in sweat by EIA and GC-MS. J Anal Toxicol 1997; 21: 451–8

    PubMed  CAS  Google Scholar 

  145. Kintz P. La sueur: un milieu complémentaire d’investigation dans le dépistage des conduits toxicophilies. Toxicorama 1997; 9: 83–6

    Google Scholar 

  146. Suzuki O, Hattori H, Asano M. Nails as useful materials for detection of methamphetamine or amphetamine abuse. Forensic Sci Int 1984; 24: 9–16

    Article  PubMed  CAS  Google Scholar 

  147. Kintz P, Cirimele V, Tracqui A, et al. Simultaneous determination of amphetamine, methamphetamine, 3,4-methylenedioxymethamphetamine in human hair by gas chromatographymass spectrometry. J Chromatogr B Biomed Sci Appl 1995; 670: 162–6

    Article  CAS  Google Scholar 

  148. Röhrich J, Kauert G. Determination of amphetamine and methylenedioxy-amphetamine derivatives in hair. Forensic Sci Int 1997; 84: 179–88

    Article  PubMed  Google Scholar 

  149. Sachs H, Kintz P. Testing for drugs in hair: critical review of Chromatographic procedures since 1992. J Chromatogr B Biomed Sci Appl 1998; 713: 147–61

    Article  PubMed  CAS  Google Scholar 

  150. Rothe M, Pragst F, Spiegel K, et al. Hair concentration and self-reported abuse history of 20 amphetamine and ecstasy users. Forensic Sci Int 1997; 89: 111–28

    Article  PubMed  CAS  Google Scholar 

  151. Kikura R, Nakahara Y, Mieczkowski T, et al. Hair analysis for drug abuse. XV: disposition of 3,4-methylenedioxymethamphetamine (MDMA) and its related compounds into rat hair and application to hair analysis for MDMA abuse. Forensic Sci Int 1997; 84: 165–77

    Article  PubMed  CAS  Google Scholar 

  152. Pujadas M, Pichini S, Poudevida S, et al. Development and validation of a gas chromatography-mass spectrometry assay for hair analysis of amphetamine, methamphetamine and methylenedioxy derivatives. J Chromatogr B Analyt Technol Biomed Life Sci 2003; 798: 249–55

    Article  PubMed  CAS  Google Scholar 

  153. Geerten S, Foster BC, Wilson DL, et al. Metabolism of methoxyphenamine and 2-methoxyamphetamine in P450D6-transfected cells and cell preparations. Xenobiotica 1995; 25: 895–906

    Article  Google Scholar 

  154. Segura M, Ortuño J, Farré M, et al. 3,4-Dihydroxymethamphetamine (HHMA): a major in vivo 3,4-methylenedioxymethamphetamine (MDMA) metabolite in humans. Chem Res Toxicol 2001; 14: 1203–8

    Article  PubMed  CAS  Google Scholar 

  155. Suzuki S, Inoue T, Hori H, et al. Analysis of methamphetamine in hair, nail, sweat and saliva by mass fragmentography. J Anal Toxicol 1989; 13: 176–8

    PubMed  CAS  Google Scholar 

  156. Cirimele V, Kintz P, Margin P. Detection of amphetamines in fingernails: an alternative to hair analysis. Arch Toxicol 1995; 70: 68–9

    Article  PubMed  CAS  Google Scholar 

  157. Kato K, Hillsgrove M, Weinhold L, et al. Cocaine and metabolite excretion in saliva under stimulated and nonstimulated conditions. J Anal Toxicol 1993; 17: 338–41

    PubMed  CAS  Google Scholar 

  158. Kagitani A, Kaiho M, Okada Y, et al. Inmunohistochemical study on the secretion of a drug (methamphetamine) by salivary glands. Jpn J Exp Med 1989; 59: 197–202

    Google Scholar 

  159. Vree TB, Muskens AT, Van Rossum JM. Excretion of amphetamines in human sweat. Arch Int Pharmacodyn Ther 1972; 199: 311–7

    PubMed  CAS  Google Scholar 

  160. Haeckel R, Hanecke P. The application of saliva, sweat and tear fluids for diagnostic purposes. Ann Biol Clin (Paris) 1993; 50: 903–10

    Google Scholar 

  161. Burns M, Baselt RC. Monitoring drug use with sweat patch: an experiment with cocaine. J Anal Toxicol 1995; 19: 41–8

    PubMed  CAS  Google Scholar 

  162. Fay J, Fogerson R, Schoendorfer D, et al. Detection of methamphetamine in sweat by EIA and GC-MS. J Anal Toxicol 1996; 20: 398–403

    PubMed  CAS  Google Scholar 

  163. Pichini S, Navarro M, Pacifici R, et al. Usefulness of sweat testing for the detection of MDMA after a single-dose administration. J Anal Toxicol 2003; 27: 294–303

    PubMed  CAS  Google Scholar 

  164. Kintz P, Tracqui A, Mangin P, et al. Sweat testing in opioid users with a sweat patch. J Anal Toxicol 1996; 20: 393–7

    PubMed  CAS  Google Scholar 

  165. Sachs H. History of hair analysis. Forensic Sci Int 1997; 84: 7–16

    Article  PubMed  CAS  Google Scholar 

  166. Nakahara Y, Takahashi K, Shimamine M, et al. Hair analysis for drug abuse. I: determination of methamphetamine and amphetamine in hair by stable isotope dilution gas chromatography/mass spectrometry method. J Forensic Sci 1991; 36: 70–8

    PubMed  CAS  Google Scholar 

  167. Kikura R, Nakahara Y. Hair analysis for drugs of abuse IX: comparison of deprenyl use and methamphetamine use by hair analysis. Biol Pharm Bull 1995; 18: 267–72

    Article  PubMed  CAS  Google Scholar 

  168. Nakahara Y. Detection and diagnostic interpretation of amphetamines in hair. Forensic Sci Int 1995; 70: 135–53

    Article  PubMed  CAS  Google Scholar 

  169. Kikura R, Nakahara Y. Hair analysis for drugs of abuse. XI: disposition of benzphetamine and its metabolites into hair and comparison of benzphetamine use and methamphetamine use by hair analysis. Biol Pharm Bull 1995; 18: 1694–9

    Article  PubMed  CAS  Google Scholar 

  170. Nakahara Y, Kikura R, Yasuhara M, et al. Hair analysis for drug abuse. XIV: identification of substances causing acute poisoning using hair root. I: methamphetamine. Forensic Sci Int 1997; 84: 157–64

    Article  PubMed  CAS  Google Scholar 

  171. Kikura R, Nakahara Y, Kojima S. Simultaneous determination of dimethylamphetamine and its metabolites in rat hair by gas chromatography-mass spectrometry. J Chromatogr B Biomed Sci Appl 2000; 741: 63–73

    Article  Google Scholar 

  172. Kikura R, Nakahara Y. The incorporation of amphetamine-like OTC drugs (deprenyl, benzphetamine, fenproporex, mefenorex) from blood to hair [abstract]. Xenobiol Metab Dispos 1993; 8: S886

    Google Scholar 

  173. Nakahara Y, Takahashi K, Shimamine M. Hair analysis for drug abuse: III. movement and stability of methoxyphenamine (as a model compound of methamphetamine) along hair shaft with hair growth. J Anal Toxicol 1992; 16: 253–7

    PubMed  CAS  Google Scholar 

  174. Kraemer T, Maurer HH. Toxicokinetics of amphetamines: metabolism and toxicokinetic data of designer drugs, amphetamine, methamphetamine, and their N-alkyl derivatives. Ther Drug Monit 2002; 24: 277–89

    Article  PubMed  CAS  Google Scholar 

  175. Yamada H, Shiiyama S, Soejima-Ohkuma T, et al. Deamination of amphetamines by cytochrome P450: studies on substrate specificity and regioselectivity with microsomes and purified CYP2C subfamily isozymes. J Toxicol Sci 1997; 22: 65–73

    Article  PubMed  CAS  Google Scholar 

  176. Wu D, Otton SV, Inaba T, et al. Interactions of amphetamine analogs with human liver CYP2D6. Biochem Pharmacol 1997; 53: 1605–12

    Article  PubMed  CAS  Google Scholar 

  177. von Moltke LL, Greenblatt DJ, Ciraulo DA, et al. Appetite suppressant drugs as inhibitors of human cytochrome P450: in vitro inhibition of P450-2D6 by D- and L-fenfluramine, but not phentermine. J Clin Psychopharmacol 1998; 18: 338–41

    Article  Google Scholar 

  178. Bach MV, Coutts RT, Baker GB. Metabolism of N-dialkylated amphetamines, including deprenyl, by CYP2D6 expressed in a human cell line. Xenobiotica 2000; 30: 297–306

    Article  PubMed  CAS  Google Scholar 

  179. Kraner JC, McCoy DJ, Evans MA, et al. Fatalities caused by the MDMA-drug related paramethoxyamphetamine (PMA). J Anal Toxicol 2001; 25: 645–8

    PubMed  CAS  Google Scholar 

  180. Gilhooly TC, Daly AK. CYP2D6 deficiency, a factor in ecstasy related deaths? Br J Clin Pharmacol 2002; 54: 69–70

    Article  PubMed  CAS  Google Scholar 

  181. Tucker GT, Lennard MS, Ellis SW, et al. The demethylenation of methylenedioxymethamphetamine (’ecstasy’) by debrisoquine hydroxylase (CYP2D6). Biochem Pharmacol 1994; 47: 1151–6

    Article  PubMed  CAS  Google Scholar 

  182. Kreth K, Kovar K, Schwab M, et al. Identification of the human cytochrome P450 involved in the oxidative metabolism of ‘Ecstasy’ related designer drugs. Biochem Pharmacol 2000; 59: 1563–71

    Article  PubMed  CAS  Google Scholar 

  183. Maurer HH, Bickeboeller-Friedrich J, Kraemer T, et al. Toxicokinetics and analytical toxicology of amphetamine-derived designer drugs (Ecstasy). Toxicol Lett 2000; 112-113: 133–42

    Article  PubMed  CAS  Google Scholar 

  184. Delaforge M, Jaouen M, Bouille G. Inhibitory metabolite complex formation of methylenedioxymethamphetamine with rat and human cytochrome P450: particular involvement of CYP2D. Environ Pharmacol Toxicol 1999; 7: 153–8

    Article  CAS  Google Scholar 

  185. Jonsson KH, Lindeke B. Cytochrome P-455 nm complex formation in the metabolism of phenylalkylamines. XII: enantioselectivity and temperature dependence in microsomes and reconstituted cytochrome P-450 systems from rat liver. Chirality 1992; 4: 469–77

    Article  PubMed  CAS  Google Scholar 

  186. Ramamoorthy Y, Tyndale RF, Sellers EM. Cytochrome P450 2D6.1 and cytochrome P450 2D6.10 differ in catalytic activity for multiple substrates. Pharmacogenetics 2001; 11: 477–87

    Article  PubMed  CAS  Google Scholar 

  187. Ramamoorthy Y, Yu AM, Suh N, et al. Reduced (±)-3,4-methylenedioxymethamphetamine (ecstasy) metabolism with cytochrome P450 2D6 inhibitors and pharmacogenetic variants in vitro. Biochem Pharmacol 2002; 63: 2111–9

    Article  PubMed  CAS  Google Scholar 

  188. Lin LY, Distefano EW, Schmitz DA, et al. Oxidation of methamphetamine and methylenedioxymethamphetamine by CYP2D6. Drug Metab Dispos 1997; 25: 1059–64

    PubMed  CAS  Google Scholar 

  189. Bach MV, Coutts RT, Baker GB. Involvement of CYP2D6 in the in vitro metabolism of amphetamine, two N-alkylamphetamines and their 4-methoxylated derivatives. Xenobiotica 1999; 29: 719–32

    Article  PubMed  CAS  Google Scholar 

  190. Laine K, Antilla M, Nyman L, et al. CYP2C19 polymorphism is not important for the in vivo metabolism of selegiline. Eur J Clin Pharmacol 2001; 57: 137–42

    Article  PubMed  CAS  Google Scholar 

  191. Scheinin H, Antilla M, Dhal ML, et al. CYP2D6 polymorphism is not crucial for the disposition of selegiline. Clin Pharmacol Ther 1998; 64: 402–11

    Article  PubMed  CAS  Google Scholar 

  192. Taavitsainen P, Antilla M, Nyman L, et al. Selegiline metabolism and cytochromes P450 enzymes: in vitro study in human liver microsomes. Pharmacol Toxicol 2000; 86: 215–21

    Article  PubMed  CAS  Google Scholar 

  193. Imam SZ, el-Yazal J, Newport GD, et al. Methamphetamineinduced dopaminergic neurotoxicity: role of peroxynitrite and neuroprotective role of antioxidants and peroxynitrite decomposition catalysts. Ann N Y Acad Sci 2001; 939: 366–80

    Article  PubMed  CAS  Google Scholar 

  194. Carvalho F, Duarte JA, Neuparth MJ, et al. Hydrogen peroxide production in mouse tissues after acute d-amphetamine administration: influence of monoamine oxidase inhibition. Arch Toxicol 2001; 75: 465–9

    Article  PubMed  CAS  Google Scholar 

  195. Lin LY, Kumagai Y, Cho AK. Enzymatic and chemical demethylenation of (methylenedioxy)amphetamine and (methylenedioxy)methamphetamine by rat brain microsomes. Chem Res Toxicol 1992; 5: 401–6

    Article  PubMed  CAS  Google Scholar 

  196. Bolton JL, Trash MA, Penning TM, et al. Role of quinones in toxicology. Chem Res Toxicol 2000; 13: 135–60

    Article  PubMed  CAS  Google Scholar 

  197. Beckett AH, Rowland M, Turner P. Influence of urinary pH on excretion of amphetamine [letter]. Lancet 1965; 17: 303

    Article  Google Scholar 

  198. Cimbura G. 3,4-Methylenedioxyamphetamine (MDA): analytical and forensic aspects of fatal poisoning. J Forensic Sci 1972; 17: 329–33

    PubMed  CAS  Google Scholar 

  199. Kitchen I, Trembly J, Andre J, et al. Interindividual and interspecies variation in the metabolism of the hallucinogen 4-methoxyamphetamine. Xenobiotica 1979; 9: 397–404

    Article  PubMed  CAS  Google Scholar 

  200. Montagna M, Stramesi C, Vignali C, et al. Simultaneous hair testing for opiates, cocaine, and metabolites by GC-MS: a survey of applicants for driving licenses with a history of drug use. Forensic Sci Int 2000; 107: 157–67

    Article  PubMed  CAS  Google Scholar 

  201. Pepin G, Gaillard Y. Concordance between self-reported drag use and findings in hair about cocaine and heroin. Forensic Sci Int 1997; 89: 37–41

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by: ‘Area Progetto Droga’ from Istituto Superiore di Sanità, Rome, Italy; Fondo de Investigación Sanitaria, Madrid, Spain (grants FIS 00/0777 and FIS 01/1336); and GENCAT-CIRIT (grant 2001SGR00407) from Generalitat de Catalunya, Barcelona, Spain. Rafael de la Torre presently holds a NATO Senior Fellowship at the Pharmacology and Toxicology Department, College of Pharmacy at the University of Texas, Austin, TX, USA. The authors are indebted to Marta Pulido, MD, for editing the manuscript and editorial assistance. The authors have no conflicts of interest directly relevant to the content of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simona Pichini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de la Torre, R., Farré, M., Navarro, M. et al. Clinical Pharmacokinetics of Amfetamine and Related Substances. Clin Pharmacokinet 43, 157–185 (2004). https://doi.org/10.2165/00003088-200443030-00002

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003088-200443030-00002

Keywords

Navigation