Skip to main content
Log in

Gender Effects in Pharmacokinetics and Pharmacodynamics

  • Review Article
  • Published:
Drugs Aims and scope Submit manuscript

Summary

There are a number of examples of sex differences in drug pharmacokinetics and pharmacodynamics. Recent advances in the characterisation of specific isozymes involved in drug metabolism now allow for the preliminary identification of enzyme systems that are affected by sex. While current data are somewhat limited and not in complete agreement, the majority of studies show that apparent cytochrome P450 (CYP) 3A4 activity is higher in women than in men, whereas the activity of many other systems involved in drug metabolism may be higher in men than in women. Women and men also show different pharmacodynamic responses to a variety of drugs. While the clinical significance of these sex differences remains to be determined, we anticipate that they will be most important in the administration of drugs that have a narrow therapeutic range. In addition, sex differences in drug metabolism may be involved in the higher incidence of adverse reactions to drugs in women compared with men. Further research is needed to determine the scope and significance of these sex differences.

Female-specific issues such as pregnancy, menopause, oral contraceptive use and menstruation may also have profound effects on drug metabolism. These effects can often be clinically important. Pregnancy may increase the elimination of antiepileptic agents, reducing their efficacy. Oral contraceptive use can interfere with the metabolism of many drugs and, conversely, certain drugs can impair contraceptive efficacy. More research is needed to determine the impact of menopause, hormone replacement and menstruation on drug therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Schmucker DL, O’Mahony MS, Vesell ES. Women in clinical drug trials: an update. Clin Pharmacokinet 1994; 27: 411–7

    PubMed  CAS  Google Scholar 

  2. Schmucker DL, Vesell ES. Underrepresentation of women in clinical drug trials. Clin Pharmacol Ther 1993; 54: 11–5

    PubMed  CAS  Google Scholar 

  3. Wilson K. Sex-related differences in drug disposition in man. Clin Pharmacokinet 1984; 9: 189–202

    PubMed  CAS  Google Scholar 

  4. Lemmens HJM, Burm AGL, Hennis PJ, et al. Influence of age on the pharmacokinetics of alfentanil. Clin Pharmacokinet 1990; 19: 416–22

    PubMed  CAS  Google Scholar 

  5. Sitar D, Duke PC, Benthuysen JL, et al. Aging and alfentanil disposition in healthy volunteers and surgical patients. Can J Anaes 1989; 36: 149–54

    CAS  Google Scholar 

  6. Kristjánsson F, Thorsteinsson SB. Disposition of alprazolam in human volunteers: differences between genders. Acta Pharm Nord 1991; 3: 249–50

    PubMed  Google Scholar 

  7. Greenblatt DJ, Divoll M, Abernethy DR, et al. Alprazolam kinetics in the elderly. Arch Gen Psychiatry 1983; 40: 287–90

    PubMed  CAS  Google Scholar 

  8. Kirkwood C, Moore A, Hayes P, et al. Influence of menstrual cycle and gender on alprazolam pharmacokinetics. Clin Pharmacol Ther 1991; 50: 404–9

    PubMed  CAS  Google Scholar 

  9. Ochs HR, Greenblatt DJ, Friedman H, et al. Bromazepam pharmacokinetics: influence of age, gender, oral contraceptives, cimetidine, and propranolol. Clin Pharmacol Ther 1987; 41: 562–70

    PubMed  CAS  Google Scholar 

  10. Greenblatt DJ, Divoll MK, Abernethy DR, et al. Age and gender effects on chlordiazepoxide kinetics: relation to antipyrine disposition. Pharmacology 1989; 38: 327–34

    PubMed  CAS  Google Scholar 

  11. Abernethy DR, Greenblatt DJ, Shader RI. Imipramine and desipramine disposition in the elderly. J Pharmacol Exp Ther 1985; 232: 183–8

    PubMed  CAS  Google Scholar 

  12. Ochs HR, Greenblatt DJ, Divoll M, et al. Diazepam kinetics in relation to age and sex. Pharmacology 1981; 23: 24–30

    PubMed  CAS  Google Scholar 

  13. Greenblatt DJ, Allen MD, Harmatz JS, et al. Diazepam disposition determinants. Clin Pharmacol Ther 1980; 27: 301–12

    PubMed  CAS  Google Scholar 

  14. MacLeod SM, Giles HG, Bengert B, et al. Age- and gender-related differences in diazepam pharmacokinetics. J Clin Pharmacol 1979; 19: 15–9

    PubMed  CAS  Google Scholar 

  15. Divoll M, Greenblatt DJ. Effect of age and sex on lorazepam protein binding. J Pharm Pharmacol 1982; 34: 122–3

    PubMed  CAS  Google Scholar 

  16. Hooper WD, Qing M-S. The influence of age and gender on the stereoselective metabolism and pharmacokinetics of mephobarbital in humans. Clin Pharmacol Ther 1990; 48: 633–40

    PubMed  CAS  Google Scholar 

  17. Holazo AA, Winkler MB, Patel IH. Effects of age, gender and oral contraceptives on intramuscular midazolam pharmacokinetics. J Clin Pharmacol 1988; 28: 1040–5

    PubMed  CAS  Google Scholar 

  18. Greenblatt DJ, Abernethy DR, Locniskar A, et al. Effect of age, gender, and obesity on midazolam kinetics. Anesthesiol 1984; 61: 27–36

    CAS  Google Scholar 

  19. Jochemsen R, Van der Graff M, Boeijinga JK, et al. Influence of sex, menstrual cycle, and oral contraceptives on the disposition of nitrazepam. Br J Clin Pharmacol 1982; 13: 319–24

    PubMed  CAS  Google Scholar 

  20. Pritchard JF, Bryson JC, Kernodle AE, et al. Age and gender effects on ondansetron pharmacokinetics: evaluation of healthy aged volunteers. Clin Pharmacol Ther 1992; 51: 51–5

    PubMed  CAS  Google Scholar 

  21. Greenblatt DJ, Divoll M, Harmatz JS, et al. Oxazepam kinetics: effects of age and sex. J Pharmacol Exp Ther 1980; 215: 86–91

    PubMed  CAS  Google Scholar 

  22. Divoll M, Greenblatt DJ, Harmatz JS, et al. Effect of age and gender on disposition of temazepam. J Pharm Sci 1981; 10: 1104–7

    Google Scholar 

  23. Ereshefsky L, Saklad SR, Watanabe MD, et al. Thiothixene pharmacokinetic interactions: a study of hepatic enzyme inducers, clearance inhibitors, and demographic variables. J Clin Psychopharmacol 1991; 11: 296–301

    PubMed  CAS  Google Scholar 

  24. Miners JO, Attwood J, Birkett DJ. Influence of sex and oral contraceptive steroids on paracetamol metabolism. Br J Clin Pharmacol 1983; 16: 503–9

    PubMed  CAS  Google Scholar 

  25. Wojciki J, Gawronska-Szklarz B, Kazimierczyk J, et al. Comparative pharmacokinetics of paracetamol in men and women considering follicular and luteal phases. Arzneimittel Forschung 1979; 29: 350–2

    Google Scholar 

  26. Macdonald JI, Herman RJ, Verbeeck RK. Sex-difference and the effects of smoking and oral contraceptive steroids on the kinetics of diflunisal. Eur J Clin Pharmacol 1990; 38: 175–9

    PubMed  CAS  Google Scholar 

  27. Rugstad HE, Hundal O, Holme I, et al. Piroxicam and naproxen plasma concentrations in patients with osteoarthritis: relation to age, sex, efficacy and adverse events. Clin Rheumatol 1986; 5: 389–98

    PubMed  CAS  Google Scholar 

  28. Bernareggi A. The pharmacokinetic profile of nimesulide in healthy volunteers. Drugs 1993; 46 Suppl. 1: 64–72

    PubMed  CAS  Google Scholar 

  29. Richardson CJ, Blocka KLN, Ross SG, et al. Effects of age and sex on piroxicam disposition. Clin Pharmacol Ther 1985; 37: 13–8

    PubMed  CAS  Google Scholar 

  30. Ho PC, Triggs EJ, Bourn DWA, et al. The effects of age and sex on the disposition of acetylsalicylic acid and its metabolites. Br J Clin Pharmacol 1985; 19: 675–84

    PubMed  CAS  Google Scholar 

  31. Greenblatt DJ, Abernethy DR, Boxenbaum HG, et al. Influence of age, gender, and obesity on salicylate kinetics following single doses of aspirin. Arth Rheum 1986; 29: 971–80

    CAS  Google Scholar 

  32. Montgomery PR, Berger LG, Mitenko PA, et al. Salicylate metabolism: effects of age and sex in adults. Clin Pharmacol Ther 1986; 39: 571–6

    PubMed  CAS  Google Scholar 

  33. Barbhaiya RH, Knupp CA, Pittman KA. Effects of age and gender on pharmacokinetics of cefepime. Antimicrob Agents Chemother 1992; 36: 1181–5

    PubMed  CAS  Google Scholar 

  34. Yost RL, Darendorf H. Disposition of cefotaxime and its desacetyl metabolite in morbidly obese male and female subjects. Ther Drug Monit 1986; 8: 189–94

    PubMed  CAS  Google Scholar 

  35. Hunt CM, Westerkam WR, Stave GM. Effect of age and gender on the activity of human hepatic CYP3A. Biochem Pharmacol 1992; 44: 275–83

    PubMed  CAS  Google Scholar 

  36. Austin KL, Mather LE, Philpot CR, et al. Intersubject and dose-related variability after intravenous administration of erythromycin. Br J Clin Pharmacol 1980; 10: 273–9

    PubMed  CAS  Google Scholar 

  37. Watkins PB, Turgeon DK, Saenger P, et al. Comparison of urinary 6-beta-cortisol and the erythromycin breath test as measures of hepatic P450IIIA (CYP3A) activity. Clin Pharmacol Ther 1992; 52: 265–73

    PubMed  CAS  Google Scholar 

  38. Yukawa E, Mine H, Higuchi S, et al. Digoxin population pharmacokinetics from routine clinical data: role of patient characteristics for estimating dosing regimes. J Pharm Pharmacol 1992; 44: 761–5

    PubMed  CAS  Google Scholar 

  39. Walle T, Byington RP, Furberg CD, et al. Biologic determinants of propranolol disposition: results from 1308 patients in the beta-blocker heart attack trial. Clin Pharmacol Ther 1985; 38: 509–18

    PubMed  CAS  Google Scholar 

  40. Gilmore DA, Gal J, Gerber JG, et al. Age and gender influence the stereoslective pharmacokinetics of propranolol. J Pharmacol Exp Ther 1992; 261: 1181–6

    PubMed  CAS  Google Scholar 

  41. Schwartz J, Capili H, Daugherty J. Aging of women alters S-verapamil pharmacokinetics and pharmacodynamics. Clin Pharmacol Ther 1994; 55: 509–17

    PubMed  CAS  Google Scholar 

  42. Kahan BD, Kramer WG, Wideman C, et al. Demographic factors affecting the pharmacokinetics of cyclosporine estimated by radioimmunoassay. Transplantation 1986; 41: 459–64

    PubMed  CAS  Google Scholar 

  43. Yee GC, Lennon TP, Gmur DJ, et al. Age-dependent cyclosporine: pharmacokinetics in marrow transplant recipients. Clin Pharmacol Ther 1986; 40: 438–43

    PubMed  CAS  Google Scholar 

  44. Lew KH, Ludwig EA, Milad MA, et al. Gender-based effects on methylprednisolone pharmacokinetics and pharmacodynamics. Clin Pharmacol Ther 1993; 54: 402–14

    PubMed  CAS  Google Scholar 

  45. Meffin PJ, Brooks PM, Sallustio BC. Alterations in prednisolone disposition as a result of time of administration, gender and dose. Br J Clin Pharmacol 1984; 17: 395–404

    PubMed  CAS  Google Scholar 

  46. Gaudry SE, Sitar DS, Smyth DD, et al. Gender and age as factors in the inhibition of renal clearance of amantadine by quinine and quinidine. Clin Pharmacol Ther 1993; 54: 23–7

    PubMed  CAS  Google Scholar 

  47. Miners JO, Robson RA, Birkett DJ. Gender and oral contraceptive steroids as determinants of drug glucuronidation: effects on clofibric acid elimination. Br J Clin Pharmacol 1984; 18: 240–3

    PubMed  CAS  Google Scholar 

  48. Port RE, Daniel B, Ding RW, et al. Relative importance of dose, body surface area, sex, and age for 5-fluorouracil clearance. Oncology 1991; 48: 277–81

    PubMed  CAS  Google Scholar 

  49. Milano G, Etienne MC, Cassuto-Viguier E, et al. Influence of sex and age on fluorouracil clearance. J Clin Oncol 1992; 10: 1171–5

    PubMed  CAS  Google Scholar 

  50. Pan HY, Waclawski AP, Funke PT, et al. Pharmacokinetics of pravastatin in elderly versus young men and women. Ann Pharmacother 1993; 27: 1029–33

    PubMed  CAS  Google Scholar 

  51. Nafziger AN, Bertino Jr JS. Sex-related differences in theophylline pharmacokinetics. Eur J Clin Pharmacol 1989; 37: 97–100

    PubMed  CAS  Google Scholar 

  52. Hulst LK, Fleishaker JC, Peters GR, et al. Effect of age and gender on tirilazad pharmacokinetics in humans. Clin Pharmacol Ther 1994; 55: 378–84

    PubMed  CAS  Google Scholar 

  53. Bonate PL. Gender-related differences in xenobiotic metabolism. J Clin Pharmacol 1991; 31: 684–90

    PubMed  CAS  Google Scholar 

  54. Nicholas GS, Barron DH. The use of sodium amytal in the production of anesthesia in the rat. J Pharmacol Exp Ther 1934; 46: 223–6

    Google Scholar 

  55. Kato R, Yamazoe Y. Sex-specific cytochrome P450 as a cause of sex- and species-related differences in drug toxicity. Toxicol Lett 1992; 65: 661–7

    Google Scholar 

  56. Hunt CM, Westerkam WR, Stave GM, et al. Hepatic cytochrome P-4503A (CYP3A) activity in the elderly. Mech Ageing Dev 1992; 64: 189–99

    PubMed  CAS  Google Scholar 

  57. Rowland M, Tozer TN. Clinical pharmacokinetics. Philadelphia: Lea & Febiger, 1989

    Google Scholar 

  58. Cheymol G. Clinical pharmacokinetics of drugs in obesity. Clin Pharmacokinet 1993; 25: 103–14

    PubMed  CAS  Google Scholar 

  59. Greenblatt DJ, Friedman H, Burstein ES, et al. Trazodone kinetics: effect of age, gender, and obesity. Clin Pharmacol Ther 1987; 42: 193–200

    PubMed  CAS  Google Scholar 

  60. Schwartz AE, Matteo RS, Ornstein E, et al. Pharmacokinetics of sufentanil in obese patients. Anesth Analg 1991; 73: 790–3

    PubMed  CAS  Google Scholar 

  61. Wedel M, Pieters JE, Pikaar NA, et al. Application of a three-compartment model to a study of the effects of sex, alcohol dose and concentration, exercise and food consumption on the pharmacokinetics of ethanol in healthy volunteers. Alcohol Alcohol 1991; 26: 329–36

    PubMed  CAS  Google Scholar 

  62. Allen MD, Greenblatt DJ, Harmatz JS, et al. Desmethyl-diazepam kinetics in the elderly after oral prazepam. Clin Pharmacol Ther 1980; 28: 196–202

    PubMed  CAS  Google Scholar 

  63. Smith RB, Divoll M, Gillespie WR, et al. Effect of subject age and gender on the pharmacokinetics of oral triazolam and temazepam. J Clin Psychopharmacol 1983; 3: 172–6

    PubMed  CAS  Google Scholar 

  64. Rall TW. Hypnotics and sedatives: ethanol. In: Gilman AG, Rall TW, Nies AS, et al., editors. Goodman and Gilman’s the pharmacological basis of therapeutics. New York: McGraw-Hill, Inc., 1990: 346-58

    Google Scholar 

  65. Yasumori T, Nagata K, Yang SK, et al. Cytochrome P450 mediated metabolism of diazepam in human and rat: involvement of human CYP2C in N-demethylation in the substrate concentration-dependent manner. Pharmacogenetics 1993; 3: 291–301

    PubMed  CAS  Google Scholar 

  66. O’Malley K, Crooks J, Duke E, et al. Effects of age and sex on human drug metabolism. BMJ 1971; 3: 607–9

    PubMed  Google Scholar 

  67. Wrighton SA, Stevens JC. The human hepatic cytochromes P450 involved in drug metabolism. Crit Rev Toxicol 1992; 22: 1–21

    PubMed  CAS  Google Scholar 

  68. Watkins PB, Wrighton SA, Maurel P, et al. Identification of an inducible form of cytochrome P-450 in human liver. Proc Natl Acad Sci USA 1985; 82: 6310–4

    PubMed  CAS  Google Scholar 

  69. Watkins PB. Noninvasive tests of CYP3A enzymes. Pharmacogenetics 1994; 4: 171–84

    PubMed  CAS  Google Scholar 

  70. May DG, Porter J, Wilkinson GR, et al. Frequency distribution of dapsone N-hydroxylase, a putative probe for P4503A4 activity, in a white population. Clin Pharmacol Ther 1994; 55: 492–500

    PubMed  CAS  Google Scholar 

  71. Lobo J, Kack DB, Kendall MJ. The intra- and inter-subject variability of nifedipine pharmacokinetics in young volunteers. Eur J Clin Pharmacol 1986; 30: 57–60

    PubMed  CAS  Google Scholar 

  72. Shimada T, Yamazaki H, Mimura M, et al. Interindividual variations in human liver cytochrome P-450 enzymes involved in the oxidation of drugs, carcinogens and toxic chemicals: studies with liver microsomes of 30 Japanese and 30 Caucasians. J Pharmacol Exp Ther 1994; 270: 414–23

    PubMed  CAS  Google Scholar 

  73. Schmucker DL, Woodhouse KW, Wang RK, et al. Effects of age and gender on in vitro properties of human liver microsomal monooxygenases. Clin Pharmacol Ther 1990; 48: 365–74

    PubMed  CAS  Google Scholar 

  74. Kerlan V, Dreano Y, Bercovici JP, et al. Nature of cytochromes P450 involved in the 2-/4-hydroxylations of estradiol in human liver microsomes. Biochem Pharmacol 1992; 44: 1745–56

    PubMed  CAS  Google Scholar 

  75. Kerr BM, Thummel KE, Wurden CJ, et al. Human liver carbamazepine metabolism: role of CYP3A4 and CYP2C8 in 10,11-epoxide formation. Biochem Pharmacol 1994; 47: 1969–79

    PubMed  CAS  Google Scholar 

  76. Gex-Fabry M, Balant-Gorgia AE, Balant LP, et al. Clomipramine metabolism: model-based analysis of variability factors from drug monitoring data. Clin Pharmacokinet 1990; 19: 241–55

    PubMed  CAS  Google Scholar 

  77. Nielson KK, Brøsen K, Hansen MGJ, et al. Single-dose kinetics of clomipramine: relationship to the sparteine and S-mephytoin oxidation polymorphisms. Clin Pharmacol Ther 1994; 55: 518–27

    Google Scholar 

  78. Nielsen KK, Brøsen K, Gram LF. Steady-state plasma levels of clomipramine and its metabolites: impact of the sparteine/ debrisoquine oxidation polymorphism. J Clin Pharmacol 1992; 43: 405–11

    CAS  Google Scholar 

  79. Walle T, Walle UK, Mathur RS, et al. Propranolol metabolism in normal subjects: association with sex steroid hormones. Clin Pharmacol Ther 1994; 56: 127–32

    PubMed  CAS  Google Scholar 

  80. Walle T, Walle UK, Cowart TD, et al. Pathway-selective sex differences in the metabolic clerance of propanolol in human subjects. Clin Pharmacol Ther 1989; 46: 257–63

    PubMed  CAS  Google Scholar 

  81. Fisher V, Vickers AE, Heitz F, et al. The polymorphic cytochrome P-4502D6 is involved in the metabolism of both 5-hydroxytryptamine antagonists, tropisetron and ondansetron. Drug Metab Dispos 1994; 22: 269–74

    Google Scholar 

  82. Ashford EI, Palmer JL, Bye A, et al. The pharmacokinetics of ondansetron after intravenous injection in healthy volunteers phenotyped as poor or extensive metabolisers of debrisoquine. Br J Clin Pharmacol 1994; 37: 389–91

    Google Scholar 

  83. Wilkinson GR, Guengerich FP, Branch RA. Genetic polymorphism of S-mephenytoin hydroxylation. Pharmacol Ther 1989; 43: 53–76

    PubMed  CAS  Google Scholar 

  84. Leemann TD, Transon C, Bonnabry P, et al. A major role for cytochrome P450TB (CYP2C subfamily) in the actions of non-steroidal antiinflammatory drugs. Drugs Exp Clin Res 1993; 19: 189–95

    PubMed  CAS  Google Scholar 

  85. Relling MV, Lin JS, Ayers GD, et al. Racial and gender differences in N-acetyltransferase, xanthine oxidase, and CYP1A2 activities. Clin Pharmacol Ther 1992; 52: 643–58

    PubMed  CAS  Google Scholar 

  86. Fuhr U, Doehmer J, Battula N. Biotransformation of caffeine and theophylline in mammalian cell lines genetically engineered for expressions of single cytochrome P450 isoforms. Biochem Pharmacol 1992; 43: 225–35

    PubMed  CAS  Google Scholar 

  87. Cuzzolin L, Schinella M, Tellini U, et al. The effect of sex and cardiac failure on the pharmacokinetics of a slow-releace theophylline formulation in the elderly. Pharmacol Res 1990; 22: 137–8

    PubMed  Google Scholar 

  88. Jennings TS, Nafziger AN, Davidson L, et al. Gender differences in hepatic induction and inhibition of theophylline pharmacokinetics and metabolism. J Lab Clin Med 1993; 122: 208–16

    PubMed  CAS  Google Scholar 

  89. Lacarelle B, Rahmani R, de Sousa G, et al. Metabolism of digoxin, digitoxosides and digoxigenin in human hepatocytes and liver microsomes. Fund Clin Pharmacol 1991; 5: 567–82

    CAS  Google Scholar 

  90. Abernethy DR, Divoll M, Greenblatt DJ, et al. Obesity, sex, and acetaminophen disposition. Clin Pharmacol Ther 1982; 31: 783–90

    PubMed  CAS  Google Scholar 

  91. Divoll M, Abernethy DR, Ameer B, et al. Acetaminophen kinetics in the elderly. Clin Pharmacol Ther 1982; 31: 151–6

    PubMed  CAS  Google Scholar 

  92. Greenblatt DJ, Abernethy DA, Matlis R, et al. Absorption and distribution of ibuprofen in the elderly. Arth Rheum 1984; 27: 1066–9

    CAS  Google Scholar 

  93. Ho PC, Triggs EJ, Bourne DWA, et al. The effects of age and sex on the disposition of acetylsalicylic acid and its metabolites. Br J Pharmacol 1985; 19: 675–84

    CAS  Google Scholar 

  94. Gross JL, Friedman R, Azevedo MJ, et al. Effects of age and sex on glomerular filtration rate measured by 51 Cr-EDTA. Braz J Med Biol Res 1992; 25: 129–34

    PubMed  CAS  Google Scholar 

  95. Verbeeck RK, Cardinal J-A, Wallace SM. Effect of age and sex on the plasma binding of acidic and basic drugs. Eur J Clin Pharmacol 1984; 27: 91–7

    PubMed  CAS  Google Scholar 

  96. Routledge PA, Stargel WW, Kitchell BB, et al. Sex-related differences in the plasma protein binding of lignocaine and diazepam. Br J Clin Pharmacol 1981; 11: 245–50

    PubMed  CAS  Google Scholar 

  97. Abel JG, Sellers EM, Naranjo CA, et al. Inter- and intra-subject variation in diazepam free fraction. Clin Pharmacol Ther 1979; 26: 247–55

    PubMed  CAS  Google Scholar 

  98. Roberts RK, Desmond PV, Wilkinson GR, et al. Disposition of chlordiazepoxide: sex differences and effects of oral contraceptives. Clin Pharmacol Ther 1979; 25: 826–31

    PubMed  CAS  Google Scholar 

  99. Kristensen CB. Imipramine serum protein binding in healthy subjects. Clin Pharmacol Ther 1983; 34: 689–94

    PubMed  CAS  Google Scholar 

  100. Yonkers KA, Kando JC, Cole JO, et al. Gender differences in pharmacokinetics and pharmacodynamics of psychotropic medication. Am J Psychiatry 1992; 149: 587–95

    PubMed  CAS  Google Scholar 

  101. Datz FL, Christian PE, Moore J. Gender-related differences in gastric emptying. Nucl Med 1987; 28: 1204–7

    CAS  Google Scholar 

  102. Seitz HK, Egerer G, Simanowski VA, et al. Human gastric alcohol dehydrogenase activity: effect of age, sex, and alcoholism. Gut 1993; 34: 1433–7

    PubMed  CAS  Google Scholar 

  103. Kolars JC, Awni WM, Merion RM, et al. First-pass metabolism of cyclosporin by the gut. Lancet 1991; 338: 1488–90

    PubMed  CAS  Google Scholar 

  104. Strobel HW, Hammond DK, White TB, et al. Identification and localization of cytochromes P450 in gut. Methods Enzymol 1991; 206: 648–55

    PubMed  CAS  Google Scholar 

  105. Aarons L, Hopkins K, Rowland M, et al. Route of administration and sex differences in the pharmacokinetics of asprin, administered as its lysine salt. Pharm Res 1989; 6: 660–66

    PubMed  CAS  Google Scholar 

  106. Johnson PE, Miline DB, Lykken GI. Effects of age and sex on copper absorption, biological half-life, and status in humans. Am J Clin Nutr 1992; 56: 917–25

    PubMed  CAS  Google Scholar 

  107. Evans EF, Proctor JD, Fratkin MJ, et al. Blood flow in muscle groups and drug absorption. Clin Pharmacol Ther 1975; 17: 44–77

    PubMed  CAS  Google Scholar 

  108. Knight V, Yu CP, Gilbert BE, et al. Estimating the dosage of ribavirin aerosol according to age and other variables. J Infect Dis 1988; 158: 443–7

    PubMed  CAS  Google Scholar 

  109. Dawkins K, Potter WZ. Gender differences in pharmacokinetics and pharmacodynamics of psychotropics: focus on women. Psychopharmacol Bull 1991; 27: 417–26

    PubMed  CAS  Google Scholar 

  110. Chouinard G, Annable L. Pimozide in the treatment of newly admitted schizophrenic patients. Psychopharmacology 1982; 76: 13–9

    PubMed  CAS  Google Scholar 

  111. Chouinard G, Annable L, Steinberg S. A controlled clinical trial of fluspirilene, a long-acting injectable neuroleptic, in schizophrenic patients with acute exacerbation. J Clin Psychopharmacol 1986; 6: 21–6

    PubMed  CAS  Google Scholar 

  112. Fields JZ, Gordon JH. Estrogen inhibits the dopaminergic supersensitivity induced by neuroleptics. Life Sci 1982; 30: 229–34

    PubMed  CAS  Google Scholar 

  113. D’Mello DA, MacNeil JA. Sex differences in bipolar affective disorder: neuroleptic dosage variance. Compr Psychiatry 1990; 31: 80–3

    PubMed  Google Scholar 

  114. Risch SC, Huey LY, Janowsky DS. Plasma levels of tricyclic antidepressants and clinical efficacy: review of the literature. Part II. J Clin Psychiatry 1979; 46: 58–69

    Google Scholar 

  115. Davidson J, Peltron S. Forms of atypical depression and their response to antidepressant drugs. Psychiatry Res 1986; 17: 87–95

    PubMed  CAS  Google Scholar 

  116. Klompenhouwer J, Fekkes D, van Hulst AM, et al. Seasonal variations in binding of 3H-paroxetine to blood platelets in healthy volunteers: indications for gender difference. Biol Psychiatry 1990; 28: 509–17

    PubMed  CAS  Google Scholar 

  117. Mueller EA, Murphy DL, Sunderland T. Neuroendocrine effects of m-chlorophenylpiperazine, a serotonin agonist, in humans. J Clin Endocrinol Metab 1985; 61: 1179–84

    PubMed  CAS  Google Scholar 

  118. Kitler ME. Coronary disease: are there gender differences? Eur Heart J 1994; 15:409–17

    PubMed  CAS  Google Scholar 

  119. Anastos K, Charney P, Charon RA, et al. Hypertension in women: what is really known? Ann Intern Med 1991; 115: 287–93

    PubMed  CAS  Google Scholar 

  120. Shapiro AP, Rutan GH. Hypertension in women: differences and implications. In: Eaker ED, Packard B, Wenger NK, et al., editors. Coronary heart disease in women: reviewing the evidence, identifying the needs. New York: Haymarket Doyma, 1987: 172

    Google Scholar 

  121. Kitler ME. Differences in men and women in cornary artery disease, systemic hypertension and their treatment [editorial]. Am J Cardiol 1992; 70: 1077–80

    PubMed  CAS  Google Scholar 

  122. Parker CJR, Hunter JM, Snowdon SL. Effect of age, gender and anaesthetic technique on the pharmacodynamics of atracurium. Br J Anaesth 1993; 70: 38–41

    PubMed  CAS  Google Scholar 

  123. Kitler ME. Clinical trials and transethnic pharmacology. Drug Saf 1994; 11: 378–91

    PubMed  CAS  Google Scholar 

  124. Lindholm A. Factors influencing the pharmacokinetics of cyclosporine in man. Ther Drug Monit 1991; 13: 465–77

    PubMed  CAS  Google Scholar 

  125. Kafonek SD. Postmenopausal hormone replacement therapy and cardiovascular risk reduction: a review. Drugs 1994; 47 Suppl. 2: 16–24

    PubMed  Google Scholar 

  126. Marchionni N, Ferrucci L, Fumagalli S, et al. Age-related changes in the pharmacodynamics of intravenous glyceryl trinitrate. Aging 1990; 2: 59–64

    PubMed  CAS  Google Scholar 

  127. Williams DB, Moley KH. Progestin replacement in the menopause: effects on the endometrium and serum lipids. Curr Opin Obstet Gynecol 1994; 6: 284–92

    PubMed  CAS  Google Scholar 

  128. Lindsay R. Hormone replacement therapy for prevention and treatment of osteoporosis. Am J Med 1993; 95: 37s–39s

    PubMed  CAS  Google Scholar 

  129. Marchant DJ. Supplemental estrogen replacement. Cancer 1994; 74: 512–7

    PubMed  CAS  Google Scholar 

  130. Durnas C, Loi CM, Cusack BJ. Hepatic drug metabolism and aging. Clin Pharmacokinet 1990; 19: 359–89

    PubMed  CAS  Google Scholar 

  131. Rubio A, Cox C. Sex, age and alfentanil pharmacokinetics [letter]. Clin Pharmacokinet 1991; 21: 81–2

    PubMed  CAS  Google Scholar 

  132. Yun CH, Wood AJ, Guengerich FP. Identification of the pharmacogenetic determinants of alfentanil metabolism: cytochrome P-450 3A4. An explanation of the variable elimination clearance. Anesthesiology 1992; 77: 467–74

    PubMed  CAS  Google Scholar 

  133. Gustavson LE, Legier UF, Benet LZ. Impairment of prednisolone disposition in women taking oral contraceptives or conjugated estrogens. J Clin Endocrinol Metab 1986; 62: 234–7

    PubMed  CAS  Google Scholar 

  134. Nelson DH, Tanney H, Mestman G, et al. Potentiation of the biologic effect of administered cortisol by estrogen treatment. J Clin Endocrinol 1963; 23: 261–5

    CAS  Google Scholar 

  135. Spangler AS, Antoniades HN, Sotman SL, et al. Enhancement of the anti-inflamatory action of hydrocortisone by estrogen. J Clin Endocrinol 1969; 29: 650–5

    CAS  Google Scholar 

  136. Arjmandi BH, Salih MA, Herbert DC, et al. Evidence for estrogen receptor-linked calcium transport in the intestine. Bone Miner 1994; 21: 63–74

    Google Scholar 

  137. Gennari C, Agnussdei D, Nardi P, et al. Estrogen preserves a normal intestinal responsiveness to 1,25-dihydroxyvitamin D3 in oophorectomized women. J Clin Endocrinol Metab 1990; 71: 1288–93

    PubMed  CAS  Google Scholar 

  138. Gustavson LE, Benet LZ. Menopause: pharmacodynamics and pharmacokinetics. Exp Gerontol 1994; 29: 437–44

    PubMed  CAS  Google Scholar 

  139. Teichmann AT. Influence of oral contraceptives on drug therapy. Am J Obstet Gynecol 1990; 163: 2208–13

    PubMed  CAS  Google Scholar 

  140. Fotherby K. Interactions with oral contraceptives. Am J Obstet Gynecol 1990; 163: 2153–9

    PubMed  CAS  Google Scholar 

  141. Fazio A. Oral contraceptive drug interactions: important considerations. South Med J 1991; 84: 997–1002

    PubMed  CAS  Google Scholar 

  142. Guengerich FP. Inhibition of oral contraceptive steroid-metabolizing enzymes by steroids and drugs. Am J Obstet Gynecol 1990; 163: 2159–63

    PubMed  CAS  Google Scholar 

  143. Back DJ, Orme ML. Pharmacokinetic drug interactions with oral contraceptives. Clin Pharmacokinet 1990; 18: 472–84

    PubMed  CAS  Google Scholar 

  144. Skolnick JL, Stoler BS, Katz DB. Rifampin, oral contraceptives and pregnancy. JAMA 1976; 236: 617–29

    Google Scholar 

  145. Crawford P, Chadwick DJ, Martin C, et al. The interaction of phenytoin and carbamazepine with combined oral contraceptive steroids. J Clin Pharmacol 1990; 30: 892–6

    CAS  Google Scholar 

  146. Rassmussen JE. The effect of antibiotics on the efficacy of oral contraceptives. Arch Dermatol 1989; 125: 1562–4

    Google Scholar 

  147. Orme MLE, Back DJ. Factors affecting the enterohepatic circulation of oral contraceptive steroids. Am J Obstet Gynecol 1990; 163: 2146–52

    PubMed  CAS  Google Scholar 

  148. Ortiz de Montellano PR, Kunze KL. Self catalyzed inactivation of hepatic cytochrome P-450 by ethynyl substrates. J Biol Chem 1980; 255: 5578–85

    PubMed  CAS  Google Scholar 

  149. Wilson K, Reynolds CN, Burnett D. Inter- and intra-individual variation in the metabolism of methaqualone in man after a single oral dose. Eur J Clin Pharmacol 1978; 13: 291–7

    PubMed  CAS  Google Scholar 

  150. Bruguerolle B, Toumi M, Faraj F, et al. Influence of the menstrual cycle on theophylline pharmacokinetics in asthmatics. Eur J Clin Pharmacol 1990; 39: 59–61

    PubMed  CAS  Google Scholar 

  151. Lane JD, Steege JF, Rupp SL, et al. Menstrual cycle effects on caffeine elimination in the human female. Eur J Clin Pharmacol 1992; 43: 543–46

    PubMed  CAS  Google Scholar 

  152. Shavit G, Lerman P, Koresyn A. Phenytoin pharmacokinetics in catmenial epilepsy. Neurology 1984; 34: 959–61

    PubMed  CAS  Google Scholar 

  153. Gerdin E, Rane A. N-Demethylation of ethylmorphine in pregnant and non-pregnant women and in men: an evaluation of the effects of sex steroids. Br J Clin Pharmacol 1992; 34: 250–5

    PubMed  CAS  Google Scholar 

  154. Riester EF, Pantuck EJ, Pnatuck CB, et al. Antipyrine metabolism during the menstrual cycle. J Pharmacol Ther 1980; 28: 384–91

    CAS  Google Scholar 

  155. Backstrom P, Jorpes P. Serum phenytoin, phenobarbital, carbamazepine, albumin and plasma estradiol progesterone concentrations during the menstrual cycle in women with epilepsy. Neurol Scand 1979; 58: 63–71

    Google Scholar 

  156. Sweeting J. Does the time of the month affect the function of the gut? Gastroenterology 1992; 102: 1084–5

    PubMed  CAS  Google Scholar 

  157. Mcburney M. Starch malabsorption and stool excretion are influenced by the menstrual cycle in women consuming low-fibre western diets. Scand J Gastroenterol 1991; 28: 880–6

    Google Scholar 

  158. Jones BM, Jones MK. Alcohol effects in women during the menstrual cycle. Ann NY Acad Sci 1976; 273: 576–87

    PubMed  CAS  Google Scholar 

  159. Miaskewicz SL, Shilvelly CA, Vesell ES. Sex differences in absorption kinetics of sodium salicylate. Clin Pharmacol Ther 1982; 31: 30–7

    Google Scholar 

  160. Murray L, Seger D. Drug therapy during pregnancy and lactation. Emerg Med Clin North Am 1994; 12: 129–49

    PubMed  CAS  Google Scholar 

  161. Yerby MS. Pregnancy and epilepsy. Epilepsia 1991; 32: S51–S59

    PubMed  Google Scholar 

  162. Kilpatric CJ, Moulds RF. Anticonvulsants in pregnancy. Med J Aust 1991; 154: 199–202

    Google Scholar 

  163. Tomson T, Lindbom U, Ekquist B, et al. Disposition of carbamazepine and phenytoin in pregnancy. Epilepsia 1994; 35: 131–5

    PubMed  CAS  Google Scholar 

  164. Bologa M, Tang B, Klein J, et al. Pregnancy-induced changes in drug metabolism in epileptic women. J Pharmacol Exp Ther 1991; 257: 735–40

    PubMed  CAS  Google Scholar 

  165. Lander CM, Eadie MJ. Plasma antiepileptic drug concentrations during pregnancy. Epilepsia 1991; 32: 257–66

    PubMed  CAS  Google Scholar 

  166. Yerby MS, Friel PN, McCormick K, et al. Pharmacokinetics of anticonvulsants in pregnancy: alterations in plasma protein binding. Epilepsy Res 1990; 5: 223–8

    PubMed  CAS  Google Scholar 

  167. Wisner KL, Perel JM, Wheller SB. Tricyclic dose requirements across pregnancy. Am J Psychiatry 1993; 150: 1541–2

    PubMed  CAS  Google Scholar 

  168. Aldridge A, Bailey J, Neims AH. The disposition of caffeine during and after pregnancy. Semin Perinatol 1981; 5: 310–4

    PubMed  CAS  Google Scholar 

  169. Shi YE, Ye ZH, He CH, et al. Pharmacokinetic study of RU 486 and its metabolites after oral administration of single doses to pregnant and non-pregnant women. Contraception 1993; 48: 133–49

    PubMed  CAS  Google Scholar 

  170. O’Sullivan MJ, Boyer PJ, Scott GB, et al. The pharmacokinetics and safety of zidovudine in the third trimester of pregnancy for women infected with human immunodeficiency virus and their infants: phase I acquired immunodeficiency syndrome clinical trials group study. Am J Obstet Gynecol 1993; 168: 1510–6

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harris, R.Z., Benet, L.Z. & Schwartz, J.B. Gender Effects in Pharmacokinetics and Pharmacodynamics. Drugs 50, 222–239 (1995). https://doi.org/10.2165/00003495-199550020-00003

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003495-199550020-00003

Keywords

Navigation