Skip to main content
Log in

Microdialysis

Current Applications in Clinical Pharmacokinetic Studies and its Potential Role in the Future

  • Review Article
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

Microdialysis is a probe-based sampling method, which, if linked to analytical devices, allows for the measurement of drug concentration profiles in selected tissues. During the last two decades, microdialysis has become increasingly popular for preclinical and clinical pharmacokinetic studies. The advantage of in vivo microdialysis over traditional methods relates to its ability to continuously sample the unbound drug fraction in the interstitial space fluid (ISF). This is of particular importance because the ISF may be regarded as the actual target compartment for many drugs, e.g. antimicrobial agents or other drugs mediating their action through surface receptors. In contrast, plasma concentrations are increasingly recognised as inadequately predicting tissue drug concentrations and therapeutic success in many patient populations. Thus, the minimally invasive microdialysis technique has evolved into an important tool for the direct assessment of drug concentrations at the site of drug delivery in virtually all tissues. In particular, concentrations of transdermally applied drugs, neurotransmitters, antibacterials, cytotoxic agents, hormones, large molecules such as cytokines and proteins, and many other compounds were described by means of microdialysis.

The combined use of microdialysis with non-invasive imaging methods such as positron emission tomography and single photon emission tomography opened the window to exactly explore and describe the fate and pharmacokinetics of a drug in the body. Linking pharmacokinetic data from the ISF to pharmacodynamic information appears to be a straightforward approach to predicting drug action and therapeutic success, and may be used for decision making for adequate drug administration and dosing regimens. Hence, microdialysis is nowadays used in clinical studies to test new drug candidates that are in the pharmaceutical industry drug development pipeline.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Joukhadar C, Frossard M, Mayer BX, et al. Impaired target site penetration of beta-lactams may account for failure in patients with septic shock. Crit Care Med 2001; 29: 385–91

    Article  PubMed  CAS  Google Scholar 

  2. Tegeder I, Schmidtko A, Brautigam L, et al. Tissue distribution of imipenem in critically ill patients. Clin Pharmacol Ther 2002; 71: 325–33

    Article  PubMed  CAS  Google Scholar 

  3. Brunner M, Pernerstorfer T, Mayer BX, et al. Surgery and intensive care procedures affect the target site distribution of piperacillin. Crit Care Med 2000; 28: 1754–9

    Article  PubMed  CAS  Google Scholar 

  4. Namour F, Sultan E, Pascual MH, et al. Penetration of telithromycin (HMR 3647), a new ketolide antimicrobial, into inflammatory blister fluid following oral administration. J Antimicrob Chemother 2002; 49: 1035–8

    Article  PubMed  CAS  Google Scholar 

  5. Walstad RA, Helium KB, Thurmann-Nielsen E, et al. Pharmacokinetics and tissue penetration of Timentin: a simultaneous study of serum, urine, lymph, suction blister and subcutaneous thread fluid. J Antimicrob Chemother 1986; 17 Suppl. C: 71–80

    Article  PubMed  CAS  Google Scholar 

  6. Mazzei T, Novelli A, Esposito S, et al. Cefodizime in skin suction blister fluid and serum following a single intravenous or intramuscular dose in adult patients. J Chemother 2000; 12: 306–13

    PubMed  CAS  Google Scholar 

  7. Richer M, Allard S, Manseau L, et al. Suction-induced blister fluid penetration of cefdinir in healthy volunteers following ascending oral doses. Antimicrob Agents Chemother 1995; 39: 1082–6

    Article  PubMed  CAS  Google Scholar 

  8. Borg N, Gotharson E, Benfeldt E, et al. Distribution to the skin of penciclovir after oral famciclovir administration in healthy volunteers: comparison of the suction blister technique and cutaneous microdialysis. Acta Derm Venereol 1999; 79: 274–7

    Article  PubMed  CAS  Google Scholar 

  9. Holm SE. Experimental models for studies on transportation of antibiotics to extravasal compartments. Scand J Infect Dis Suppl 1978; 13: 47–51

    PubMed  CAS  Google Scholar 

  10. Varela JE, Cohn SM, Brown M, et al. Pharmacokinetics and burn eschar penetration of intravenous Ciprofloxacin in patients with major thermal injuries. J Antimicrob Chemother 2000; 45: 337–42

    Article  PubMed  CAS  Google Scholar 

  11. Licitra CM, Brooks RG, Sieger BE. Clinical efficacy and levels of Ciprofloxacin in tissue in patients with soft tissue infection. Antimicrob Agents Chemother 1987; 31: 805–7

    Article  PubMed  CAS  Google Scholar 

  12. Birmingham MC, Guarino R, Heller A, et al. Ciprofloxacin concentrations in lung tissue following a single 400mg intravenous dose. J Antimicrob Chemother 1999; 43 Suppl. A: 43–8

    Article  PubMed  CAS  Google Scholar 

  13. Daschner F. Tobramycin serum levels and tissue content in children. Chemotherapy 1977; 23: 293–8

    Article  PubMed  CAS  Google Scholar 

  14. Bergeron MG. The pharmacokinetics and tissue penetration of the fluoroquinolones. Clin Invest Med 1989; 12: 20–7

    PubMed  CAS  Google Scholar 

  15. Sidhu P, Shojaee Aliabadi F, Andrews M, et al. Tissue chamber model of acute inflammation in farm animal species. Res Vet Sci 2003; 74: 67–77

    Article  PubMed  CAS  Google Scholar 

  16. Cheng Z, Nolan AM, McKellar QA. Measurement of cyclooxygenase inhibition in vivo: a study of two non-steroidal anti-inflammatory drugs in sheep. Inflammation 1998; 22: 353–66

    Article  PubMed  CAS  Google Scholar 

  17. Bergan T. Kinetics of tissue penetration: are high plasma peak concentrations or sustained levels preferable for effective antibiotic therapy? Scand J Infect Dis Suppl 1978; 14: 36–46

    PubMed  CAS  Google Scholar 

  18. Rylander M, Holm SE, Norrby R, et al. Studies on the pharmacokinetics of cefoxitin, cefuroxime, cephaloridine and cephalothin using subcutaneous tissue cages. Scand J Infect Dis Suppl 1978; 13: 52–7

    PubMed  CAS  Google Scholar 

  19. Petrakis I, Vrachassotakis N, Tsatsakis A, et al. Prospective study of preincisional single-dose ceftriaxone in reducing postoperative wound infection in high risk of infection patients. Eur Rev Med Pharmacol Sci 1998; 2: 141–5

    PubMed  CAS  Google Scholar 

  20. Blaser J, Rieder HL, Luthy R. Interface-area-to-volume ratio of interstitial fluid in humans determined by pharmacokinetic analysis of netilmicin in small and large skin blisters. Antimicrob Agents Chemother 1991; 35: 837–9

    Article  PubMed  CAS  Google Scholar 

  21. Wise R. The clinical relevance of protein binding and tissue concentrations in antimicrobial therapy. Clin Pharmacokinet 1986; 11: 470–82

    Article  PubMed  CAS  Google Scholar 

  22. Barza M, Cuchural G. General principles of antibiotic tissue penetration. J Antimicrob Chemother 1985; 15 Suppl. A: 59–75

    Article  PubMed  CAS  Google Scholar 

  23. de Lange EC, Danhof M. Considerations in the use of cerebrospinal fluid pharmacokinetics to predict brain target concentrations in the clinical setting: implications of the barriers between blood and brain. Clin Pharmacokinet 2002; 41: 691–703

    Article  PubMed  Google Scholar 

  24. Curry FE. Determinants of capillary permeability: a review of mechanisms based on single capillary studies in the frog. Circ Res 1986; 59: 367–80

    Article  PubMed  CAS  Google Scholar 

  25. Renkin EM. Multiple pathways of capillary permeability. Circ Res 1977; 41: 735–43

    Article  PubMed  CAS  Google Scholar 

  26. Michel CC. Filtration coefficients and osmotic reflexion coefficients of the walls of single frog mesenteric capillaries. J Physiol 1980; 309: 341–55

    PubMed  CAS  Google Scholar 

  27. Joukhadar C, Klein N, Frossard M, et al. Angioplasty increases target site concentrations of Ciprofloxacin in patients with peripheral arterial occlusive disease. Clin Pharmacol Ther 2001; 70: 532–9

    Article  PubMed  CAS  Google Scholar 

  28. Clough GF, Boutsiouki P, Church MK, et al. Effects of blood flow on the in vivo recovery of a small diffusible molecule by microdialysis in human skin. J Pharmacol Exp Ther 2002; 302: 681–6

    Article  PubMed  CAS  Google Scholar 

  29. Morgan CJ, Renwick AG, Friedmann PS. The role of stratum corneum and dermal microvascular perfusion in penetration and tissue levels of water-soluble drugs investigated by microdialysis. Br J Dermatol 2003; 148: 434–43

    Article  PubMed  CAS  Google Scholar 

  30. Stahle L, Arner P, Ungerstedt U. Drug distribution studies with microdialysis: III. Extracellular concentration of caffeine in adipose tissue in man. Life Sci 1991; 49: 1853–8

    Article  PubMed  CAS  Google Scholar 

  31. Lonnroth P. Microdialysis: a new and promising method in clinical medicine. J Intern Med 1991; 230: 363–4

    Article  PubMed  CAS  Google Scholar 

  32. Ryan DM. Pharmacokinetics of antibiotics in natural and experimental superficial compartments in animals and humans. J Antimicrob Chemother 1993; 31 Suppl. D: 1–16

    Article  PubMed  CAS  Google Scholar 

  33. Brunner M, Stabeta H, Moller JG, et al. Target site concentrations of Ciprofloxacin after single intravenous and oral doses. Antimicrob Agents Chemother 2002; 46: 3724–30

    Article  PubMed  CAS  Google Scholar 

  34. Frossard M, Joukhadar C, Steffen G, et al. Paracrine effects of angiotensin-converting-enzyme- and angiotensin-II-receptorinhibition on transcapillary glucose transport in humans. Life Sci 2000; 66: PL147–54

    Article  PubMed  CAS  Google Scholar 

  35. Langberg H, Olesen JL, Gemmer C, et al. Substantial elevation of interleukin-6 concentration in peritendinous tissue, in contrast to muscle, following prolonged exercise in humans. J Physiol 2002; 542: 985–90

    Article  PubMed  CAS  Google Scholar 

  36. Langberg H, Olesen JL, Bulow J, et al. Intra- and peri-tendinous microdialysis determination of glucose and lactate in pigs. Acta Physiol Scand 2002; 174: 377–80

    Article  PubMed  CAS  Google Scholar 

  37. Kennergren C, Mantovani V, Strindberg L, et al. Myocardial interstitial glucose and lactate before, during, and after cardioplegic heart arrest. Am J Physiol Endocrinol Metab 2003; 284: E788–94

    PubMed  CAS  Google Scholar 

  38. Kennergren C, Mantovani V, Lonnroth P, et al. Extracellular amino acids as markers of myocardial ischemia during cardioplegic heart arrest. Cardiology 1999; 91: 31–40

    Article  PubMed  CAS  Google Scholar 

  39. Mindermann T, Zimmerli W, Gratzl O. Rifampin concentrations in various compartments of the human brain: a novel method for determining drug levels in the cerebral extracellular space. Antimicrob Agents Chemother 1998; 42: 2626–9

    PubMed  CAS  Google Scholar 

  40. Thorsen K, Kristoffersson AO, Lerner UH, et al. In situ microdialysis in bone tissue: stimulation of Prostaglandin E2 release by weight-bearing mechanical loading. J Clin Invest 1996; 98: 2446–9

    Article  PubMed  CAS  Google Scholar 

  41. Herkner H, Muller MR, Kreischitz N, et al. Closed-chest microdialysis to measure antibiotic penetration into human lung tissue. Am J Respir Crit Care Med 2002; 165: 273–6

    PubMed  Google Scholar 

  42. Blochl-Daum B, Muller M, Meisinger V, et al. Measurement of extracellular fluid carboplatin kinetics in melanoma metastases with microdialysis. Br J Cancer 1996; 73: 920–4

    Article  PubMed  CAS  Google Scholar 

  43. Mader RM, Schrolnberger C, Rizovski B, et al. Penetration of capecitabine and its metabolites into malignant and healthy tissues of patients with advanced breast cancer. Br J Cancer 2003; 88: 782–7

    Article  PubMed  CAS  Google Scholar 

  44. Müller M, Mader RM, Steiner B, et al. 5-fluorouracil kinetics in the interstitial tumor space: clinical response in breast cancer patients. Cancer Res 1997; 57: 2598–601

    PubMed  Google Scholar 

  45. Muller M, Brunner M, Schmid R, et al. Interstitial methotrexate kinetics in primary breast cancer lesions. Cancer Res 1998; 58: 2982–5

    PubMed  CAS  Google Scholar 

  46. Joukhadar C, Klein N, Mader RM, et al. Penetration of dacarbazine and its active metabolite 5-aminoimidazole-4-carboxamide into cutaneous metastases of human malignant melanoma. Cancer 2001; 92: 2190–6

    Article  PubMed  CAS  Google Scholar 

  47. Delgado JM, DeFeudis FV, Roth RH, et al. Dialytrode for long term intracerebral perfusion in awake monkeys. Arch Int Pharmacodyn Ther 1972; 198: 9–21

    PubMed  CAS  Google Scholar 

  48. Lonnroth P, Jansson PA, Smith U. A microdialysis method allowing characterization of intercellular water space in humans. Am J Physiol 1987; 253: E228–31

    PubMed  CAS  Google Scholar 

  49. Brunner M, Hollenstein U, Delacher S, et al. Distribution and antimicrobial activity of Ciprofloxacin in human soft tissues. Antimicrob Agents Chemother 1999; 43: 1307–9

    PubMed  CAS  Google Scholar 

  50. Müller M, Mascher H, Kikuta C, et al. Diclofenac concentrations in defined tissue layers after topical administration. Clin Pharmacol Ther 1997; 62: 293–9

    Article  PubMed  Google Scholar 

  51. Hollenstein U, Brunner M, Mayer BX, et al. Target site concentrations after continuous infusion and bolus injection of cefpirome to healthy volunteers. Clin Pharmacol Ther 2000; 67: 229–36

    Article  PubMed  CAS  Google Scholar 

  52. Tossman U, Ungerstedt U. Microdialysis in the study of extracellular levels of amino acids in the rat brain. Acta Physiol Scand 1986; 128: 9–14

    Article  PubMed  CAS  Google Scholar 

  53. Frossard M, Joukhadar C, Erovic BM, et al. Distribution and antimicrobial activity of fosfomycin in the interstitial fluid of human soft tissues. Antimicrob Agents Chemother 2000; 44: 2728–32

    Article  PubMed  CAS  Google Scholar 

  54. Brunner M, Joukhadar C, Schmid R, et al. Validation of urea as an endogenous reference compound for the in vivo calibration of microdialysis probes. Life Sci 2000; 67: 977–84

    Article  PubMed  CAS  Google Scholar 

  55. Muller M, Rastelli C, Ferri P, et al. Transdermal penetration of diclofenac after multiple epicutaneous administration. J Rheumatol 1998; 25: 1833–6

    PubMed  CAS  Google Scholar 

  56. Muller M, Schmid R, Georgopoulos A, et al. Application of microdialysis to clinical pharmacokinetics in humans. Clin Pharmacol Ther 1995; 57: 371–80

    Article  PubMed  CAS  Google Scholar 

  57. Hsiao JK, Ball BA, Morrison PF, et al. Effects of different semipermeable membranes on in vitro and in vivo performance of microdialysis probes. J Neurochem 1990; 54: 1449–52

    Article  PubMed  CAS  Google Scholar 

  58. Benveniste H, Hansen AJ, Ottosen NS. Determination of brain interstitial concentrations by microdialysis. J Neurochem 1989; 52: 1741–50

    Article  PubMed  CAS  Google Scholar 

  59. Anderson C, Andersson T, Wardell K. Changes in skin circulation after insertion of a microdialysis probe visualized by laser Doppler perfusion imaging. J Invest Dermatol 1994; 102: 807–11

    Article  PubMed  CAS  Google Scholar 

  60. Hickner RC, Ekelund U, Mellander S, et al. Muscle blood flow in cats: comparison of microdialysis ethanol technique with direct measurement. J Appl Physiol 1995; 79: 638–47

    PubMed  CAS  Google Scholar 

  61. Groth LJA. In vitro microdialysis of hydrophilic and lipophilic compounds. Anal Chim Acta 1997; 355: 75–83

    Article  CAS  Google Scholar 

  62. Benfeldt E, Groth L. Feasibility of measuring lipophilic or protein-bound drugs in the dermis by in vivo microdialysis after topical or systemic drug administration. Acta Derm Venereol 1998; 78: 274–8

    Article  PubMed  CAS  Google Scholar 

  63. Muller M, Schmid R, Wagner O, et al. In vivo characterization of transdermal drug transport by microdialysis. J Control Release 1995; 37: 49–57

    Article  Google Scholar 

  64. Mayer BX, Hollenstein U, Brunner M, et al. Micellar electrokinetic chromatography for the analysis of cefpirome in microdialysis and plasma samples obtained in vivo from human volunteers. Electrophoresis 2000; 21: 1558–64

    Article  PubMed  CAS  Google Scholar 

  65. Buerger C, Joukhadar C, Müller M, et al. Development of a liquid chromatography method for the determination of linezolid and its application to in vitro and human microdialysis samples. J Chromatogr B Analyt Technol Biomed Life Sci 2003; 796: 155–64

    Article  PubMed  CAS  Google Scholar 

  66. Neckel U, Joukhadar C, Frossard M, et al. Simultaneous determination of levofloxacin and Ciprofloxacin in microdialysates and plasma by HPLC. Anal Chim Acta 2002; 463: 199–206

    Article  CAS  Google Scholar 

  67. Kurosaki Y, Nakamura S, Shiojiri Y, et al. Lipo-microdialysis: a new microdialysis method for studying the pharmacokinetics of lipophilic substances. Biol Pharm Bull 1998; 21: 194–6

    Article  PubMed  CAS  Google Scholar 

  68. Carneheim C, Stahle L. Microdialysis of lipophilic compounds: a methodological study. Pharmacol Toxicol 1991; 69: 378–80

    Article  PubMed  CAS  Google Scholar 

  69. FDA. Guidance for industry: developing antimicrobial drugs: general considerations for clinical trials [online]. Available from URL: http://www.fda.gov/cder/guidance/2580dft.pdf [Accessed 2005 Jun 29]

  70. Department of Health and Human Services, Public Health Service, Food and Drug Administration. Anti-infective drugs advisory committee meeting, 64th meeting: guidance documents on developing antimicrobial drugs: general considerations and individual indications [online]. Available from URL: http:http://www.fda.gov/cder/present/anti-infective798/073198.pdf [Accessed 2005 May 23]

  71. Herkner H, Klein N, Joukhadar C, et al. Transcapillary insulin transfer in human skeletal muscle. Eur J Clin Invest 2003; 33: 141–6

    Article  PubMed  CAS  Google Scholar 

  72. Legat FJ, Maier A, Dittrich P, et al. Penetration of fosfomycin into inflammatory lesions in patients with cellulitis or diabetic foot syndrome. Antimicrob Agents Chemother 2003; 47: 371–4

    Article  PubMed  CAS  Google Scholar 

  73. Lorentzen H, Kallehave F, Kolmos HJ, et al. Gentamicin concentrations in human subcutaneous tissue. Antimicrob Agents Chemother 1996; 40: 1785–9

    PubMed  CAS  Google Scholar 

  74. Muller M, Haag O, Burgdorff T, et al. Characterization of peripheral-compartment kinetics of antibiotics by in vivo microdialysis in humans. Antimicrob Agents Chemother 1996; 40: 2703–9

    PubMed  CAS  Google Scholar 

  75. Muller M, Brunner M, Hollenstein U, et al. Penetration of Ciprofloxacin into the interstitial space of inflamed foot lesions in non-insulin-dependent diabetes mellitus patients. Antimicrob Agents Chemother 1999; 43: 2056–8

    PubMed  CAS  Google Scholar 

  76. Zeitlinger MA, Dehghanyar P, Mayer BX, et al. Relevance of soft-tissue penetration by levofloxacin for target site bacterial killing in patients with sepsis. Antimicrob Agents Chemother 2003; 47: 3548–53

    Article  PubMed  CAS  Google Scholar 

  77. Joukhadar C, Stass H, Muller-Zellenberg U, et al. Penetration of moxifloxacin into healthy and inflamed subcutaneous adipose tissues in humans. Antimicrob Agents Chemother 2003; 47: 3099–103

    Article  PubMed  CAS  Google Scholar 

  78. de PA, Brunner M, Eichler HG, et al. Comparative target site pharmacokinetics of immediate- and modified-release formulations of cefaclor in humans. J Clin Pharmacol 2002; 42: 403–11

    Article  Google Scholar 

  79. Joukhadar C, Klein N, Mayer BX, et al. Plasma and tissue pharmacokinetics of cefpirome in patients with sepsis. Crit Care Med 2002; 30: 1478–82

    Article  PubMed  CAS  Google Scholar 

  80. Liu P, Muller M, Grant M, et al. Interstitial tissue concentrations of cefpodoxime. J Antimicrob Chemother 2002; 50 Suppl.: 19–22

    Article  PubMed  CAS  Google Scholar 

  81. Gattringer R, Urbauer E, Traunmuller F, et al. Pharmacokinetics of telithromycin in plasma and soft tissues after single-dose administration to healthy volunteers. Antimicrob Agents Chemother 2004 Dec; 48(12): 4650–3

    Article  PubMed  CAS  Google Scholar 

  82. Dehghanyar P, Burger C, Zeitlinger M, et al. Penetration of linezolid into soft tissues of healthy volunteers after single and multiple doses. Antimicrob Agents Chemother 2005 Jun; 49(6): 2367–71

    Article  PubMed  CAS  Google Scholar 

  83. Plock N, Buerger C, Kloft C. Successful management of discovered pH dependence in vancomycin recovery studies: novel HPLC method for microdialysis and plasma samples. Biomed chromatogr 2005 Apr; 19(3): 237–44

    Article  PubMed  CAS  Google Scholar 

  84. Hollenstein UM, Brunner M, Schmid R, et al. Soft tissue concentrations of Ciprofloxacin in obese and lean subjects following weight-adjusted dosing. Int J Obes Relat Metab Disord 2001; 25: 354–8

    Article  PubMed  CAS  Google Scholar 

  85. Brunner M, Reinprecht A, Illievich U, et al. Penetration of fosfomycin into the parenchyma of human brain: a case study in three patients. Br J Clin Pharmacol 2002; 54: 548–50

    PubMed  Google Scholar 

  86. Joukhadar C, Klein N, Dittrich P, et al. Target site penetration of fosfomycin in critically ill patients. J Antimicrob Chemother 2003; 51: 1247–52

    Article  PubMed  CAS  Google Scholar 

  87. Tegeder I, Brautigam L, Podda M, et al. Time course of 8-methoxypsoralen concentrations in skin and plasma after topical (bath and cream) and oral administration of 8-methoxypsoralen. Clin Pharmacol Ther 2002; 71: 153–61

    Article  PubMed  CAS  Google Scholar 

  88. Kearney BP, Aweeka FT. The penetration of anti-infectives into the central nervous system. Neural Clin 1999; 17: 883–900

    Article  CAS  Google Scholar 

  89. Barza M. Anatomical barriers for antimicrobial agents. Eur J Clin Microbiol Infect Dis 1993; 12 Suppl. 1: S31–5

    Article  PubMed  Google Scholar 

  90. Drach GW. Prostatitis: man’s hidden infection. Ural Clin North Am 1975; 2: 499–520

    CAS  Google Scholar 

  91. Barza M, Doft B, Lynch E. Ocular penetration of ceftriaxone, ceftazidime, and vancomycin after subconjunctival injection in humans. Arch Ophthalmol 1993; 111: 492–4

    Article  PubMed  CAS  Google Scholar 

  92. Barza M, Lynch E, Baum JL. Pharmacokinetics of newer Cephalosporins after subconjunctival and intravitreal injection in rabbits. Arch Ophthalmol 1993; 111: 121–5

    Article  PubMed  CAS  Google Scholar 

  93. Heikkinen T, Laine K, Neuvonen PJ, et al. The transplacental transfer of the macrolide antibiotics erythromycin, roxithromycin and azithromycin. BJOG 2000; 107: 770–5

    Article  PubMed  CAS  Google Scholar 

  94. Pennington JE. Penetration of antibiotics into respiratory secretions. Rev Infect Dis 1981; 3: 67–73

    Article  PubMed  CAS  Google Scholar 

  95. Rebuck AS, Braude AC. Assessment of drug disposition in the lung. Drugs 1984; 28: 544–53

    Article  PubMed  CAS  Google Scholar 

  96. Potschka H, Fedrowitz M, Loscher W. P-glycoprotein and multidrug resistance-associated protein are involved in the regulation of extracellular levels of the major antiepileptic drug carbamazepine in the brain. Neuroreport 2001; 12: 3557–60

    Article  PubMed  CAS  Google Scholar 

  97. Hartmann G, Kim H, Piquette-Miller M. Regulation of the hepatic multidrug resistance gene expression by endotoxin and inflammatory cytokines in mice. Int Immunopharmacol 2001; 1: 189–99

    Article  PubMed  CAS  Google Scholar 

  98. Sukhai M, Piquette-Miller M. Regulation of the multidrug resistance genes by stress signals. J Pharm Pharm Sci 2000; 3: 268–80

    PubMed  CAS  Google Scholar 

  99. Huovinen P. Macrolide-resistant group A streptococcus: now in the United States. N Engl J Med 2002; 346: 1243–5

    Article  PubMed  Google Scholar 

  100. Presant CA, Wolf W, Waluch V, et al. Association of intratumoral pharmacokinetics of fluorouracil with clinical response. Lancet 1994; 343: 1184–7

    Article  PubMed  CAS  Google Scholar 

  101. Hyatt JM, McKinnon PS, Zimmer GS, et al. The importance of pharmacokinetic/pharmacodynamic surrogate markers to outcome: focus on antibacterial agents. Clin Pharmacokinet 1995; 28: 143–60

    Article  PubMed  CAS  Google Scholar 

  102. Lambert HP. Clinical significance of tissue penetration of antibiotics in the respiratory tract. Scand J Infect Dis Suppl 1978; 14: 262–6

    PubMed  CAS  Google Scholar 

  103. Palsmeier RK, Lunte CE. Microdialysis sampling in tumor and muscle: study of the disposition of 3-amino-1,2,4-benzotriazine-l,4-di-N-oxide (SR 4233). Life Sci 1994; 55: 815–25

    Article  PubMed  CAS  Google Scholar 

  104. de Lange EC, de Vries JD, Zurcher C, et al. The use of intracerebral microdialysis for the determination of pharmacokinetic profiles of anticancer drugs in tumor-bearing rat brain. Pharm Res 1995; 12: 1924–31

    Article  PubMed  Google Scholar 

  105. Nakashima M, Shibata S, Tokunaga Y, et al. In-vivo microdialysis study of the distribution of cisplatin into brain tumour tissue after intracarotid infusion in rats with 9L malignant glioma. J Pharm Pharmacol 1997; 49: 777–80

    Article  PubMed  CAS  Google Scholar 

  106. Behrens PF, Langemann H, Strohschein R, et al. Extracellular glutamate and other metabolites in and around RG2 rat glioma: an intracerebral microdialysis study. J Neurooncol 2000; 47: 11–22

    Article  PubMed  CAS  Google Scholar 

  107. Darbin O, Lonjon M, Quentien MH, et al. In vivo study of tumor metabolism: an application of new multi-probe microdialysis system in the striatum of freely moving rats grafted with C6 cells. Brain Res 2000; 881: 121–7

    Article  PubMed  CAS  Google Scholar 

  108. Wang Q, Yang H, Miller DW, et al. Effect of the p-glycoprotein inhibitor, cyclosporin A, on the distribution of rhodamine-123 to the brain: an in vivo microdialysis study in freely moving rats. Biochem Biophys Res Commun 1995; 211: 719–26

    Article  PubMed  CAS  Google Scholar 

  109. Sakata A, Tamai I, Kawazu K, et al. In vivo evidence for ATP-dependent and P-glycoprotein-mediated transport of cyclosporin A at the blood-brain barrier. Biochem Pharmacol 1994; 48: 1989–92

    Article  PubMed  CAS  Google Scholar 

  110. Tsai TH, Lee CH, Yeh PH. Effect of P-glycoprotein modulators on the pharmacokinetics of camptothecin using microdialysis. Br J Pharmacol 2001; 134: 1245–52

    Article  PubMed  CAS  Google Scholar 

  111. Ma J, Pulfer S, Li S, et al. Pharmacodynamic-mediated reduction of temozolomide tumor concentrations by the angiogenesis inhibitor TNP-470. Cancer Res 2001; 61: 5491–8

    PubMed  CAS  Google Scholar 

  112. Teicher BA, Holden SA, Ara G, et al. Potentiation of cytotoxic cancer therapies by TNP-470 alone and with other anti-angiogenic agents. Int J Cancer 1994; 57: 920–5

    Article  PubMed  CAS  Google Scholar 

  113. Teicher BA, Dupuis NP, Robinson MF, et al. Antiangiogenic treatment (TNP-470/minocycline) increases tissue levels of anticancer drugs in mice bearing Lewis lung carcinoma. Oncol Res 1995; 7: 237–43

    PubMed  CAS  Google Scholar 

  114. Lundstedt C, Stridbeck H, Andersson R, et al. Tumor seeding occurring after fine-needle biopsy of abdominal malignancies. Acta Radiol 1991; 32: 518–20

    Article  PubMed  CAS  Google Scholar 

  115. Weiss H. Metastases caused by fine needle puncture [in German]. Ultraschall Med 1989; 10: 147–51

    Article  PubMed  CAS  Google Scholar 

  116. Thompson JF, Siebert GA, Anissimov YG, et al. Microdialysis and response during regional chemotherapy by isolated limb infusion of melphalan for limb malignancies. Br J Cancer 2001; 85: 157–65

    Article  PubMed  CAS  Google Scholar 

  117. Ekstrom PO, Giercksky KE, Andersen A, et al. Intratumoral differences in methotrexate levels within human osteosarcoma xenografts studied by microdialysis. Life Sci 1997; 61: PL275–PL280

    Article  PubMed  CAS  Google Scholar 

  118. Ekstrom PO, Andersen A, Saeter G, et al. Continuous intratumoral microdialysis during high-dose methotrexate therapy in a patient with malignant fibrous histiocytoma of the femur: a case report. Cancer Chemother Pharmacol 1997; 39: 267–72

    PubMed  CAS  Google Scholar 

  119. Wennberg AM, Larko O, Lonnroth P, et al. Delta-aminolevulinic acid in superficial basal cell carcinomas and normal skin: a microdialysis and perfusion study. Clin Exp Dermatol 2000; 25: 317–22

    Article  PubMed  CAS  Google Scholar 

  120. De Micheli E, Alfieri A, Pinna G, et al. Extracellular levels of taurine in tumoral, peritumoral and normal brain tissue in patients with malignant glioma: an intraoperative microdialysis study. Adv Exp Med Biol 2000; 483: 621–5

    Article  PubMed  Google Scholar 

  121. Hunz M, Jetter A, Wilde S, et al. Plasma and tissue pharmacokinetics of epirubicine in nine patients with primary breast cancer. Eur J Clin Pharmacol 2001; 57: A31

    Article  Google Scholar 

  122. Jain RK. Delivery of molecular medicine to solid tumors. Science 1996; 271: 1079–80

    Article  PubMed  CAS  Google Scholar 

  123. Jain RK. Transport of molecules in the tumor interstitium: a review. Cancer Res 1987; 47: 3039–51

    PubMed  CAS  Google Scholar 

  124. Maniotis AJ, Folberg R, Hess A, et al. Vascular channel formation by human melanoma cells in vivo and in vitro: vasculogenic mimicry. Am J Pathol 1999; 155: 739–52

    Article  PubMed  CAS  Google Scholar 

  125. Shah VP, Flynn GL, Yacobi A, et al. Bioequivalence of topical dermatological dosage forms: methods of evaluation of bioequivalence. Pharm Res 1998; 15: 167–71

    Article  PubMed  CAS  Google Scholar 

  126. Fang JY, Sung KC, Lin HH, et al. Transdermal iontophoretic delivery of diclofenac sodium from various polymer formulations: in vitro and in vivo studies. Int J Pharm 1999; 178: 83–92

    Article  PubMed  CAS  Google Scholar 

  127. Benfeldt E, Serup J. Effect of barrier perturbation on cutaneous penetration of salicylic acid in hairless rats: in vivo pharmacokinetics using microdialysis and non-invasive quantification of barrier function. Arch Dermatol Res 1999; 291: 517–26

    Article  PubMed  CAS  Google Scholar 

  128. Kreilgaard M. Dermal pharmacokinetics of microemulsion formulations determined by in vivo microdialysis. Pharm Res 2001; 18: 367–73

    Article  PubMed  CAS  Google Scholar 

  129. Ding P, Xu H, Wei G, et al. Microdialysis sampling coupled to HPLC for transdermal delivery study of ondansetron hydrochloride in rats. Biomed Chromatogr 2000; 14: 141–3

    Article  PubMed  CAS  Google Scholar 

  130. Ault JM, Riley CM, Meltzer NM, et al. Dermal microdialysis sampling in vivo. Pharm Res 1994; 11: 1631–9

    Article  PubMed  CAS  Google Scholar 

  131. Nakashima M, Zhao MF, Ohya H, et al. Evaluation of in-vivo transdermal absorption of cyclosporin with absorption enhancer using intradermal microdialysis in rats. J Pharm Pharmacol 1996; 48: 1143–6

    Article  PubMed  CAS  Google Scholar 

  132. Matsuyama K, Nakashima M, Nakaboh Y, et al. Application of in vivo microdialysis to transdermal absorption of methotrexate in rats. Pharm Res 1994; 11: 684–6

    Article  PubMed  CAS  Google Scholar 

  133. Fang JY, Hsu LR, Huang YB, et al. Evaluation of transdermal iontophoresis of enoxacin from polymer formulations: in vitro skin permeation and in vivo microdialysis using Wistar rat as an animal model. Int J Pharm 1999; 180: 137–49

    Article  PubMed  CAS  Google Scholar 

  134. Matsuyama K, Nakashima M, Ichikawa M, et al. In vivo microdialysis for the transdermal absorption of Valproate in rats. Biol Pharm Bull 1994; 17: 1395–8

    Article  PubMed  CAS  Google Scholar 

  135. Murakami T, Yoshioka M, Yumoto R, et al. Topical delivery of keloid therapeutic drug, tranilast, by combined use of oleic acid and propylene glycol as a penetration enhancer: evaluation by skin microdialysis in rats. J Pharm Pharmacol 1998; 50: 49–54

    Article  PubMed  CAS  Google Scholar 

  136. Stagni G, O’Donnell D, Liu YJ, et al. Intradermal microdialysis: kinetics of iontophoretically delivered Propranolol in forearm dermis. J Control Release 2000; 63: 331–9

    Article  PubMed  CAS  Google Scholar 

  137. Anderson C, Andersson T, Boman A, et al. Cutaneous microdialysis for the measurement in vivo of the percutaneous absorption of organic solvents. Curr Probl Dermatol 1996; 25: 37–46

    PubMed  CAS  Google Scholar 

  138. Boelsma E, Anderson C, Karlsson AM, et al. Microdialysis technique as a method to study the percutaneous penetration of methyl nicotinate through excised human skin, reconstructed epidermis, and human skin in vivo. Pharm Res 2000; 17: 141–7

    Article  PubMed  CAS  Google Scholar 

  139. Benfeldt E, Serup J, Menne T. Effect of barrier perturbation on cutaneous salicylic acid penetration in human skin: in vivo pharmacokinetics using microdialysis and non-invasive quantification of barrier function. Br J Dermatol 1999; 140: 739–48

    Article  PubMed  CAS  Google Scholar 

  140. Hegemann L, Forstinger C, Partsch B, et al. Microdialysis in cutaneous pharmacology: kinetic analysis of transdermally delivered nicotine. J Invest Dermatol 1995; 104: 839–43

    Article  PubMed  CAS  Google Scholar 

  141. Schrolnberger C, Brunner M, Mayer BX, et al. Application of the minimal trauma biopsy to transdermal clinical pharmacokinetic studies. J Control Release 2001; 75: 297–306

    Article  PubMed  CAS  Google Scholar 

  142. Tegeder I, Muth-Selbach U, Lotsch J, et al. Application of microdialysis for the determination of muscle and subcutaneous tissue concentrations after oral and topical ibuprofen administration. Clin Pharmacol Ther 1999; 65: 357–68

    Article  PubMed  CAS  Google Scholar 

  143. Anderson C, Andersson T, Molander M. Ethanol absorption across human skin measured by in vivo microdialysis technique. Acta Derm Venereol 1991; 71: 389–93

    PubMed  CAS  Google Scholar 

  144. Stagni G, O’Donnell D, Liu YJ, et al. Iontophoretic current and intradermal microdialysis recovery in humans. J Pharmacol Toxicol Methods 1999; 41: 49–54

    Article  PubMed  CAS  Google Scholar 

  145. Benfeldt E. In vivo microdialysis for the investigation of drug levels in the dermis and the effect of barrier perturbation on cutaneous drug penetration: studies in hairless rats and human subjects. Acta Derm Venereol Suppl (Stockh) 1999; 206: 1–59

    CAS  Google Scholar 

  146. Cormier M, Chao ST, Gupta SK, et al. Effect of transdermal iontophoresis codelivery of hydrocortisone on metoclopramide pharmacokinetics and skin-induced reactions in human subjects. J Pharm Sci 1999; 88: 1030–5

    Article  PubMed  CAS  Google Scholar 

  147. Boutsiouki P, Thompson JP, Clough GF. Effects of local blood flow on the percutaneous absorption of the organophosphorus compound malathion: a microdialysis study in man. Arch Toxicol 2001; 75: 321–8

    Article  PubMed  CAS  Google Scholar 

  148. Liu P, Muller M, Derendorf H. Rational dosing of antibiotics: the use of plasma concentrations versus tissue concentrations. Int J Antimicrob Agents 2002; 19: 285–90

    Article  PubMed  CAS  Google Scholar 

  149. Meibohm B, Derendorf H. Pharmacokinetic/pharmacodynamic studies in drug product development. J Pharm Sci 2002; 91: 18–31

    Article  PubMed  CAS  Google Scholar 

  150. Delacher S, Derendorf H, Hollenstein U, et al. A combined in vivo pharmacokinetic-in vitro pharmacodynamic approach to simulate target site pharmacodynamics of antibiotics in humans. J Antimicrob Chemother 2000; 46: 733–9

    Article  PubMed  CAS  Google Scholar 

  151. Sauermann R, Zeitlinger M, Erovic BM, et al. Pharmacodynamics of piperacillin in severely ill patients evaluated by using a PK/PD model. Int J Antimicrob Agents 2003; 22: 574–8

    Article  PubMed  CAS  Google Scholar 

  152. Zeitlinger MA, Marsik C, Georgopoulos A, et al. Target site bacterial killing of cefpirome and fosfomycin in critically ill patients. Int J Antimicrob Agents 2003; 21: 562–7

    Article  PubMed  CAS  Google Scholar 

  153. Muller M, Bockenheimer J, Zellenberg U, et al. Relationship between in vivo drug exposure of the tumor interstitium and inhibition of tumor cell growth in vitro: a study in breast cancer patients. Breast Cancer Res Treat 2000; 60: 211–7

    Article  PubMed  CAS  Google Scholar 

  154. Phelps ME. PET: the merging of biology and imaging into molecular imaging. J Nucl Med 2000; 41: 661–81

    PubMed  CAS  Google Scholar 

  155. Front D, Israel O, Iosilevsky G, et al. Human lung tumors: SPECT quantitation of differences in Co-57 bleomycin uptake. Radiology 1987; 165: 129–33

    PubMed  CAS  Google Scholar 

  156. Sundram FX, Wong WY, Ang ES, et al. Evaluation of technetium-99m Ciprofloxacin (Infecton) in the imaging of infection. Ann Acad Med Singapore 2000; 29: 699–703

    PubMed  CAS  Google Scholar 

  157. Fischman AJ, Livni E, Babich J, et al. Pharmacokinetics of [18F]fleroxacin in healthy human subjects studied by using positron emission tomography. Antimicrob Agents Chemother 1993; 37: 2144–52

    Article  PubMed  CAS  Google Scholar 

  158. Wollmer P, Pride NB, Rhodes CG, et al. Measurement of pulmonary erythromycin concentration in patients with lobar pneumonia by means of positron tomography. Lancet 1982; II: 1361–4

    Article  Google Scholar 

  159. Tewson TJ, Yang D, Wong G, et al. The synthesis of fluorine-18 lomefloxacin and its preliminary use in human studies. Nucl Med Biol 1996; 23: 767–72

    Article  PubMed  CAS  Google Scholar 

  160. Jynge P, Skjetne T, Gribbestad I, et al. In vivo tissue pharmacokinetics by fluorine magnetic resonance spectroscopy: a study of liver and muscle disposition of fleroxacin in humans. Clin Pharmacol Ther 1990; 48: 481–9

    Article  PubMed  CAS  Google Scholar 

  161. Fischman AJ, Alpert NM, Livni E, et al. Pharmacokinetics of 18F-labeled fluconazole in healthy human subjects by positron emission tomography. Antimicrob Agents Chemother 1993; 37: 1270–7

    Article  PubMed  CAS  Google Scholar 

  162. Fischman AJ, Alpert NM, Babich JW, et al. The role of positron emission tomography in pharmacokinetic analysis. Drug Metab Rev 1997; 29: 923–56

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This manuscript was not supported by a third party. No sources of funding were used to assist in the preparation of this review and the authors have no conflicts of interest that are directly relevant to the content of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Joukhadar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Joukhadar, C., Müller, M. Microdialysis. Clin Pharmacokinet 44, 895–913 (2005). https://doi.org/10.2165/00003088-200544090-00002

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003088-200544090-00002

Keywords

Navigation