Skip to main content
Log in

Pharmacokinetic Drug Interactions Involving 17α-Ethinylestradiol

A New Look at an Old Drug

Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

17α-Ethinylestradiol (EE) is widely used as the estrogenic component of oral contraceptives (OC). In vitro and in vivo metabolism studies indicate that EE is extensively metabolised, primarily via intestinal sulfation and hepatic oxidation, glucuronidation and sulfation. Cytochrome P450 (CYP)3A4-mediated EE 2-hydroxylation is the major pathway of oxidative metabolism of EE. For some time it has been known that inducers of drug-metabolising enzymes (such as the CYP3A4 inducer rifampicin [rifampin]) can lead to breakthrough bleeding and contraceptive failure. Conversely, inhibitors of drug-metabolising enzymes can give rise to elevated EE plasma concentrations and increased risks of vascular disease and hypertension. In vitro studies have also shown that EE inhibits a number of human CYP enzymes, such as CYP2C19, CYP3A4 and CYP2B6. Consequently, there are numerous reports in the literature describing EE-containing OC formulations as perpetrators of pharmacokinetic drug interactions. Because EE may participate in multiple pharmacokinetic drug interactions as either a victim or perpetrator, pharmaceutical companies routinely conduct clinical drug interaction studies with EE-containing OCs when evaluating new chemical entities in development. It is therefore critical to understand the mechanisms underlying these drug interactions. Such an understanding can enable the interpretation of clinical data and lead to a greater appreciation of the profile of the drug by physicians, clinicians and regulators. This article summarises what is known of the drug-metabolising enzymes and transporters governing the metabolism, disposition and excretion of EE. An effort is made to relate this information to known clinical drug-drug interactions. The inhibition and induction of drug-metabolising enzymes by EE is also reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Table I
Fig. 5
Table II
Fig. 6
Table III
Table IV
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. The use of trade names is for product identification purposes only and does not imply endorsement.

References

  1. Woutersz TB. Benefits of oral contraception: thirty years’ experience. Int J Fertil 1991; 36 Suppl. 3: 26–31

    PubMed  Google Scholar 

  2. Yuzpe AA. Oral contraception: trends over time. J Reprod Med 2002; 47 (11 Suppl.): 967–73

    PubMed  Google Scholar 

  3. Fotherby K. Pharmacokinetics of ethynyloestradiol in humans. Methods Find Exp Clin Pharmacol 1982; 4(2): 133–41

    PubMed  CAS  Google Scholar 

  4. Fotherby K, Akpoviroro J, Abdel-Rahman HA, et al. Pharmacokinetics of ethynyloestradiol in women for different populations. Contraception 1981; 23(5): 487–96

    Article  PubMed  CAS  Google Scholar 

  5. Orme ML, Back DJ, Ball S. Interindividual variation in the metabolism of ethynylestradiol. Pharmacol Ther 1989; 43(2): 251–60

    Article  PubMed  CAS  Google Scholar 

  6. Orme ML, Back DJ, Breckenridge AM. Clinical pharmacokinetics of oral contraceptive steroids. Clin Pharmacokinet 1983; 8(2): 95–136

    Article  PubMed  CAS  Google Scholar 

  7. Tauber U, Kuhnz W, Humpel M. Pharmacokinetics of gestodene and ethinyl estradiol after oral administration of a monophasic contraceptive. Am J Obstet Gynecol 1990; 163(4 Pt 2): 1414–20

    PubMed  CAS  Google Scholar 

  8. Rogers SM, Back DJ, Orme ML. Intestinal metabolism of ethinyloestradiol and paracetamol in vitro: studies using Ussing chambers. Br J Clin Pharmacol 1987; 23(6): 727–34

    Article  PubMed  CAS  Google Scholar 

  9. Guengerich FP. Metabolism of 17 alpha-ethynylestradiol in humans. Life Sci 1990; 47(22): 1981–8

    Article  PubMed  CAS  Google Scholar 

  10. Back DJ, Orme ML. Pharmacokinetic drug interactions with oral contraceptives. Clin Pharmacokinet 1990; 18(6): 472–84

    Article  PubMed  CAS  Google Scholar 

  11. Weisberg E. Interactions between oral contraceptives and antifungals/antibacterials: is contraceptive failure the result? Clin Pharmacokinet 1999; 36(5): 309–13

    Article  PubMed  CAS  Google Scholar 

  12. Forinash AB, Evans SL. New hormonal contraceptives: a comprehensive review of the literature. Pharmacotherapy 2003; 23(12): 1573–91

    Article  PubMed  CAS  Google Scholar 

  13. Hall SD, Wang Z, Huang SM, et al. The interaction between St John’s wort and an oral contraceptive. Clin Pharmacol Ther 2003; 74(6): 525–35

    Article  PubMed  CAS  Google Scholar 

  14. Ahluwalia BS, Curry CL, Crocker CL, et al. Evidence of higher ethynylestradiol blood levels in human hypertensive oral contraceptive users. Fertil Steril 1977; 28(6): 627–30

    PubMed  CAS  Google Scholar 

  15. Stadel BV. Oral contraceptives and cardiovascular disease (first of two parts). N Engl J Med 1981; 305(11): 612–8

    Article  PubMed  CAS  Google Scholar 

  16. Tamminga WJ, Wemer J, Oosterhuis B, et al. CYP2D6 and CYP2C19 activity in a large population of Dutch healthy volunteers: indications for oral contraceptive-related gender differences. Eur J Clin Pharmacol 1999; 55(3): 177–84

    Article  PubMed  CAS  Google Scholar 

  17. Hagg S, Spigset O, Dahlqvist R. Influence of gender and oral contraceptives on CYP2D6 and CYP2C19 activity in healthy volunteers. Br J Clin Pharmacol 2001; 51(2): 169–73

    Article  PubMed  CAS  Google Scholar 

  18. Shenfield GM. Oral contraceptives: are drug interactions of clinical significance? Drug Saf 1993; 9(1): 21–37

    Article  PubMed  CAS  Google Scholar 

  19. Shenfield GM, Griffin JM. Clinical pharmacokinetics of contraceptive steroids: an update. Clin Pharmacokinet 1991; 20(1): 15–37

    Article  PubMed  CAS  Google Scholar 

  20. Dickinson BD, Altman RD, Nielsen NH, et al. Drug interactions between oral contraceptives and antibiotics. Obstet Gynecol 2001; 98(5 Pt 1): 853–60

    Article  PubMed  CAS  Google Scholar 

  21. Balogh A, Gessinger S, Svarovsky U, et al. Can oral contraceptive steroids influence the elimination of nifedipine and its primary pryidine metabolite in humans? Eur J Clin Pharmacol 1998; 54(9-10): 729–34

    Article  PubMed  CAS  Google Scholar 

  22. Palovaara S, Kivisto KT, Tapanainen P, et al. Effect of an oral contraceptive preparation containing ethinylestradiol and gestodene on CYP3A4 activity as measured by midazolam 1′-hydroxylation. Br J Clin Pharmacol 2000; 50(4): 333–7

    Article  PubMed  CAS  Google Scholar 

  23. Laine K, Tybring G, Bertilsson L. No sex-related differences but significant inhibition by oral contraceptives of CYP2C19 activity as measured by the probe drugs mephenytoin and omeprazole in healthy Swedish white subjects. Clin Pharmacol Ther 2000; 68(2): 151–9

    Article  PubMed  CAS  Google Scholar 

  24. Kent UM, Mills DE, Rajnarayanan RV, et al. Effect of 17-alpha-ethynylestradiol on activities of cytochrome P450 2B (P450 2B) enzymes: characterization of inactivation of P450s 2B1 and 2B6 and identification of metabolites. J Pharmacol Exp Ther 2002; 300(2): 549–58

    Article  PubMed  CAS  Google Scholar 

  25. Lin HL, Kent UM, Hollenberg PF. Mechanism-based inactivation of cytochrome P450 3A4 by 17 alpha-ethynylestradiol: evidence for heme destruction and covalent binding to protein. J Pharmacol Exp Ther 2002; 301(1): 160–7

    Article  PubMed  CAS  Google Scholar 

  26. Laine K, Yasar U, Widen J, et al. A screening study on the liability of eight different female sex steroids to inhibit CYP2C9, 2C19 and 3A4 activities in human liver microsomes. Pharmacol Toxicol 2003; 93(2): 77–81

    Article  PubMed  CAS  Google Scholar 

  27. Palovaara S, Pelkonen O, Uusitalo J, et al. Inhibition of cytochrome P450 2B6 activity by hormone replacement therapy and oral contraceptive as measured by bupropion hydroxylation. Clin Pharmacol Ther 2003; 74(4): 326–33

    Article  PubMed  CAS  Google Scholar 

  28. Palovaara S, Tybring G, Laine K. The effect of ethinyloestradiol and levonorgestrel on the CYP2C19-mediated metabolism of omeprazole in healthy female subjects. Br J Clin Pharmacol 2003; 56(2): 232–7

    Article  PubMed  CAS  Google Scholar 

  29. Bolt WH, Kappus H, Bolt HM. Ring A oxidation of 17alpha-ethynylestradiol in man. Horm Metab Res 1974; 6(5): 432

    Article  PubMed  CAS  Google Scholar 

  30. Purba HS, Maggs JL, Orme ML, et al. The metabolism of 17 alpha-ethinyloestradiol by human liver microsomes: formation of catechol and chemically reactive metabolites. Br J Clin Pharmacol 1987; 23(4): 447–53

    Article  PubMed  CAS  Google Scholar 

  31. Schmid SE, Au WY, Hill DE, et al. Cytochrome P-450-dependent oxidation of the 17 alpha-ethynyl group of synthetic steroids: D-homoannulation or enzyme inactivation. Drug Metab Dispos 1983; 11(6): 531–6

    PubMed  CAS  Google Scholar 

  32. Helton ED, Goldzieher JW. Metabolism of ethynyl estrogens. J Toxicol Environ Health 1977; 3(1–2): 231–41

    Article  PubMed  CAS  Google Scholar 

  33. Li AP, Hartman NR, Lu C, et al. Effects of cytochrome P450 inducers on 17alpha-ethinyloestradiol (EE2) conjugation by primary human hepatocytes. Br J Clin Pharmacol 1999; 48(5): 733–42

    Article  PubMed  CAS  Google Scholar 

  34. Back DJ, Bates M, Brechenridge AM, et al. The in vitro metabolism of ethinyloestradiol, mestranol and levonorgestrel by human jejunal mucosa. Br J Clin Pharmacol 1981; 11(3): 275–8

    Article  PubMed  CAS  Google Scholar 

  35. Guengerich FP. Oxidation of 17 alpha-ethynylestradiol by human liver cytochrome P-450. Mol Pharmacol 1988; 33(5): 500–8

    PubMed  CAS  Google Scholar 

  36. Ball SE, Forrester LM, Wolf CR, et al. Differences in the cytochrome P-450 isoenzymes involved in the 2-hydroxylation of oestradiol and 17 alpha-ethinyloestradiol: relative activities of rat and human liver enzymes. Biochem J 1990; 267(1): 221–6

    PubMed  CAS  Google Scholar 

  37. Wang B, Sanchez RI, Franklin RB, et al. The involvement of CYP3A4 and CYP2C9 in the metabolism of 17 alpha-ethinylestradiol. Drug Metab Dispos 2004; 32(11): 1209–12

    Article  PubMed  CAS  Google Scholar 

  38. Wild MJ, Rudland PS, Back DJ. Metabolism of the oral contraceptive steroids ethynylestradiol and norgestimate by normal (Huma 7) and malignant (MCF-7 and ZR-75-1) human breast cells in culture. J Steroid Biochem Mol Biol 1991; 39(4A): 535–43

    Article  PubMed  CAS  Google Scholar 

  39. Shiraga T, Niwa T, Ohno Y, et al. Interindividual variability in 2-hydroxylation, 3-sulfation, and 3-glucuronidation of ethynylestradiol in human liver. Biol Pharm Bull 2004; 27(12): 1900–6

    Article  PubMed  CAS  Google Scholar 

  40. Grimmer SF, Back DJ, Orme ML, et al. The in-vitro mucosal conjugation of ethinyloestradiol and the bioavailability of oral contraceptive steroids in patients with treated and untreated coeliac disease. Aliment Pharmacol Ther 1992; 6(1): 79–85

    Article  PubMed  CAS  Google Scholar 

  41. Coughtrie MW, Bamforth KJ, Sharp S, et al. Sulfation of endogenous compounds and xenobiotics: interactions and function in health and disease. Chem Biol Interact 1994; 92(1–3): 247–56

    Article  PubMed  CAS  Google Scholar 

  42. Tamura HO, Taniguchi K, Hayashi E, et al. Expression profiling of sulfotransferases in human cell lines derived from extra-hepatic tissues. Biol Pharm Bull 2001; 24(11): 1258–62

    Article  PubMed  CAS  Google Scholar 

  43. Pacifici GM, Back DJ. Sulphation and glucuronidation of ethinyloestradiol in human liver in vitro. J Steroid Biochem 1988; 31(3): 345–9

    Article  PubMed  CAS  Google Scholar 

  44. Ebner T, Remmel RP, Burchell B. Human bilirubin UDP-glucuronosyltransferase catalyzes the glucuronidation of ethinylestradiol. Mol Pharmacol 1993; 43(4): 649–54

    PubMed  CAS  Google Scholar 

  45. Ciotti M, Owens IS. Evidence for overlapping active sites for 17 alpha-ethinylestradiol and bilirubin in the human major bilirubin UDPglucuronosyltransferase. Biochemistry 1996; 35(31): 10119–24

    Article  PubMed  CAS  Google Scholar 

  46. Soars MG, Petullo DM, Eckstein JA, et al. An assessment of UDP-glucuronosyltransferase induction using primary human hepatocytes. Drug Metab Dispos 2004; 32(1): 140–8

    Article  PubMed  CAS  Google Scholar 

  47. Soars MG, Ring BJ, Wrighton SA. The effect of incubation conditions on the enzyme kinetics of UDP-glucuronosyltransferases. Drug Metab Dispos 2003; 31(6): 762–7

    Article  PubMed  CAS  Google Scholar 

  48. Back DJ, Breckenridge AM, Crawford FE, et al. An investigation of the pharmacokinetics of ethynylestradiol in women using radioimmunoassay. Contraception 1979; 20(3): 263–73

    Article  PubMed  CAS  Google Scholar 

  49. Humpel M, Nieuweboer B, Wendt H, et al. Investigations of pharmacokinetics of ethinyloestradiol to specific consideration of a possible first-pass effect in women. Contraception 1979; 19(4): 421–32

    Article  PubMed  CAS  Google Scholar 

  50. Schrag ML, Cui D, Rushmore TH, et al. Sulfotransferase 1E1 is a low km isoform mediating the 3-O-sulfation of ethinyl estradiol. Drug Metab Dispos 2004; 32(11): 1299–303

    PubMed  CAS  Google Scholar 

  51. Cui D, Booth-Genthe CL, Carlini E, et al. Heterotropic modulation of sulfotransferase 2A1 activity by celecoxib: product ratio switching of ethynylestradiol sulfation. Drug Metab Dispos 2004; 32(11): 1260–4

    Article  PubMed  CAS  Google Scholar 

  52. Helton ED, Williams MC, Goldzieher JW. Human urinary and liver conjugates of 17alpha-ethinylestradiol. Steroids 1976; 27(6): 851–67

    Article  PubMed  CAS  Google Scholar 

  53. Strassburg CP, Manns MP, Tukey RH. Expression of the UDP-glucuronosyltransferase 1A locus in human colon: identification and characterization of the novel extrahepatic UGT1A8. J Biol Chem 1998; 273(15): 8719–26

    Article  PubMed  CAS  Google Scholar 

  54. Watanabe Y, Nakajima M, Yokoi T. Troglitazone glucuronidation in human liver and intestine microsomes: high catalytic activity of UGT1A8 and UGT1A10. Drug Metab Dispos 2002; 30(12): 1462–9

    Article  PubMed  CAS  Google Scholar 

  55. Maggs JL, Grimmer SFM, Orme ML, et al. The biliary and urinary metabolites of [3H]17 alpha-ethynylestradiol in women. Xenobiotica 1983; 13(7): 421–31

    Article  PubMed  CAS  Google Scholar 

  56. Kamyab S, Fotherby K, Steele SJ. Metabolism of 4-14C-ethynyl oestradiol in women. Nature 1969; 221(178): 360–1

    Article  CAS  Google Scholar 

  57. Cargill DI, Steinetz BG, Gosnell E, et al. Fate of ingested radiolabeled ethynylestradiol and its 3-cyclopentyl ether in patients with bile fistulas. J Clin Endocrinol Metab 1969; 29(8): 1051–61

    Article  PubMed  CAS  Google Scholar 

  58. Williams MC, Helton ED, Goldzieher JW. The urinary metabolites of 17alpha-ethynylestradiol-9alpha,11xi-3H in women: chromatographic profiling and identification of ethynyl and non-ethynyl compounds. Steroids 1975; 25(2): 229–46

    Article  PubMed  CAS  Google Scholar 

  59. Maggs JL, Park BK. A comparative study of biliary and urinary 2-hydroxylated metabolites of [6,7-3H]17 alpha-ethynylestradiol in women. Contraception 1985; 32(2): 173–82

    Article  PubMed  CAS  Google Scholar 

  60. Back DJ, Breckenridge AM, MacIver M, et al. The gut wall metabolism of ethinyloestradiol and its contribution to the pre-systemic metabolism of ethinyloestradiol in humans. Br J Clin Pharmacol 1982; 13(3): 325–30

    Article  PubMed  CAS  Google Scholar 

  61. Bolt HM, Bolt M, Kappus H. Interaction of rifampicin treatment with pharmacokinetics and metabolism of ethinyloestradiol in man. Acta Endocrinol (Copenh) 1977; 85(1): 189–97

    CAS  Google Scholar 

  62. Cortes-Gallegos V, Carranco A, Sojo I, et al. Accumulation of ethinylestradiol in blood and endometrium of women taking oral contraceptives: the sequential therapy. Fertil Steril 1979; 32(5): 524–7

    PubMed  CAS  Google Scholar 

  63. Dusterberg B, Humpel M, Wendt H. Plasma levels of active ingredients after single and repeated administration of a new oral contraceptive containing 2mg of cyproterone acetate and 50 micrograms of ethinyl estradiol (Diane) to five young women. Acta Obstet Gynecol Scand Suppl 1979; 88: 27–31

    Article  PubMed  CAS  Google Scholar 

  64. Back DJ, Bolt HM, Breckenridge AM, et al. The pharmacokinetics of a large (3mg) oral dose of ethynylestradiol in women. Contraception 1980; 21(2): 145–53

    Article  PubMed  CAS  Google Scholar 

  65. Akpoviroro J, Fotherby K. Assay of ethynyloestradiol in human serum and its binding to plasma proteins. J Steroid Biochem 1980; 13(7): 773–9

    Article  PubMed  CAS  Google Scholar 

  66. van den Heuvel MW, van Bragt AJ, Alnabawy AK, et al. Comparison of ethinylestradiol pharmacokinetics in three hormonal contraceptive formulations: the vaginal ring, the transdermal patch and an oral contraceptive. Contraception 2005; 72(3): 168–74

    Article  PubMed  CAS  Google Scholar 

  67. Akpoviroro JO, Mangalam M, Jenkins N, et al. Binding of the contraceptive steroids medroxyprogesterone acetate and ethynyloestradiol in blood of various species. J Steroid Biochem 1981; 14(5): 493–8

    Article  PubMed  CAS  Google Scholar 

  68. Pacifici GM, Viani A, Rizzo G, et al. Plasma protein binding of ethinyloestradiol: effect of disease and interaction with drugs. Int J Clin Pharmacol Ther Toxicol 1989; 27(7): 362–5

    PubMed  CAS  Google Scholar 

  69. Di Padova C, Tritapepe R, Cammareri G, et al. S-adenosyl-L-methionine antagonizes ethynylestradiol-induced bile cholesterol supersaturation in humans without modifying the estrogen plasma kinetics. Gastroenterology 1982; 82(2): 223–7

    PubMed  Google Scholar 

  70. Nilsson S, Nygren KG, Johansson ED. Ethinyl estradiol in human milk and plasma after oral administration. Contraception 1978; 17(2): 131–9

    Article  PubMed  CAS  Google Scholar 

  71. Fotherby K. Variability of pharmacokinetic parameters for contraceptive steroids. J Steroid Biochem 1983; 19(1C): 817–20

    Article  PubMed  CAS  Google Scholar 

  72. Kuhl H. Comparative pharmacology of newer progestogens. Drugs 1996; 51(2): 188–215

    Article  PubMed  CAS  Google Scholar 

  73. Humpel M, Tuber U, Kuhnz W, et al. Comparison of serum ethinyl estradiol, sex-hormone-binding globulin, corticoid-binding globulin and cortisol levels in women using two low-dose combined oral contraceptives. Horm Res 1990; 33(1): 35–9

    Article  PubMed  CAS  Google Scholar 

  74. Fotherby K. Levonorgestrel: clinical pharmacokinetics. Clin Pharmacokinet 1995; 28(3): 203–15

    Article  PubMed  CAS  Google Scholar 

  75. Kuhl H, Jung-Hoffmann C, Heidt F. Alterations in the serum levels of gestodene and SHBG during 12 cycles of treatment with 30 micrograms ethinylestradiol and 75 micrograms gestodene. Contraception 1988; 38(4): 477–86

    Article  PubMed  CAS  Google Scholar 

  76. Ortiz de Montellano PR, Kunze KL. Self-catalyzed inactivation of hepatic cytochrome P-450 by ethynyl substrates. J Biol Chem 1980; 255(12): 5578–85

    PubMed  CAS  Google Scholar 

  77. Ortiz de Montellano PR, Kunze KL, Yost GS, et al. Self-catalyzed destruction of cytochrome P-450: covalent binding of ethynyl sterols to prosthetic heme. Proc Natl Acad Sci U S A 1979; 76(2): 746–9

    Article  PubMed  CAS  Google Scholar 

  78. White IN, Muller-Eberhard U. Decreased liver cytochrome P-450 in rats caused by norethindrone or ethynyloestradiol. Biochem J 1977; 166(1): 57–64

    PubMed  CAS  Google Scholar 

  79. Guengerich FP. Inhibition of oral contraceptive steroid-metabolizing enzymes by steroids and drugs. Am J Obstet Gynecol 1990; 163(6 Pt 2): 2159–63

    PubMed  CAS  Google Scholar 

  80. Kunze KL, Mangold BL, Wheeler C, et al. The cytochrome P-450 active site: regiospecificity of prosthetic heme alkylation by olefins and acetylenes. J Biol Chem 1983; 258(7): 4202–7

    PubMed  CAS  Google Scholar 

  81. Walsky RL, Gaman EA, Obach RS. Examination of 209 drugs for inhibition of cytochrome P450 2C8. J Clin Pharmacol 2005; 45(1): 68–78

    Article  PubMed  CAS  Google Scholar 

  82. Jurima M, Inaba T, Kalow W. Mephenytoin hydroxylase activity in human liver: inhibition by steroids. Drug Metab Dispos 1985; 13(6): 746–9

    PubMed  CAS  Google Scholar 

  83. Rodrigues AD, Lu P. Is 17alpha-ethinyl estradiol an inhibitor of cytochrome P450 2C19? Drug Metab Dispos 2004; 32(3): 364–5

    Article  PubMed  CAS  Google Scholar 

  84. Haehner T, Refaie MO, Muller-Enoch D. Drug-drug interactions evaluated by a highly active reconstituted native human cytochrome P4503A4 and human NADPH-cytochrome P450 reductase system. Arzneimittelforschung 2004; 54(1): 78–83

    PubMed  CAS  Google Scholar 

  85. Madden S, Back DJ, Martin CA, et al. Metabolism of the contraceptive steroid desogestrel by the intestinal mucosa. Br J Clin Pharmacol 1989; 27(3): 295–9

    Article  PubMed  CAS  Google Scholar 

  86. Gilissen RA, Barnaby RJ, Kajbaf M. Identification of UDP-glucuronosyltransferases involved in the human hepatic metabolism of GV150526, a novel glycine antagonist. Drug Metabol Drug Interact 2000; 16(3): 173–89

    Article  PubMed  CAS  Google Scholar 

  87. Gorrill MJ, Marshall JR. Pharmacology of estrogens and estrogen-induced effects on nonreproductive organs and systems. J Reprod Med 1986; 31(9 Suppl.): 842–7

    PubMed  CAS  Google Scholar 

  88. Machishi H, Higashi S, Hibasami H, et al. Role of activation of ornithine decarboxylase and DNA synthesis on ethynylestradiol-induced hepatocarcinogenesis. Carcinogenesis 1995; 16(12): 2965–71

    Article  PubMed  CAS  Google Scholar 

  89. Reilly PE, Mason SR, Hooper WD. Effects of ethinylestradiol and testosterone implants on hepatic microsomal cytochrome P450 monooxygenases of birth gonadectomized male and female Dark Agouti rats. J Steroid Biochem Mol Biol 1991; 39(5A): 741–9

    Article  PubMed  CAS  Google Scholar 

  90. Kocarek TA, Schuetz EG, Guzelian PS. Regulation of cytochrome P450 2B1/2 mRNAs by Kepone (chlordecone) and potent estrogens in primary cultures of adult rat hepatocytes on Matrigel. Toxicol Lett 1994; 71(2): 183–96

    Article  PubMed  CAS  Google Scholar 

  91. Jager W, Correia MA, Bornheim LM, et al. Ethynylestradiol-mediated induction of hepatic CYP3A9 in female rats: implication for cyclosporine metabolism. Drug Metab Dispos 1999; 27(12): 1505–11

    PubMed  CAS  Google Scholar 

  92. LeCluyse EL. Pregnane X receptor: molecular basis for species differences in CYP3A induction by xenobiotics. Chem Biol Interact 2001; 134(3): 283–9

    Article  PubMed  CAS  Google Scholar 

  93. Niemi M, Backman JT, Fromm MF, et al. Pharmacokinetic interactions with rifampicin: clinical relevance. Clin Pharmacokinet 2003; 42(9): 819–50

    Article  PubMed  CAS  Google Scholar 

  94. Chen Y, Ferguson SS, Nehishi M, et al. Induction of human CYP2C9 by rifampicin, hyperforin, and phenobarbital is mediated by the pregnane X receptor. J Pharmacol Exp Ther 2004; 308(2): 495–501

    Article  PubMed  CAS  Google Scholar 

  95. Xu C, Li CY, Kong AN. Induction of phase I, II and III drug metabolism/transport by xenobiotics. Arch Pharm Res 2005; 28(3): 249–68

    Article  PubMed  CAS  Google Scholar 

  96. Zhu Z, Kim S, Chen T, et al. Correlation of high-throughput pregnane X receptor (PXR) transactivation and binding assays. J Biomol Screen 2004; 9(6): 533–40

    Article  PubMed  CAS  Google Scholar 

  97. Mills JB, Rose KA, Sadagopan N, et al. Induction of drug metabolism enzymes and MDR1 using a novel human hepatocyte cell line. J Pharmacol Exp Ther 2004; 309(1): 303–9

    Article  PubMed  CAS  Google Scholar 

  98. Barditch-Crovo P, Trapnell CB, Ette E, et al. The effects of rifampin and rifabutin on the pharmacokinetics and pharmacodynamics of a combination oral contraceptive. Clin Pharmacol Ther 1999; 65(4): 428–38

    Article  PubMed  CAS  Google Scholar 

  99. Fattore C, Cipolla G, Gatti G, et al. Induction of ethinylestradiol and levonorgestrel metabolism by oxcarbazepine in healthy women. Epilepsia 1999; 40(6): 783–7

    Article  PubMed  CAS  Google Scholar 

  100. Mildvan D, Tarrish R, Marshak A, et al. Pharmacokinetic interaction between nevirapine and ethinyl estradiol/norethindrone when administered concurrently to HIV-infected women. J Acquir Immune Defic Syndr 2002; 29(5): 471–7

    PubMed  CAS  Google Scholar 

  101. Robertson Jr P, Hellriegel ET, Arora S, et al. Effect of modafinil on the pharmacokinetics of ethinyl estradiol and triazolam in healthy volunteers. Clin Pharmacol Ther 2002; 71(1): 46–56

    Article  PubMed  CAS  Google Scholar 

  102. Loi CM, Stern R, Koup JR, et al. Effect of troglitazone on the pharmacokinetics of an oral contraceptive agent. J Clin Pharmacol 1999; 39(4): 410–7

    Article  PubMed  CAS  Google Scholar 

  103. Sinofsky FE, Pasquale SA. The effect of fluconazole on circulating ethinyl estradiol levels in women taking oral contraceptives. Am J Obstet Gynecol 1998; 178(2): 300–4

    Article  PubMed  CAS  Google Scholar 

  104. Hilbert J, Messig M, Kuye O, et al. Evaluation of interaction between fluconazole and an oral contraceptive in healthy women. Obstet Gynecol 2001; 98(2): 218–23

    Article  PubMed  CAS  Google Scholar 

  105. Doose DR, Wang SS, Padmanabhan M, et al. Effect of topiramate or carbamazepine on the pharmacokinetics of an oral contraceptive containing norethindrone and ethinyl estradiol in healthy obese and nonobese female subjects. Epilepsia 2003; 44(4): 540–9

    Article  PubMed  CAS  Google Scholar 

  106. Ouellet D, Hsu A, Qian J, et al. Effect of ritonavir on the pharmacokinetics of ethinyl oestradiol in healthy female volunteers. Br J Clin Pharmacol 1998; 46(2): 111–6

    Article  PubMed  CAS  Google Scholar 

  107. Rogers SM, Back DJ, Stevenson PJ, et al. Paracetamol interaction with oral contraceptive steroids: increased plasma concentrations of ethinyloestradiol. Br J Clin Pharmacol 1987; 23(6): 721–5

    Article  PubMed  CAS  Google Scholar 

  108. Zamah NM, Humpel M, Kuhnz W, et al. Absence of an effect of high vitamin C dosage on the systemic availability of ethinyl estradiol in women using a combination oral contraceptive. Contraception 1993; 48(4): 377–91

    Article  PubMed  CAS  Google Scholar 

  109. Weber A, Jager R, Borner A, et al. Can grapefruit juice influence ethinylestradiol bioavailability? Contraception 1996; 53(1): 41–7

    Article  PubMed  CAS  Google Scholar 

  110. Roberts RK, Grice J, McGuffie C, et al. Oral contraceptive steroids impair the elimination of theophylline. J Lab Clin Med 1983; 101(6): 821–5

    PubMed  CAS  Google Scholar 

  111. Balogh A, Klinger G, Henschel L, et al. Influence of ethinylestradiol-containing combination oral contraceptives with gestodene or levonorgestrel on caffeine elimination. Eur J Clin Pharmacol 1995; 48(2): 161–6

    Article  PubMed  CAS  Google Scholar 

  112. Walle T, Fagan TC, Walle UK, et al. Stimulatory as well as inhibitory effects of ethinyloestradiol on the metabolic clearances of propranolol in young women. Br J Clin Pharmacol 1996; 41(4): 305–9

    Article  PubMed  CAS  Google Scholar 

  113. Granfors MT, Backman JT, Laitila J, et al. Oral contraceptives containing ethinyl estradiol and gestodene markedly increase plasma concentrations and effects of tizanidine by inhibiting cytochrome P450 1A2. Clin Pharmacol Ther 2005; 78(4): 400–11

    Article  PubMed  CAS  Google Scholar 

  114. Benowitz NL, Lessov-Schlaggar CN, Swan GE, et al. Female sex and oral contraceptive use accelerate nicotine metabolism. Clin Pharmacol Ther 2006; 79(5): 480–8

    Article  PubMed  CAS  Google Scholar 

  115. Birkett DJ, Rees D, Andersson T, et al. In vitro proguanil activation to cycloguanil by human liver microsomes is mediated by CYP3A isoforms as well as by S-mephenytoin hydroxylase. Br J Clin Pharmacol 1994; 37(5): 413–20

    Article  PubMed  CAS  Google Scholar 

  116. Laine K, Anttila M, Helminen A, et al. Dose linearity study of selegiline pharmacokinetics after oral administration: evidence for strong drug interaction with female sex steroids. Br J Clin Pharmacol 1999; 47(3): 249–54

    Article  PubMed  CAS  Google Scholar 

  117. Belle DJ, Callaghan JT, Gorski JC, et al. The effects of an oral contraceptive containing ethinyloestradiol and norgestrel on CYP3A activity. Br J Clin Pharmacol 2002; 53(1): 67–74

    Article  PubMed  CAS  Google Scholar 

  118. Reimers A, Helde G, Brodtkorb E. Ethinyl estradiol, not progestogens, reduces lamotrigine serum concentrations. Epilepsia 2005; 46(9): 1414–7

    Article  PubMed  CAS  Google Scholar 

  119. Sidhu J, Job S, Singh S, et al. The pharmacokinetic and pharmacodynamic consequences of the co-administration of lamotrigine and a combined oral contraceptive in healthy female subjects. Br J Clin Pharmacol 2006; 61(2): 191–9

    Article  PubMed  CAS  Google Scholar 

  120. Hendrix CW, Jackson KA, Whitmore E, et al. The effect of isotretinoin on the pharmacokinetics and pharmacodynamics of ethinyl estradiol and norethindrone. Clin Pharmacol Ther 2004; 75(5): 464–75

    Article  PubMed  CAS  Google Scholar 

  121. Jurima-Romet M, Crawford K, Cyr T, et al. Terfenadine metabolism in human liver: in vitro inhibition by macrolide antibiotics and azole antifungals. Drug Metab Dispos 1994; 22(6): 849–57

    PubMed  CAS  Google Scholar 

  122. von Moltke LL, Greenblatt DJ, Schmider J, et al. Midazolam hydroxylation by human liver microsomes in vitro: inhibition by fluoxetine, norfluoxetine, and by azole antifungal agents. J Clin Pharmacol 1996; 36(9): 783–91

    Google Scholar 

  123. Gibbs MA, Thummel KE, Shen DD, et al. Inhibition of cytochrome P-450 3A (CYP3A) in human intestinal and liver microsomes: comparison of Ki values and impact of CYP3A5 expression. Drug Metab Dispos 1999; 27(2): 180–7

    PubMed  CAS  Google Scholar 

  124. Venkatakrishnan K, von Moltke LL, Greenblatt DJ. Effects of the antifungal agents on oxidative drug metabolism: clinical relevance. Clin Pharmacokinet 2000; 38(2): 111–80

    Article  PubMed  CAS  Google Scholar 

  125. Neal JM, Kunze KL, Levy RH, et al. Kiiv, an in vivo parameter for predicting the magnitude of a drug interaction arising from competitive enzyme inhibition. Drug Metab Dispos 2003; 31(8): 1043–8

    Article  PubMed  CAS  Google Scholar 

  126. Veronese ML, Gillen LP, Burke JP, et al. Exposure-dependent inhibition of intestinal and hepatic CYP3A4 in vivo by grapefruit juice. J Clin Pharmacol 2003; 43(8): 831–9

    Article  PubMed  CAS  Google Scholar 

  127. Paine MF, Criss AB, Watkins PB. Two major grapefruit juice components differ in intestinal CYP3A4 inhibition kinetic and binding properties. Drug Metab Dispos 2004; 32(10): 1146–53

    Article  PubMed  CAS  Google Scholar 

  128. Kaminsky LS, Zhang QY. The small intestine as a xenobiotic-metabolizing organ. Drug Metab Dispos 2003; 31(12): 1520–5

    Article  PubMed  CAS  Google Scholar 

  129. Blanchard RL, Freimuth RR, Buck J, et al. A proposed nomenclature system for the cytosolic sulfotransferase (SULT) super-family. Pharmacogenetics 2004; 14(3): 199–211

    Article  PubMed  CAS  Google Scholar 

  130. Pacifici GM. Inhibition of human liver and duodenum sulfotransferases by drugs and dietary chemicals: a review of the literature. Int J Clin Pharmacol Ther 2004; 42(9): 488–95

    PubMed  CAS  Google Scholar 

  131. Back DJ, Breckenridge AM, MacIver M, et al. Interaction of ethinyloestradiol with ascorbic acid in man. BMJ (Clin Res Ed) 1981; 282(6275): 1516

    Article  CAS  Google Scholar 

  132. Gardner-Stephen D, Heydel JM, Goyal A, et al. Human PXR variants and their differential effects on the regulation of human UDP-glucuronosyltransferase gene expression. Drug Metab Dispos 2004; 32(3): 340–7

    Article  PubMed  CAS  Google Scholar 

  133. Sugatani J, Nishitani S, Yamakawa K, et al. Transcriptional regulation of human UGT1A1 gene expression: activated glucocorticoid receptor enhances constitutive androstane receptor/pregnane X receptor-mediated UDP-glucuronosyltransferase 1A1 regulation with glucocorticoid receptor-interacting protein 1. Mol Pharmacol 2005; 67(3): 845–55

    Article  PubMed  CAS  Google Scholar 

  134. Williams JA, Hyland R, Jones BC, et al. Drug-drug interactions for UDP-glucuronosyltransferase substrates: a pharmacokinetic explanation for typically observed low exposure (AUCi/ AUC) ratios. Drug Metab Dispos 2004; 32(11): 1201–8

    Article  PubMed  CAS  Google Scholar 

  135. Eagling VA, Back DJ, Barry MG. Differential inhibition of cytochrome P450 isoforms by the protease inhibitors, ritonavir, saquinavir and indinavir. Br J Clin Pharmacol 1997; 44(2): 190–4

    Article  PubMed  CAS  Google Scholar 

  136. Ernest II CS, Hall SD, Jones DR. Mechanism-based inactivation of CYP3A by HIV protease inhibitors. J Pharmacol Exp Ther 2005; 312(2): 583–91

    Article  PubMed  CAS  Google Scholar 

  137. Luo G, Cunningham M, Kim S, et al. CYP3A4 induction by drugs: correlation between a pregnane X receptor reporter gene assay and CYP3A4 expression in human hepatocytes. Drug Metab Dispos 2002; 30(7): 795–804

    Article  PubMed  CAS  Google Scholar 

  138. Perloff MD, von Moltke LL, Greenblatt DJ. Ritonavir and dexamethasone induce expression of CYP3A and P-glycoprotein in rats. Xenobiotica 2004; 34(2): 133–50

    Article  PubMed  CAS  Google Scholar 

  139. Rae JM, Johnson MD, Lippman ME, et al. Rifampin is a selective, pleiotropic inducer of drug metabolism genes in human hepatocytes: studies with cDNA and oligonucleotide expression arrays. J Pharmacol Exp Ther 2001; 299(3): 849–57

    PubMed  CAS  Google Scholar 

  140. Vavricka SR, Van Montfoort J, Ha HR, et al. Interactions of rifamycin SV and rifampicin with organic anion uptake systems of human liver. Hepatology 2002; 36(1): 164–72

    Article  PubMed  CAS  Google Scholar 

  141. Lau YY, Wu CY, Okochi H, et al. Ex situ inhibition of hepatic uptake and efflux significantly changes metabolism: hepatic enzyme-transporter interplay. J Pharmacol Exp Ther 2004; 308(3): 1040–5

    Article  PubMed  CAS  Google Scholar 

  142. Ito K, Iwatsubo T, Kanamitsu S, et al. Quantitative prediction of in vivo drug clearance and drug interactions from in vitro data on metabolism, together with binding and transport. Annu Rev Pharmacol Toxicol 1998; 38: 461–99

    Article  PubMed  CAS  Google Scholar 

  143. Lu P, Schrag ML, Slaughter DE, et al. Mechanism-based inhibition of human liver microsomal cytochrome P450 1A2 by zileuton, a 5-lipoxygenase inhibitor. Drug Metab Dispos 2003; 31(11): 1352–60

    Article  PubMed  CAS  Google Scholar 

  144. Ito K, Brown HS, Houston JB. Database analyses for the prediction of in vivo drug-drug interactions from in vitro data. Br J Clin Pharmacol 2004; 57(4): 473–86

    Article  PubMed  CAS  Google Scholar 

  145. Ito K, Chiba K, Horikawa M, et al. Which concentration of the inhibitor should be used to predict in vivo drug interactions from in vitro data? AAPS Pharm Sci 2002; 4(4): E25

    Article  Google Scholar 

  146. Davies B, Morris T. Physiological parameters in laboratory animals and humans. Pharm Res 1993; 10(7): 1093–5

    Article  PubMed  CAS  Google Scholar 

  147. Yu LX. An integrated model for determining causes of poor oral drug absorption. Pharm Res 1999; 16(12): 1883–7

    Article  PubMed  CAS  Google Scholar 

  148. Sun D, Lennernas H, Welage LS, et al. Comparison of human duodenum and Caco-2 gene expression profiles for 12,000 gene sequences tags and correlation with permeability of 26 drugs. Pharm Res 2002; 19(10): 1400–16

    Article  PubMed  CAS  Google Scholar 

  149. McGready R, Stepniewska K, Seaton E, et al. Pregnancy and use of oral contraceptives reduces the biotransformation of proguanil to cycloguanil. Eur J Clin Pharmacol 2003; 59(7): 553–7

    Article  PubMed  CAS  Google Scholar 

  150. Yoshimoto K, Echizen H, Chiba K, et al. Identification of human CYP isoforms involved in the metabolism of propranolol enantiomers: N-desisopropylation is mediated mainly by CYP1A2. Br J Clin Pharmacol 1995; 39(4): 421–31

    Article  PubMed  CAS  Google Scholar 

  151. Jung F, Richardson TH, Raucy JL, et al. Diazepam metabolism by cDNA-expressed human 2C P450s: identification of P4502C18 and P4502C19 as low K (M) diazepam N-demethylases. Drug Metab Dispos 1997; 25(2): 133–9

    PubMed  CAS  Google Scholar 

  152. Yamazaki H, Inoue K, Shaw PM, et al. Different contributions of cytochrome P450 2C19 and 3A4 in the oxidation of omeprazole by human liver microsomes: effects of contents of these two forms in individual human samples. J Pharmacol Exp Ther 1997; 283(2): 434–42

    PubMed  CAS  Google Scholar 

  153. Rodrigues AD, Rushmore TH. Cytochrome P450 pharmacogenetics in drug development: in vitro studies and clinical consequences. Curr Drug Metab 2002; 3(3): 289–309

    Article  PubMed  CAS  Google Scholar 

  154. Shelepova T, Nafziger AN, Victory J, et al. Effect of a triphasic oral contraceptive on drug-metabolizing enzyme activity as measured by the validated Cooperstown 5+1 cocktail. J Clin Pharmacol 2005; 45(12): 1413–21

    Article  PubMed  CAS  Google Scholar 

  155. Heinonen EH, Anttila MI, Lammintausta RA. Pharmacokinetic aspects of l-deprenyl (selegiline) and its metabolites. Clin Pharmacol Ther 1994; 56(6 Pt 2): 742–9

    Article  PubMed  CAS  Google Scholar 

  156. Mahmood I. Clinical pharmacokinetics and pharmacodynamics of selegiline: an update. Clin Pharmacokinet 1997; 33(2): 91–102

    Article  PubMed  CAS  Google Scholar 

  157. Shin HS. Metabolism of selegiline in humans: identification, excretion, and stereochemistry of urine metabolites. Drug Metab Dispos 1997; 25(6): 657–62

    PubMed  CAS  Google Scholar 

  158. Hidestrand M, Oscarson M, Salonen JS, et al. CYP2B6 and CYP2C19 as the major enzymes responsible for the metabolism of selegiline, a drug used in the treatment of Parkinson’s disease, as revealed from experiments with recombinant enzymes. Drug Metab Dispos 2001; 29(11): 1480–4

    PubMed  CAS  Google Scholar 

  159. Yao C, Kunze KL, Trager WF, et al. Comparison of in vitro and in vivo inhibition potencies of fluvoxamine toward CYP2C19. Drug Metab Dispos 2003; 31(5): 565–71

    Article  PubMed  CAS  Google Scholar 

  160. Patwardhan RV, Mitchell MC, Johnson RF, et al. Differential effects of oral contraceptive steroids on the metabolism of benzodiazepines. Hepatology 1983; 3(2): 248–53

    Article  PubMed  CAS  Google Scholar 

  161. Miners JO, Robson RA, Birkett DJ. Gender and oral contraceptive steroids as determinants of drug glucuronidation: effects on clofibric acid elimination. Br J Clin Pharmacol 1984; 18(2): 240–3

    Article  PubMed  CAS  Google Scholar 

  162. Fischer G, Schauer A, Hartmann H, et al. Increased UDP-glucuronyltransferase in putative preneoplastic foci of human liver after long-term use of oral contraceptives. Naturwissenschaften 1985; 72(5): 277–8

    Article  PubMed  CAS  Google Scholar 

  163. Liu HF, Magdalou J, Nicolas A, et al. Oral contraceptives stimulate the excretion of clofibric acid glucuronide in women and female rats. Gen Pharmacol 1991; 22(2): 393–7

    Article  PubMed  CAS  Google Scholar 

  164. Fotherby K, Caldwell AD. New progestogens in oral contraception. Contraception 1994; 49(1): 1–32

    Article  PubMed  CAS  Google Scholar 

  165. Stanczyk FZ. All progestins are not created equal. Steroids 2003; 68(10-13): 879–90

    Article  PubMed  CAS  Google Scholar 

  166. Benagiano G, Primiero FM, Farris M. Clinical profile of contraceptive progestins. Eur J Contracept Reprod Health Care 2004; 9(3): 182–93

    Article  PubMed  CAS  Google Scholar 

  167. Guengerich FP. Mechanism-based inactivation of human liver microsomal cytochrome P-450 IIIA4 by gestodene. Chem Res Toxicol 1990; 3(4): 363–71

    Article  PubMed  CAS  Google Scholar 

  168. Back DJ, Houlgrave R, Tjia JF, et al. Effect of the progestogens, gestodene, 3-keto desogestrel, levonorgestrel, norethisterone and norgestimate on the oxidation of ethinyloestradiol and other substrates by human liver microsomes. J Steroid Biochem Mol Biol 1991; 38(2): 219–25

    Article  PubMed  CAS  Google Scholar 

  169. Jung-Hoffmann C, Kuhl H. Interaction with the pharmacokinetics of ethinylestradiol and progestogens contained in oral contraceptives. Contraception 1989; 40(3): 299–312

    Article  PubMed  CAS  Google Scholar 

  170. Orme M, Back DJ, Ward S, et al. The pharmacokinetics of ethynylestradiol in the presence and absence of gestodene and desogestrel. Contraception 1991; 43(4): 305–16

    Article  PubMed  CAS  Google Scholar 

  171. Stanczyk FZ. Pharmacokinetics of the new progestogens and influence of gestodene and desogestrel on ethinylestradiol metabolism. Contraception 1997; 55(5): 273–82

    Article  PubMed  CAS  Google Scholar 

  172. Reed MJ, Fotherby F. Intestinal absorption of synthetic steroids. J Steroid Biochem 1979; 11(2): 1107–12

    Article  PubMed  CAS  Google Scholar 

  173. Han YH, Kato Y, Watanabe Y, et al. Carrier-mediated hepatobiliary transport of a novel antifolate, N-[4-[(2,4-dianninopteridine-6-yl)methyl]-3,4-dihydro-2H-1,4-benzothiazin-7-yl]carbonyl-L-homoglutamic acid, in rats. Drug Metab Dispos 2001; 29(4 Pt 1): 394–400

    PubMed  CAS  Google Scholar 

  174. Eisenfeld AJ, Aten R, Weinberger M, et al. Estrogen receptor in the mammalian liver. Science 1976; 191(4229): 862–5

    Article  PubMed  CAS  Google Scholar 

  175. Chu XY, Huskey SE, Braun MP, et al. Transport of ethinylestradiol glucuronide and ethinylestradiol sulfate by the multidrug resistance proteins MRP1, MRP2, and MRP3. J Pharmacol Exp Ther 2004; 309(1): 156–64

    Article  PubMed  CAS  Google Scholar 

  176. Haimeur A, Conseil G, Deeley RG, et al. The MRP-related and BCRP/ABCG2 multidrug resistance proteins: biology, substrate specificity and regulation. Curr Drug Metab 2004; 5(1): 21–53

    Article  PubMed  CAS  Google Scholar 

  177. Imai Y, Asada S, Tsukahara S, et al. Breast cancer resistance protein exports sulfated estrogens but not free estrogens. Mol Pharmacol 2003; 64(3): 610–8

    Article  PubMed  CAS  Google Scholar 

  178. Tsuji A. Transporter-mediated drug interactions. Drug Metab Pharmacokinet 2002; 17(4): 253–74

    Article  PubMed  CAS  Google Scholar 

  179. Lee W, Kim RB. Transporters and renal drug elimination. Annu Rev Pharmacol Toxicol 2004; 44: 137–66

    Article  PubMed  CAS  Google Scholar 

  180. Benet LZ, Cummins CL, Wu CY. Transporter-enzyme interactions: implications for predicting drug-drug interactions from in vitro data. Curr Drug Metab 2003; 4(5): 393–8

    Article  PubMed  CAS  Google Scholar 

  181. Reed MJ, Beranek PA, Bonney RC, et al. The effect of ethynyloestradiol and medroxyprogesterone acetate on the in vivo uptake and metabolism of 3H-oestradiol by breast tumour tissue in postmenopausal women. Anticancer Res 1987; 7(6): 1265–9

    PubMed  CAS  Google Scholar 

  182. Bossard R, Stieger B, O’Neill B, et al. Ethinylestradiol treatment induces multiple canalicular membrane transport alterations in rat liver. J Clin Invest 1993; 91(6): 2714–20

    Article  PubMed  CAS  Google Scholar 

  183. Simon FR, Fortune J, Iwahashi M, et al. Ethinyl estradiol cholestasis involves alterations in expression of liver sinusoidal transporters. Am J Physiol 1996; 271(6 Pt 1): G1043–52

    PubMed  CAS  Google Scholar 

  184. Trauner M, Arrese M, Soroka CJ, et al. The rat canalicular conjugate export pump (Mrp2) is down-regulated in intrahepatic and obstructive cholestasis. Gastroenterology 1997; 113(1): 255–64

    Article  PubMed  CAS  Google Scholar 

  185. Koopen NR, Wolters H, Havinga R, et al. Impaired activity of the bile canalicular organic anion transporter (Mrp2/cmoat) is not the main cause of ethinylestradiol-induced cholestasis in the rat. Hepatology 1998; 27(2): 537–45

    Article  PubMed  CAS  Google Scholar 

  186. Takikawa H, Takamori Y, Sano N, et al. Changes in biliary excretory mechanisms in rats with ethinyloestradiol-induced cholestasis. J Gastroenterol Hepatol 1998; 13(2): 186–91

    Article  PubMed  CAS  Google Scholar 

  187. Lee JM, Trauner M, Soroka CJ, et al. Expression of the bile salt export pump is maintained after chronic cholestasis in the rat. Gastroenterology 2000; 118(1): 163–72

    Article  PubMed  CAS  Google Scholar 

  188. Micheline D, Emmanuel J, Serge E. Effect of ursodeoxycholic acid on the expression of the hepatocellular bile acid transporters (Ntcp and bsep) in rats with estrogen-induced cholestasis. J Pediatr Gastroenterol Nutr 2002; 35(2): 185–91

    Article  PubMed  CAS  Google Scholar 

  189. Geier A, Dietrich CG, Gerloff T, et al. Regulation of basolateral organic anion transporters in ethinylestradiol-induced cholestasis in the rat. Biochim Biophys Acta 2003; 1609(1): 87–94

    Article  PubMed  CAS  Google Scholar 

  190. Kivisto KT, Neuvonen PJ, Klotz U. Inhibition of terfenadine metabolism: pharmacokinetic and pharmacodynamic consequences. Clin Pharmacokinet 1994; 27(1): 1–5

    Article  PubMed  CAS  Google Scholar 

  191. Backman JT, Kyrklund C, Neuvonen M, et al. Gemfibrozil greatly increases plasma concentrations of cerivastatin. Clin Pharmacol Ther 2002; 72(6): 685–91

    Article  PubMed  CAS  Google Scholar 

  192. Backman JT, Wang JS, Wen X, et al. Mibefradil but not isradipine substantially elevates the plasma concentrations of the CYP3A4 substrate triazolam. Clin Pharmacol Ther 1999; 66(4): 401–7

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

All authors are employees of Bristol-Myers Squibb USA. The authors have no conflicts of interest that are directly relevant to the content of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongjian Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, H., Cui, D., Wang, B. et al. Pharmacokinetic Drug Interactions Involving 17α-Ethinylestradiol. Clin Pharmacokinet 46, 133–157 (2007). https://doi.org/10.2165/00003088-200746020-00003

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003088-200746020-00003

Keywords

Navigation