Skip to main content
Log in

Potential Role of Cerebral Cytochrome P450 in Clinical Pharmacokinetics

Modulation by Endogenous Compounds

  • Leading Article
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

Cytochrome P450 (CYP) enzymes catalyse phase I metabolic reactions of psychotropic drugs. The main isoenzymes responsible for this biotransformation are CYP1A2, CYP2D6, CYP3A and those of the subfamily CYP2C. Although these enzymes are present in the human brain, their specific role in this tissue remains unclear. However, because CYP enzymatic activities have been reported in the human brain and because brain microsomes have been shown to metabolise the same probe substrates used to assess specific hepatic CYP activities and substrates of known hepatic CYPs, local drug metabolism is believed to be likely. There are also indications that CYP2D6 is involved in the metabolism of endogenous substrates in the brain. This, along with the fact that several neurotransmitters modulate CYP enzyme activities in human liver microsomes, indicates that CYP enzymes present in brain could be under various regulatory mechanisms and that those mechanisms could influence drug pharmacokinetics and, hence, drug response.

In this paper we review the presence of CYP1A2, CYP2C9, CYP2D6 and CYP3A in brain, as well as the possible existence of local brain metabolism, and discuss the putative implications of endogenous modulation of these isoenzymes by neurotransmitters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Table I
Table II

Similar content being viewed by others

References

  1. Nelson D. Cytochrome P450 homepage [online]. Available from URL: http://dmelson.utmem.edu/CytochromeP450.html [Accessed 2004 May 27]

  2. Sasame HA, Ames MM, Nelson SD. Cytochrome P-450 and NADPH cytochrome c reductase in rat brain: formation of catechols and reactive catechol metabolites. Biochem Biophys Res Commun 1977; 78: 919–26

    Article  PubMed  CAS  Google Scholar 

  3. Ravindranath V, Anandatheerthavarada HK, Shankar SK. Xenobiotic metabolism in human brain: presence of cytochrome P-450 and associated mono-oxygenases. Brain Res 1989; 496: 331–5

    Article  PubMed  CAS  Google Scholar 

  4. Bhamre S, Anandatheerthavarada HK, Shankar SK, et al. Microsomal cytochrome P450 in human brain regions. Biochem Pharmacol 1992; 44: 1223–5

    Article  PubMed  CAS  Google Scholar 

  5. Bhamre S, Anandatheerathavarada HK, Shankar SK, et al. Purification of multiple forms of cytochrome P450 from a human brain and reconstitution of catalytic activities. Arch Biochem Biophys 1993; 301: 251–5

    Article  PubMed  CAS  Google Scholar 

  6. Ghersi-Egea JF, Perrin R, Leininger-Muller B, et al. Subcellular localization of cytochrome P450, and activities of several enzymes responsible for drug metabolism in the human brain. Biochem Pharmacol 1993; 45: 647–58

    Article  PubMed  CAS  Google Scholar 

  7. Bhagwat SV, Boyd MR, Ravindranath V. Multiple forms of cytochrome P450 and associated monooxygenase activities in human brain mitochondria. Biochem Pharmacol 2000; 59: 573–82

    Article  PubMed  CAS  Google Scholar 

  8. Guengerich FP, Mason PS. Immunological comparison of hepatic and extrahepatic cytochromes P-450. Mol Pharmacol 1979; 15: 154–64

    PubMed  CAS  Google Scholar 

  9. Marietta MP, Vesell ES, Hartman RD, et al. Characterization of cytochrome P-450-dependent aminopyrine N-demethylase in rat brain: comparison with hepatic aminopyrine N-demethylation. J Pharmacol Exp Ther 1979; 208: 271–9

    PubMed  CAS  Google Scholar 

  10. Anandatheerthavarada HK, Shankar SK, Ravindranath V. Rat brain cytochromes P-450: catalytic, immunochemical properties and inducibility of multiple forms. Brain Res 1990; 536: 339–43

    Article  PubMed  CAS  Google Scholar 

  11. Kalow W, Tyndale RF. Debrisoquine/sparteine monooxygenase and other P-450s in brain. In: Kalow W, editor. Pharmacogenetics of drug metabolism. New York: Pergamon Press Inc., 1992: 649–56

    Google Scholar 

  12. Mesnil M, Testa B, Jenner P. Xenobiotic metabolism by brain monooxygenases and other cerebral enzymes. Adv Drug Res 1984; 13: 96–207

    Google Scholar 

  13. Warner M, Kohler C, Hansson T, et al. Regional distribution of cytochrome P-450 in the rat brain: spectral quantitation and contribution of P-450b,e, and P-450c,d. J Neurochem 1988; 50: 1057–65

    Article  PubMed  CAS  Google Scholar 

  14. Miksys S, Hoffmann E, Tyndale RF. Regional and cellular induction of nicotine-metabolizing CYP2B1 in rat brain by chronic nicotine treatment. Biochem Pharmacol 2000; 59: 1501–11

    Article  PubMed  CAS  Google Scholar 

  15. Walther B, Ghersi-Egea JF, Minn A, et al. Subcellular distribution of cytochrome P-450 in the brain. Brain Res 1986; 375: 338–44

    Article  PubMed  CAS  Google Scholar 

  16. Miksys S, Rao Y, Sellers EM, et al. Regional and cellular distribution of CYP2D subfamily members in rat brain. Xenobiotica 2000; 30: 547–64

    Article  PubMed  CAS  Google Scholar 

  17. Miksys S, Schoedel KA, Mash DC, et al. Nicotine-metabolizing CYP2B6 enzyme in human brain regions: higher levels in smokers and smoking alcoholics [abstract]. FASEB J 2001; 15: A573

    Google Scholar 

  18. Miksys S, Rao Y, Hoffmann E, et al. Regional and cellular expression of CYP2D6 in human brain: higher levels in alcoholics. J Neurochem 2002; 82: 1376–87

    Article  PubMed  CAS  Google Scholar 

  19. Siegle I, Fritz P, Eckhardt K, et al. Cellular localization and regional distribution of CYP2D6 mRNA and protein expression in human brain. Pharmacogenetics 2001; 11: 237–45

    Article  PubMed  CAS  Google Scholar 

  20. McFayden MC, Melvin WT, Murray GI. Regional distribution of individual forms of cytochrome P450 mRNA in normal adult human brain. Biochem Pharmacol 1998; 55: 825–30

    Article  PubMed  CAS  Google Scholar 

  21. Farin FM, Omiecinski CJ. Regiospecific expression of cytochrome P-450s and microsomal epoxide hydrolase in human brain tissue. J Toxicol Environ Health 1993; 40: 317–35

    Article  PubMed  CAS  Google Scholar 

  22. Morse DC, Stein AP, Thomas PE, et al. Distribution and induction of cytochrome P450 1A1 and 1A2 in rat brain. Toxicol Appl Pharmacol 1998; 152: 232–9

    Article  PubMed  CAS  Google Scholar 

  23. Iba MM, Storch A, Ghosal A, et al. Constitutive and inducible levels of CYP1A1 and CYP1A2 in rat cerebral cortex and cerebellum. Arch Toxicol 2003; 77(10): 547–54

    Article  PubMed  CAS  Google Scholar 

  24. Schilter B, Omiecinski CJ. Regional distribution and expression modulation of cytochrome P-450 and epoxide hydrolase mRNAs in the rat brain. Mol Pharmacol 1993; 44: 990–6

    PubMed  CAS  Google Scholar 

  25. Knupfer H, Knupfer MM, Hotfilder M, et al. P450-expression in brain tumors. Oncol Res 1999; 11: 523–8

    PubMed  CAS  Google Scholar 

  26. Watts PM, Riedl AG, Douek DC, et al. Co-localization of P450 enzymes in the rat substantia nigra with tyrosine hydroxylase. Neuroscience 1998; 86: 511–9

    Article  PubMed  CAS  Google Scholar 

  27. Riedl AG, Watts PM, Douek DC, et al. Expression and distribution of CYP2C enzymes in rat basal ganglia. Synapse 2000; 38: 392–402

    Article  PubMed  CAS  Google Scholar 

  28. Huang CB. Immunohistochemical localization of cytochrome P450 enzymes 2C and 4A in the normal rat brain. Chin Med J (Engl) 1998; 111: 1007–12

    CAS  Google Scholar 

  29. Klose TS, Blaisdell JA, Goldstein JA. Gene structure of CYP2C8 and extrahepatic distribution of the human CYP2Cs. J Biochem Mol Toxicol 1999; 13: 289–95

    Article  PubMed  CAS  Google Scholar 

  30. Luo G, Zeldin DC, Blaisdell JA, et al. Cloning and expression of murine CYP2Cs and their ability to metabolize arachidonic acid. Arch Biochem Biophys 1998; 357: 45–57

    Article  PubMed  CAS  Google Scholar 

  31. Chinta SJ, Pai HV, Upadhya SC, et al. Constitutive expression and localization of the major drug metabolizing enzyme, cytochrome P4502D in human brain. Brain Res Mol Brain Res 2002; 103: 49–61

    Article  PubMed  CAS  Google Scholar 

  32. Norris PJ, Hardwick JP, Emson PC. Regional distribution of cytochrome P450 2D1 in the rat central nervous system. J Comp Neurol 1996; 366: 244–58

    Article  PubMed  CAS  Google Scholar 

  33. Riedl AG, Watts PM, Edwards RJ, et al. Expression and localisation of CYP2D enzymes in rat basal ganglia. Brain Res 1999; 822: 175–91

    Article  PubMed  CAS  Google Scholar 

  34. Kirches E, Scherlach C, von Bossanyi P, et al. MGMT- and P450 3A-inhibitors do not sensitize glioblastoma cell cultures against nitrosoureas. Clin Neuropathol 1999; 18: 1–8

    PubMed  CAS  Google Scholar 

  35. Wang H, Kawashima H, Strobel HW. cDNA cloning of a novel CYP3A from rat brain. Biochem Biophys Res Commun 1996; 221: 157–62

    Article  PubMed  CAS  Google Scholar 

  36. Anakk S, Ku CY, Vore M, et al. Insights into gender bias: rat cytochrome P450 3A9. J Pharmacol Exp Ther 2003; 305: 703–9

    Article  PubMed  CAS  Google Scholar 

  37. Jayyosi Z, Cooper KO, Thomas PE. Brain cytochrome P450 and testosterone metabolism by rat brain subcellular fractions: presence of cytochrome P450 3A immunoreactive protein in rat brain mitochondria. Arch Biochem Biophys 1992; 298: 265–70

    Article  PubMed  CAS  Google Scholar 

  38. Dai D, Bai R, Hodgson E, et al. Cloning, sequencing, heterologous expression, and characterization of murine cytochrome P450 3a25*(Cyp3a25), a testosterone 6beta-hydroxylase. J Biochem Mol Toxicol 2001; 15: 90–9

    Article  PubMed  CAS  Google Scholar 

  39. Miksys SL, Tyndale RF. Drug-metabolizing cytochrome P450s in the brain. J Psychiatry Neurosci 2002; 27: 406–15

    PubMed  Google Scholar 

  40. Hedlund E, Gustafsson JA, Warner M. Cytochrome P450 in the brain: 2B or not 2B. Trends Pharmacol Sci 1998; 19: 82–5

    Article  PubMed  CAS  Google Scholar 

  41. Britto MR, Wedlund PJ. Cytochrome P-450 in the brain: potential evolutionary and therapeutic relevance of localization of drug-metabolizing enzymes. Drug Metab Dispos 1992; 20: 446–50

    PubMed  CAS  Google Scholar 

  42. Anandatheerthavarada HK, Shankar SK, Bhamre S, et al. Induction of brain cytochrome P-450IIE1 by chronic ethanol treatment. Brain Res 1993; 601: 279–85

    Article  PubMed  CAS  Google Scholar 

  43. Tyndale RF, Li Y, Li NY, et al. Characterization of cytochrome P-450 2D1 activity in rat brain: high-affinity kinetics for dextromethorphan. Drug Metab Dispos 1999; 27: 924–30

    PubMed  CAS  Google Scholar 

  44. Dhawan A, Parmar D, Dayal M, et al. Cytochrome P450 (P450) isoenzyme specific dealkylation of alkoxyresorufins in rat brain microsomes. Mol Cell Biochem 1999; 200: 169–76

    Article  PubMed  CAS  Google Scholar 

  45. Voirol P, Jonzier-Perey M, Porchet F, et al. Cytochrome P-450 activities in human and rat brain microsomes. Brain Res 2000; 855: 235–43

    Article  PubMed  CAS  Google Scholar 

  46. Dragoni S, Bellik L, Frosini M, et al. Cytochrome P450-dependent metabolism of 1-deprenyl in monkey (Cercopithecus aethiops) and C57BL/6 mouse brain microsomal preparations. J Neurochem 2003; 86: 1174–80

    Article  PubMed  CAS  Google Scholar 

  47. Pai HV, Upadhya SC, Chinta SJ, et al. Differential metabolism of alprazolam by liver and brain cytochrome P4503A to pharmacologically active metabolite. Pharmacogenomics J 2002; 2: 243–58

    Article  PubMed  CAS  Google Scholar 

  48. Coleman T, Spellman EF, Rostami-Hodjegan A, et al. The 1′-hydroxylation of rac-bufuralol by rat brain microsomes. Drug Metab Dispos 2000; 28: 1094–9

    PubMed  CAS  Google Scholar 

  49. Baum LO, Strobel HW. Regulation of expression of cytochrome P-450 2D mRNA in rat brain with steroid hormones. Brain Res 1997; 765: 67–73

    Article  PubMed  CAS  Google Scholar 

  50. Bergh AF, Strobel HW. Anatomical distribution of NADPH-cytochrome P450 reductase and cytochrome P4502D forms in rat brain: effects of xenobiotics and sex steroids. Mol Cell Biochem 1996; 162: 31–41

    PubMed  CAS  Google Scholar 

  51. Martinez C, Agundez JA, Gervasini G, et al. Tryptamine: a possible endogenous substrate for CYP2D6. Pharmacogenetics 1997; 7: 85–93

    Article  PubMed  CAS  Google Scholar 

  52. Gervasini G, Martinez C, Agundez JA, et al. Inhibition of cytochrome P450 2C9 activity in vitro by 5-hydroxytryptamine and adrenaline. Pharmacogenetics 2001; 11: 29–37

    Article  PubMed  CAS  Google Scholar 

  53. Agundez JA, Gallardo L, Martinez C, et al. Modulation of CYP1A2 enzyme activity by indoleamines: inhibition by serotonin and tryptamine. Pharmacogenetics 1998; 8: 251–8

    PubMed  CAS  Google Scholar 

  54. Schilter B, Andersen MR, Acharya C, et al. Activation of cytochrome P450 gene expression in the rat brain by phenobarbital-like inducers. J Pharmacol Exp Ther 2000; 294: 916–22

    PubMed  CAS  Google Scholar 

  55. Warner M, Gustafsson JA. Effect of ethanol on cytochrome P450 in the rat brain. Proc Natl Acad Sci U S A 1994; 91: 1019–23

    Article  PubMed  CAS  Google Scholar 

  56. Upadhya SC, Chinta SJ, Pai HV, et al. Toxicological consequences of differential regulation of cytochrome p450 isoforms in rat brain regions by phenobarbital. Arch Biochem Biophys 2002; 399: 56–65

    Article  PubMed  CAS  Google Scholar 

  57. Rosenbrock H, Hagemeyer CE, Singec I, et al. Testosterone metabolism in rat brain is differentially enhanced by phenytoin-inducible cytochrome P450 isoforms. J Neuroendocrinol 1999; 11: 597–604

    Article  PubMed  CAS  Google Scholar 

  58. Hansson T, Tindberg N, Ingelman-Sundberg M, et al. Regional distribution of ethanol-inducible cytochrome P450 IIE1 in the rat central nervous system. Neuroscience 1990; 34: 451–63

    Article  PubMed  CAS  Google Scholar 

  59. Schoedel KA, Sellers EM, Tyndale RF. Induction of CYP2B1/2 and nicotine metabolism by ethanol in rat liver but not rat brain. Biochem Pharmacol 2001; 62: 1025–36

    Article  PubMed  CAS  Google Scholar 

  60. Strobel HW, Thompson CM, Antonovic L. Cytochromes P450 in brain: function and significance. Curr Drug Metab 2001; 2: 199–214

    Article  PubMed  CAS  Google Scholar 

  61. Hedlund E, Gustafsson JA, Warner M. Cytochrome P450 in the brain: a review. Curr Drug Metab 2001; 2: 245–63

    Article  PubMed  CAS  Google Scholar 

  62. Nissbrandt H, Bergquist F, Jonason J, et al. Inhibition of cytochrome P450 2E1 induces an increase in extracellular dopamine in rat substantia nigra: a new metabolic pathway? Synapse 2001; 40: 294–301

    Article  PubMed  CAS  Google Scholar 

  63. Renton KW, Nicholson TE. Hepatic and central nervous system cytochrome P450 are down-regulated during lipopolysaccharide-evoked localized inflammation in brain. J Pharmacol Exp Ther 2000; 294: 524–30

    PubMed  CAS  Google Scholar 

  64. Geng J, Strobel HW. Identification of cytochromes P450 1A2, 2A1, 2C7, 2E1 in rat glioma C6 cell line by RT-PCR and specific restriction enzyme digestion. Biochem Biophys Res Commun 1993; 197: 1179–84

    Article  PubMed  CAS  Google Scholar 

  65. Brosen K. Drug interactions and the cytochrome P450 system: the role of cytochrome P450 1A2. Clin Pharmacokinet 1995; 29 Suppl. 1: 20–5

    Article  PubMed  Google Scholar 

  66. Bertilsson L, Carrillo JA, Dahl ML, et al. Clozapine disposition covaries with CYP1A2 activity determined by a caffeine test. Br J Clin Pharmacol 1994; 38: 471–3

    Article  PubMed  CAS  Google Scholar 

  67. Ring BJ, Catlow J, Lindsay TJ, et al. Identification of the human cytochromes P450 responsible for the in vitro formation of the major oxidative metabolites of the antipsychotic agent olanzapine. J Pharmacol Exp Ther 1996; 276: 658–66

    PubMed  CAS  Google Scholar 

  68. Cohen LJ, De Vane CL. Clinical implications of antidepressant pharmacokinetics and pharmacogenetics. Ann Pharmacother 1996; 30: 1471–80

    PubMed  CAS  Google Scholar 

  69. Carrillo JA, Benitez J. CYP1A2 activity, gender and smoking, as variables influencing the toxicity of caffeine. Br J Clin Pharmacol 1996; 41: 605–8

    Article  PubMed  CAS  Google Scholar 

  70. Carrillo JA, Herraiz AG, Ramos SI, et al. Role of the smoking-induced cytochrome P450 (CYP)1A2 and polymorphic CYP2D6 in steady-state concentration of olanzapine. J Clin Psychopharmacol 2003; 23: 119–27

    Article  PubMed  CAS  Google Scholar 

  71. Carrillo JA, Benitez J. Caffeine metabolism in a healthy Spanish population: N-acetylator phenotype and oxidation pathways. Clin Pharmacol Ther 1994; 55: 293–304

    Article  PubMed  CAS  Google Scholar 

  72. Butler MA, Iwasaki M, Guengerich FP, et al. Human cytochrome P-450PA (P-450IA2), the phenacetin O-deethylase, is primarily responsible for the hepatic 3-demethylation of caffeine and N-oxidation of carcinogenic arylamines. Proc Natl Acad Sci U S A 1989; 86: 7696–700

    Article  PubMed  CAS  Google Scholar 

  73. Bourrie M, Meunier V, Berger Y, et al. Cytochrome P450 isoform inhibitors as a tool for the investigation of metabolic reactions catalyzed by human liver microsomes. J Pharmacol Exp Ther 1996; 277: 321–32

    PubMed  CAS  Google Scholar 

  74. Fuhr U, Rost KL, Engelhardt R, et al. Evaluation of caffeine as a test drug for CYP1A2, NAT2 and CYP2E1 phenotyping in man by in vivo versus in vitro correlations. Pharmacogenetics 1996; 6: 159–76

    Article  PubMed  CAS  Google Scholar 

  75. Nakajima M, Yokoi T, Mizutani M, et al. Genetic polymorphism in the 5′-flanking region of human CYP1A2 gene: effect on the CYP1A2 inducibility in humans. J Biochem (Tokyo) 1999; 125: 803–8

    Article  CAS  Google Scholar 

  76. Sachse C, Brockmoller J, Bauer S, et al. Functional significance of a C→A polymorphism in intron 1 of the cytochrome P450 CYPl A2 gene tested with caffeine. Br J Clin Pharmacol 1999; 47: 445–9

    Article  PubMed  CAS  Google Scholar 

  77. Rendic S, Di Carlo FJ. Human cytochrome P450 enzymes: a status report summarizing their reactions, substrates, inducers, and inhibitors. Drug Metab Rev 1997; 29: 413–580

    Article  PubMed  CAS  Google Scholar 

  78. Brosen K, Skjelbo E, Rasmussen BB, et al. Fluvoxamine is a potent inhibitor of cytochrome P4501A2. Biochem Pharmacol 1993; 45: 1211–4

    Article  PubMed  CAS  Google Scholar 

  79. Meyer MC, Baldessarini RJ, Goff DC, et al. Clinically significant interactions of psychotropic agents with antipsychotic drugs. Drug Saf 1996; 15: 333–46

    Article  PubMed  CAS  Google Scholar 

  80. Shen WW. Cytochrome P450 monooxygenases and interactions of psychotropic drugs: a five-year update. Int J Psychiatry Med 1995; 25: 277–90

    Article  PubMed  CAS  Google Scholar 

  81. Nicholson TE, Renton KW. Modulation of cytochrome P450 by inflammation in astrocytes. Brain Res 1999; 827: 12–8

    Article  PubMed  CAS  Google Scholar 

  82. Carrillo JA, Dahl ML, Svensson JO, et al. Disposition of fluvoxamine in humans is determined by the polymorphic CYP2D6 and also by the CYP1A2 activity. Clin Pharmacol Ther 1996; 60: 183–90

    Article  PubMed  CAS  Google Scholar 

  83. Shimada T, Yamazaki H, Mimura M, et al. Interindividual variations in human liver cytochrome P-450 enzymes involved in the oxidation of drugs, carcinogens and toxic chemicals: studies with liver microsomes of 30 Japanese and 30 Caucasians. J Pharmacol Exp Ther 1994; 270: 414–23

    PubMed  CAS  Google Scholar 

  84. Goldstein JA, de Morais SM. Biochemistry and molecular biology of the human CYP2C subfamily. Pharmacogenetics 1994; 4: 285–99

    Article  PubMed  CAS  Google Scholar 

  85. Zaphiropoulos PG, Wood T. Identification of the major cytochrome P450s of subfamily 2C that are expressed in brain of female rats and in olfactory lobes of ethanol treated male rats. Biochem Biophys Res Commun 1993; 193: 1006–13

    Article  PubMed  CAS  Google Scholar 

  86. Ghahramani P, Ellis SW, Lennard MS, et al. Cytochromes P450 mediating the N-demethylation of amitriptyline. Br J Clin Pharmacol 1997; 43: 137–44

    Article  PubMed  CAS  Google Scholar 

  87. Ono S, Hatanaka T, Hotta H, et al. Specificity of substrate and inhibitor probes for cytochrome P450s: evaluation of in vitro metabolism using cDNA-expressed human P450s and human liver microsomes. Xenobiotica 1996; 26: 681–93

    Article  PubMed  CAS  Google Scholar 

  88. von Moltke LL, Greenblatt DJ, Duan SX, et al. Human cytochromes mediating N-demethylation of fluoxetine in vitro. Psychopharmacology (Berl) 1997; 132: 402–7

    Article  Google Scholar 

  89. Liu ZQ, Shu Y, Huang SL, et al. Effects of CYP2C19 genotype and CYP2C9 on fluoxetine N-demethylation in human liver microsomes. Acta Pharmacol Sin 2001; 22: 85–90

    PubMed  CAS  Google Scholar 

  90. Scott J, Poffenbarger PL. Pharmacogenetics of tolbutamide metabolism in humans. Diabetes 1979; 28: 41–51

    Article  PubMed  CAS  Google Scholar 

  91. Aithal GP, Day CP, Kesteven PJ, et al. Association of polymorphisms in the cytochrome P450 CYP2C9 with warfarin dose requirement and risk of bleeding complications. Lancet 1999; 353: 717–9

    Article  PubMed  CAS  Google Scholar 

  92. Lee CR, Goldstein JA, Pieper JA. Cytochrome P450 2C9 polymorphisms: a comprehensive review of the in vitro and human data. Pharmacogenetics 2002; 12: 251–63

    Article  PubMed  CAS  Google Scholar 

  93. Dickmann LJ, Rettie AE, Kneller MB, et al. Identification and functional characterization of a new CYP2C9 variant (CYP2C9*5) expressed among African Americans. Mol Pharmacol 2001; 60: 382–7

    PubMed  CAS  Google Scholar 

  94. Kerb R, Aynacioglu AS, Brockmoller J, et al. The predictive value of MDR1, CYP2C9, and CYP2C19 polymorphisms for Phenytoin plasma levels. Pharmacogenomics J 2001; 1: 204–10

    Article  PubMed  CAS  Google Scholar 

  95. Rifkind AB, Lee C, Chang TK, et al. Arachidonic acid metabolism by human cytochrome P450s 2C8, 2C9, 2E1, and 1A2: regioselective oxygenation and evidence for a role for CYP2C enzymes in arachidonic acid epoxygenation in human liver microsomes. Arch Biochem Biophys 1995; 320: 380–9

    Article  PubMed  CAS  Google Scholar 

  96. Zeldin DC, DuBois RN, Falck JR, et al. Molecular cloning, expression and characterization of an endogenous human cytochrome P450 arachidonic acid epoxygenase isoform. Arch Biochem Biophys 1995; 322: 76–86

    Article  PubMed  CAS  Google Scholar 

  97. Harder DR, Alkayed NJ, Lange AR, et al. Functional hyperemia in the brain: hypothesis for astrocyte-derived vasodilator metabolites. Stroke 1998; 29: 229–34

    Article  PubMed  CAS  Google Scholar 

  98. Alkayed NJ, Narayanan J, Gebremedhin D, et al. Molecular characterization of an arachidonic acid epoxygenase in rat brain astrocytes. Stroke 1996; 27: 971–9

    Article  PubMed  CAS  Google Scholar 

  99. Warner M, Stromstedt M, Wyss A, et al. Regulation of cytochrome P450 in the central nervous system. J Steroid Biochem Mol Biol 1993; 47: 191–4

    Article  PubMed  CAS  Google Scholar 

  100. Mahgoub A, Idle JR, Dring LG, et al. Polymorphic hydroxylation of debrisoquine in man. Lancet 1977; II: 584–6

    Article  Google Scholar 

  101. Dahl-Puustinen ML, Liden A, Alm C, et al. Disposition of perphenazine is related to polymorphic debrisoquin hydroxylation in human beings. Clin Pharmacol Ther 1989; 46: 78–81

    Article  PubMed  CAS  Google Scholar 

  102. Benitez J, Pinas B, Garcia MA, et al. Debrisoquine oxidation phenotype in psychiatric patients. Psychopharmacol Ser 1989; 7: 206–10

    PubMed  CAS  Google Scholar 

  103. Dahl ML, Bertilsson L. Genetically variable metabolism of antidepressants and neuroleptic drugs in man. Pharmacogenetics 1993; 3: 61–70

    Article  PubMed  CAS  Google Scholar 

  104. Fonne-Pfister R, Bargetzi MJ, Meyer UA. MPTP, the neurotoxin inducing Parkinson’s disease, is a potent competitive inhibitor of human and rat cytochrome P450 isozymes (P450bufI, P450dbl) catalyzing debrisoquine 4-hydroxylation. Biochem Biophys Res Commun 1987; 148: 1144–50

    Article  PubMed  CAS  Google Scholar 

  105. Lee EJ, Moochhala S. Tissue distribution of bufuralol hydroxylase activity in Sprague-Dawley rats. Life Sci 1989; 44: 827–30

    Article  PubMed  CAS  Google Scholar 

  106. Tyndale RF, Sunahara R, Inaba T, et al. Neuronal cytochrome P450IID1 (debrisoquine/sparteine-type): potent inhibition of activity by (−)-cocaine and nucleotide sequence identity to human hepatic P450 gene CYP2D6. Mol Pharmacol 1991; 40: 63–8

    PubMed  CAS  Google Scholar 

  107. Allard P, Marcusson JO, Ross SB. [3H]GBR-12935 binding to cytochrome P450 in the human brain. J Neurochem 1994; 62: 342–8

    Article  PubMed  CAS  Google Scholar 

  108. Chen ZR, Somogyi AA, Bochner F. Polymorphic O-demethylation of codeine. Lancet 1988; II: 914–5

    Article  Google Scholar 

  109. Yu AM, Idle JR, Byrd LG, et al. Regeneration of serotonin from 5-methoxytryptamine by polymorphic human CYP2D6. Pharmacogenetics 2003; 13: 173–81

    Article  PubMed  CAS  Google Scholar 

  110. Yu AM, Idle JR, Herraiz T, et al. Screening for endogenous substrates reveals that CYP2D6 is a 5-methoxyindolethylamine O-demethylase. Pharmacogenetics 2003; 13: 307–19

    Article  PubMed  CAS  Google Scholar 

  111. Eichelbaum M. In search of endogenous CYP2D6 substrates. Pharmacogenetics 2003; 13: 305–6

    Article  PubMed  Google Scholar 

  112. Mortimer O, Persson K, Ladona MG, et al. Polymorphic formation of morphine from codeine in poor and extensive metabolizers of dextromethorphan: relationship to the presence of immunoidentified cytochrome P-450IID1. Clin Pharmacol Ther 1990; 47: 27–35

    Article  PubMed  CAS  Google Scholar 

  113. Sindrup SH, Brosen K, Bjerring P, et al. Codeine increases pain thresholds to copper vapor laser stimuli in extensive but not poor metabolizers of sparteine. Clin Pharmacol Ther 1990; 48: 686–93

    Article  PubMed  CAS  Google Scholar 

  114. Chen ZR, Irvine RJ, Bochner F, et al. Morphine formation from codeine in rat brain: a possible mechanism of codeine analgesia. Life Sci 1990; 46: 1067–74

    Article  PubMed  CAS  Google Scholar 

  115. Eckhardt K, Li S, Ammon S, et al. Same incidence of adverse drug events after codeine administration irrespective of the genetically determined differences in morphine formation. Pain 1998; 76: 27–33

    Article  PubMed  CAS  Google Scholar 

  116. Kathiramalainathan K, Kaplan HL, Romach MK, et al. Inhibi tion of cytochrome P450 2D6 modifies codeine abuse liability. J Clin Psychopharmacol 2000; 20: 435–44

    Article  PubMed  CAS  Google Scholar 

  117. Fernandes LC, Kilicarslan T, Kaplan HL, et al. Treatment of codeine dependence with inhibitors of cytochrome P450 2D6. J Clin Psychopharmacol 2002; 22: 326–9

    Article  PubMed  CAS  Google Scholar 

  118. Gilham DE, Cairns W, Paine MJ, et al. Metabolism of MPTP by cytochrome P4502D6 and the demonstration of 2D6 mRNA in human foetal and adult brain by in situ hybridization. Xenobiotica 1997; 27: 111–25

    Article  PubMed  CAS  Google Scholar 

  119. Yu AM, Granvil CP, Haining RL, et al. The relative contribution of monoamine oxidase and cytochrome P450 isozymes to the metabolic deamination of the trace amine tryptamine. J Pharmacol Exp Ther 2003; 304: 539–46

    Article  PubMed  CAS  Google Scholar 

  120. Hiroi T, Imaoka S, Funae Y. Dopamine formation from tyramine by CYP2D6. Biochem Biophys Res Commun 1998; 249: 838–43

    Article  PubMed  CAS  Google Scholar 

  121. Atkinson A, Singleton AB, Steward A, et al. CYP2D6 is associated with Parkinson’s disease but not with dementia with Lewy bodies or Alzheimer’s disease. Pharmacogenetics 1999; 9: 31–5

    Article  PubMed  CAS  Google Scholar 

  122. Smith CA, Gough AC, Leigh PN, et al. Debrisoquine hydroxylase gene polymorphism and susceptibility to Parkinson’s disease. Lancet 1992; 339: 1375–7

    Article  PubMed  CAS  Google Scholar 

  123. Armstrong M, Daly AK, Cholerton S, et al. Mutant debrisoquine hydroxylation genes in Parkinson’s disease. Lancet 1992; 339: 1017–8

    Article  PubMed  CAS  Google Scholar 

  124. Benitez J, Ladero JM, Jimenez-Jimenez FJ, et al. Oxidative polymorphism of debrisoquine in Parkinson’s disease. J Neurol Neurosurg Psychiatry 1990; 53: 289–92

    Article  PubMed  CAS  Google Scholar 

  125. Agundez JA, Jimenez-Jimenez FJ, Luengo A, et al. Association between the oxidative polymorphism and early onset of Parkinson’s disease. Clin Pharmacol Ther 1995; 57: 291–8

    Article  PubMed  CAS  Google Scholar 

  126. Barbeau A, Cloutier T, Roy M, et al. Ecogenetics of Parkinson’s disease: 4-hydroxylation of debrisoquine. Lancet 1985; II: 1213–6

    Article  Google Scholar 

  127. Checkoway H, Farin FM, Costa-Mallen P, et al. Genetic polymorphisms in Parkinson’s disease. Neurotoxicology 1998; 19: 635–43

    PubMed  CAS  Google Scholar 

  128. Rempfer R, Crook R, Houlden H, et al. Parkinson’s disease, but not Alzheimer’s disease, Lewy body variant associated with mutant alleles at cytochrome P450 gene [letter]. Lancet 1994; 344: 815

    Article  PubMed  CAS  Google Scholar 

  129. Riedl AG, Watts PM, Jenner P, et al. P450 enzymes and Parkinson’s disease: the story so far. Mov Disord 1998; 13: 212–20

    Article  PubMed  CAS  Google Scholar 

  130. Bertilsson L, Alm C, De Las Carreras C, et al. Debrisoquine hydroxylation polymorphism and personality [letter]. Lancet 1989; I: 555

    Article  Google Scholar 

  131. Llerena A, Edman G, Cobaleda J, et al. Relationship between personality and debrisoquine hydroxylation capacity: suggestion of an endogenous neuroactive substrate or product of the cytochrome P4502D6. Acta Psychiatr Scand 1993; 87: 23–8

    Article  PubMed  CAS  Google Scholar 

  132. Chen X, Xia Y, Alford M, et al. The CYP2D6B allele is associated with a milder synaptic pathology in Alzheimer’s disease. Ann Neurol 1995; 38: 653–8

    Article  PubMed  CAS  Google Scholar 

  133. Saitoh T, Xia Y, Chen X, et al. The CYP2D6B mutant allele is overrepresented in the Lewy body variant of Alzheimer’s disease. Ann Neurol 1995; 37: 110–2

    Article  PubMed  CAS  Google Scholar 

  134. Cervilla JA, Russ C, Holmes C, et al. CYP2D6 polymorphisms in Alzheimer’s disease, with and without extrapyramidal signs, showing no apolipoprotein E epsilon 4 effect modification. Biol Psychiatry 1999; 45: 426–9

    Article  PubMed  CAS  Google Scholar 

  135. Yamada H, Dahl ML, Viitanen M, et al. No association between familial Alzheimer disease and cytochrome P450 polymorphisms. Alzheimer Dis Assoc Disord 1998; 12: 204–7

    Article  PubMed  CAS  Google Scholar 

  136. Murphy Jr GM, Yang L, Yesavage J, et al. Rate of cognitive decline in Alzheimer’s disease is not affected by the alpha-1-antichymotrypsin A allele or the CYP2D6 B mutant. Neurosci Lett 1996; 217: 200–2

    Article  PubMed  Google Scholar 

  137. Woo SI, Kim JW, Seo HG, et al. CYP2D6*4 polymorphism is not associated with Parkinson’s disease and has no protective role against Alzheimer’s disease in the Korean population. Psychiatry Clin Neurosci 2001; 55: 373–7

    Article  PubMed  CAS  Google Scholar 

  138. Payami H, Lee N, Zareparsi S, et al. Parkinson’s disease, CYP2D6 polymorphism, and age. Neurology 2001; 56: 1363–70

    Article  PubMed  CAS  Google Scholar 

  139. Harhangi BS, Oostra BA, Heutink P, et al. CYP2D6 polymorphism in Parkinson’s disease: the Rotterdam Study. Mov Disord 2001; 16: 290–3

    Article  PubMed  CAS  Google Scholar 

  140. Chida M, Yokoi T, Kosaka Y, et al. Genetic polymorphism of CYP2D6 in the Japanese population. Pharmacogenetics 1999; 9: 601–5

    Article  PubMed  CAS  Google Scholar 

  141. Kuehl Jr FA, Vandenheuvel WJ, Ormond RE. Urinary metabolites in Parkinson’s disease. Nature 1968; 217: 136–8

    Article  PubMed  CAS  Google Scholar 

  142. Smith I, Kellow AH. Aromatic amines and Parkinson’s disease [letter]. Nature 1969; 221: 1261

    Article  PubMed  CAS  Google Scholar 

  143. Anderson GM, Ross DL, Klykylo W, et al. Cerebrospinal fluid indoleacetic acid in autistic subjects. J Autism Dev Disord 1988; 18: 259–62

    Article  PubMed  CAS  Google Scholar 

  144. Anderson GM, Gerner RH, Cohen DJ, et al. Central tryptamine turnover in depression, schizophrenia, and anorexia: measurement of indoleacetic acid in cerebrospinal fluid. Biol Psychiatry 1984; 19: 1427–35

    PubMed  CAS  Google Scholar 

  145. Mousseau DD. Tryptamine: a metabolite of tryptophan implicated in various neuropsychiatric disorders. Metab Brain Dis 1993; 8: 1–44

    Article  PubMed  CAS  Google Scholar 

  146. Wrighton SA, Stevens JC. The human hepatic cytochromes P450 involved in drug metabolism. Crit Rev Toxicol 1992; 22: 1–21

    Article  PubMed  CAS  Google Scholar 

  147. Westlind A, Malmebo S, Johansson I, et al. Cloning and tissue distribution of a novel human cytochrome P450 of the CYP3A subfamily, CYP3A43. Biochem Biophys Res Commun 2001; 281: 1349–55

    Article  PubMed  CAS  Google Scholar 

  148. Domanski TL, Finta C, Halpert JR, et al. cDNA cloning and initial characterization of CYP3A43, a novel human cytochrome P450. Mol Pharmacol 2001; 59: 386–92

    PubMed  CAS  Google Scholar 

  149. Nelson DR, Kamataki T, Waxman DJ, et al. The P450 super-family: update on new sequences, gene mapping, accession numbers, early trivial names of enzymes, and nomenclature. DNA Cell Biol 1993; 12: 1–51

    Article  PubMed  CAS  Google Scholar 

  150. Kuehl P, Zhang J, Lin Y, et al. Sequence diversity in CYP3A promoters and characterization of the genetic basis of polymorphic CYP3A5 expression. Nat Genet 2001; 27: 383–91

    Article  PubMed  CAS  Google Scholar 

  151. Perloff MD, von Moltke LL, Greenblatt DJ. Ritonavir and dexamethasone induce expression of CYP3A and P-glycoprotein in rats. Xenobiotica 2004; 34(2): 133–50

    Article  PubMed  CAS  Google Scholar 

  152. Rebbeck TR, Jaffe JM, Walker AH, et al. Modification of clinical presentation of prostate tumors by a novel genetic variant in CYP3A4. J Natl Cancer Inst 1998; 90: 1225–9

    Article  PubMed  CAS  Google Scholar 

  153. Dai D, Tang J, Rose R, et al. Identification of variants of CYP3A4 and characterization of their abilities to metabolize testosterone and chlorpyrifos. J Pharmacol Exp Ther 2001; 299: 825–31

    PubMed  CAS  Google Scholar 

  154. Hustert E, Haberl M, Burk O, et al. The genetic determinants of the CYP3A5 polymorphism. Pharmacogenetics 2001; 11: 773–9

    Article  PubMed  CAS  Google Scholar 

  155. Martinez C, Gervasini G, Agundez JA, et al. Modulation of midazolam 1-hydroxylation activity in vitro by neurotransmitters and precursors. Eur J Clin Pharmacol 2000; 56: 145–51

    Article  PubMed  CAS  Google Scholar 

  156. Joseph SA, Walker DW. Monoamine concentrations in cerebrospinal fluid of fetal and newborn sheep. Am J Physiol 1994; 266: R472–80

    PubMed  CAS  Google Scholar 

  157. Ratge D, Bauersfeld W, Wisser H. The relationship of free and conjugated catecholamines in plasma and cerebrospinal fluid in cerebral and meningeal disease. J Neural Transm 1985; 62: 267–84

    Article  PubMed  CAS  Google Scholar 

  158. Gundlah C, Simon LD, Auerbach SB. Differences in hypothalamic serotonin between estrous phases and gender: an in vivo microdialysis study. Brain Res 1998; 785: 91–6

    Article  PubMed  CAS  Google Scholar 

  159. Kalen P, Kokaia M, Lindvall O, et al. Basic characteristics of noradrenaline release in the hippocampus of intact and 6-hydroxydopamine-lesioned rats as studied by in vivo microdialysis. Brain Res 1988; 474: 374–9

    Article  PubMed  CAS  Google Scholar 

  160. Gonon FG, Buda MJ. Regulation of dopamine release by im pulse flow and by autoreceptors as studied by in vivo voltammetry in the rat striatum. Neuroscience 1985; 14: 765–74

    Article  PubMed  CAS  Google Scholar 

  161. Maillet S, Vion-Dury J, Confort-Gouny S, et al. Experimental protocol for clinical analysis of cerebrospinal fluid by high resolution proton magnetic resonance spectroscopy. Brain Res Brain Res Protoc 1998; 3: 123–34

    Article  PubMed  CAS  Google Scholar 

  162. Wright AW, Watt JA, Kennedy M, et al. Quantitation of morphine, morphine-3-glucuronide, and morphine-6-glucuronide in plasma and cerebrospinal fluid using solid-phase extraction and high-performance liquid chromatography with electrochemical detection. Ther Drug Monit 1994; 16: 200–8

    Article  PubMed  CAS  Google Scholar 

  163. Sindrup SH, Poulsen L, Brosen K, et al. Are poor metabolisers of sparteine/debrisoquine less pain tolerant than extensive metabolisers? Pain 1993; 53: 335–9

    Article  PubMed  CAS  Google Scholar 

  164. Gram LF, Brosen K, Sindrup SH, et al. Genetic and interethnic variability in drug metabolism: what are the clinical consequences? In: Alvan G, Balant L, Bechtel PR, et al., editors. COST B1 conference on variability and specificity in drug metabolism. Luxembourg: European Commission, 1995: 93–110

    Google Scholar 

  165. Cardoso ER, Reddy K, Bose D. Effect of subarachnoid hemorrhage on intracranial pulse waves in cats. J Neurosurg 1988; 69: 712–8

    Article  PubMed  CAS  Google Scholar 

  166. Piredda S, Monaco F. Ethosuximide in tears, saliva, and cerebrospinal fluid. Ther Drug Monit 1981; 3: 321–3

    Article  PubMed  CAS  Google Scholar 

  167. Soto J, Sacristan JA, Alsar MJ. Cerebrospinal fluid concentrations of caffeine following oral drug administration: correlation with salivary and plasma concentrations. Ther Drug Monit 1994; 16: 108–10

    Article  PubMed  CAS  Google Scholar 

  168. Sokomba EN, Patsalos PN, Lolin YI, et al. Concurrent monitoring of central carbamazepine and transmitter amine metabolism and motor activity in individual unrestrained rats using repetitive withdrawal of cerebrospinal fluid. Neuropharmacology 1988; 27: 409–15

    Article  PubMed  CAS  Google Scholar 

  169. Scheinin H, Scheinin M. Repetitive measurement of monoamine metabolite levels in cerebrospinal fluid of conscious rats: effects of reserpine and haloperidol. Eur J Pharmacol 1985; 113: 345–51

    Article  PubMed  CAS  Google Scholar 

  170. Kanto J, Scheinin M. Biochemical assessment of preoperative stress: a study with diazepam and measurement of monoamine metabolites and catecholamines in cerebrospinal fluid and plasma. Br J Anaesth 1991; 66: 587–90

    Article  PubMed  CAS  Google Scholar 

  171. Dillen L, Duchateau A, De Potter WP, et al. Selected ion monitoring analysis of monoamine metabolites in cerebrospinal fluid: application to the study of in vivo effects of alpha 2-antagonists. Biomed Environ Mass Spectrom 1987; 14: 675–82

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Our work is supported in part by grants 00/0034, 02/0406 and 03/1432 from Fondo de Investigacion Sanitaria, Instituto de Salud Carlos III, Ministerio de Sanidad y Consumo, Madrid, Spain, and grant 02/0024 and Convenio de Farmacovigilancia, from Consejería de Sanidad y Consumo, Junta de Extremadura, Mérida, Spain, and carried out within the framework of COST B15 of the EU.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julio Benitez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gervasini, G., Carrillo, J.A. & Benitez, J. Potential Role of Cerebral Cytochrome P450 in Clinical Pharmacokinetics. Clin Pharmacokinet 43, 693–706 (2004). https://doi.org/10.2165/00003088-200443110-00001

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003088-200443110-00001

Keywords

Navigation