Skip to main content
Log in

The Clinical and Economic Potential of Cyclosporin Drug Interactions

  • Review Article
  • Economics of Cyclosporin Drug Interactions
  • Published:
PharmacoEconomics Aims and scope Submit manuscript

Abstract

The introduction of cyclosporin significantly improved solid organ transplantation outcomes. However, the costs associated with immunosuppressive therapy increased from approximately $US1000 to $US2000 per patient per year with azathioprine (AZA) and prednisone to $US5000 to $US8000 per patient per year with the addition of cyclosporin (1997 values).

Because of the financial demands placed on medical care in the current era, research has been directed towards developing drug combinations which potentiate the therapeutic effect of cyclosporin whereby reducing the amount of drug administered and consequently the costs of long term immunosuppressive therapy. To date, many drugs that interact with cyclosporin have been recognised. Included in this list are the azole antifungal drugs, ketoconazole, fluconazole and itraconazole; the calcium channel blockers, diltiazem, verapamil and nicardipine; and the macrolide antibacterials, erythromycin and related compounds. Although all of these drugs increase cyclosporin drug concentrations when used concomitantly, ketoconazole and diltiazem appear to be the best candidates on the basis of reducing financial pressures of chronic immunosuppressive therapy without sacrificing patients’ well-being.

Studies of various regimens involving the combined use of ketoconazole and cyclosporin have shown that cyclosporin dosages can be reduced by approximately 70 to 85% while maintaining therapeutic blood concentrations in renal, cardiac and liver transplant recipients. The calcium channel blocker, diltiazem, allows a decrease in cyclosporin dosage by approximately 30 to 50% in this same group of organ transplant patients. These reductions in cyclosporin dosage have been achieved with no reported severe adverse effects that would discourage the use of these agents concurrently in practice.

The combined use of cyclosporin and ketoconazole or diltiazem could reduce medication costs by approximately $US915 to $US3000 per year per patient. If all patients treated with cyclosporin are considered, these combinations could reduce medication costs by hundreds of millions of dollars per year in the US alone. While these are promising approaches, further characterisation of these drug interactions is necessary before this practice is adopted as standard protocol worldwide.

The objective of this paper is to review the clinical and economic potential of cyclosporin-sparing agents such as the azole antifungal drugs and calcium channel blockers in an attempt to decrease the costs associated with this expensive immunosuppressive agent

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Borel JF, Feuer C, Gubler HU, et al. Biological effects of cyclosporine A: a new antilymphocyte agent. Agents Actions 1976; 6 (4): 432–40

    Article  Google Scholar 

  2. Borel JF. Comparative study of in vitro and in vivo drug effects on cell mediated cytotoxicity. Immunology 1976; 31: 631–41

    PubMed  CAS  Google Scholar 

  3. Calne RY, Rolles K, White DJG, et al. Cyclosporine A initially as the only immunosuppressant in 34 recipients of cadaveric organs: 33 kidneys, 2 pancreases and 2 livers. Lancet 1979; II: 1033–6

    Article  Google Scholar 

  4. European Multicentre Trial Group. Cyclosporine in cadaveric renal transplantation: one-year follow-up of a multicenter trial. Lancet 1983; II: 986–9

    Article  Google Scholar 

  5. Canadian Multicenter Transplant Study Group. A randomized clinical trial of cyclosporine in cadaveric renal transplantation: analysis at three years. N Engl J Med 1986; 314: 1219–25

    Article  Google Scholar 

  6. Stiller CR, Dupre J, Gent M, et al. Sandimmune (cyclosporine) in insulin-dependent diabetes mellitus (type I) of recent onset. Science 1984; 223: 1362–7

    Article  PubMed  CAS  Google Scholar 

  7. Nussenblatt RB, Palestine AG, Rook AH, et al. Cyclosporine therapy for intraocular inflammatory disease. Lancet 1983; II: 235–8

    Article  Google Scholar 

  8. Masuda K, Nakajima A. A double-masked study of cyclosporin treatment in Behcet’s disease. In: Schinder R, editor. Ciclosporine in autoimmune diseases. Berlin: Springer-Verlag, 1985: 162–4

    Chapter  Google Scholar 

  9. Hunsicker LG. Impact of cyclosporine on cadaveric renal transplantation: a summary statement. Am J Kidney Dis 1985; 5: 335–41

    PubMed  CAS  Google Scholar 

  10. Macoviak JA, Oyer PE, Stinson EB, et al. Four-year experience with cyclosporine for heart and heart-lung transplantation. Transplant Proc 1985; 17 Suppl. 2: 97–8

    Google Scholar 

  11. Morris PE. The immunology of rejection. In: Morris PJ, editor. Kidney transplantation: principles and practice. 3rd ed. Orlando (FL): Grune & Stratton, 1988: 15–32

    Google Scholar 

  12. European Multicentre Trial Group. Cyclosporine in cadaveric renal transplantation: 5-year follow-up of a multicentre trial. Transplant Proc 1988; 20 (3 Suppl. 3): 73–7

    Google Scholar 

  13. Kramer NC, Peters TG, Rohr MS, et al. Beneficial effect of cyclosporine on renal transplantation. Transplantation 1990; 49: 343–8

    Article  PubMed  CAS  Google Scholar 

  14. Starzl TE, Demetris AJ, Van Thiel D. Medical progress: liver transplantation. N Engl J Med 1989; 321: 1014–22

    Article  PubMed  CAS  Google Scholar 

  15. Hall BM, Tiller DJ, Hardic I, et al. Comparison of three immunosuppressive regimens in cadaveric renal transplantation: long-term cyclosporine, short-term cyclosporine followed by azathioprine and prednisolone, and azathioprine and prednisolone without cyclosporine. N Engl J Med 1988; 318: 1499–507

    Article  PubMed  CAS  Google Scholar 

  16. Viste A, Moudry-Mounns K, Sutherland DER. Prognostic risk factors for graft failure following pancreas transplantation: results of multivariate analysis of data from the International Pancreas Transplant Registry. Transpl Int 1990; 3: 98–102

    PubMed  CAS  Google Scholar 

  17. Evans RW, Manninen DL. Economic impact of cyclosporine in transplantation. Transplant Proc 1988; 20 Suppl. 3: 49–62

    PubMed  CAS  Google Scholar 

  18. Eggers PW. The effect of cyclosporine on the use of hospital resources for kidney transplantation. N Engl J Med 1990; 322: 1010–1

    Article  PubMed  CAS  Google Scholar 

  19. Barclay PG, Allen RDM, Stewart JH, et al. Costs of immunosuppressive therapies used in renal transplantation. Transplant Proc 1992; 24: 165–6

    PubMed  CAS  Google Scholar 

  20. Areosty J, Rettig RA. The cost effects of improved kidney transplantation. Santa Monica (CA): RAND, 1984. Publication no.: R-3099-NIH/RC

    Google Scholar 

  21. Simon DG. A cost-effectiveness analysis of cyclosporine in cadaveric kidney transplantation. Med Decis Making 1986; 6: 199–207

    Article  PubMed  CAS  Google Scholar 

  22. Krakauer H. Assessment of alternative technologies for the treatment of end-stage renal disease. Isr J Med Sci 1986; 22: 245–59

    PubMed  CAS  Google Scholar 

  23. Henry ML, Sommer BG, Ferguson RM. Beneficial effects of cyclosporine compared with azathioprine in cadaveric renal transplantation. Am J Surg 1985; 150: 533–6

    Article  PubMed  CAS  Google Scholar 

  24. Showstack J, Katz P, Amend W, et al. The effect of cyclosporine on the use of hospital resources for kidney transplantation. N Engl J Med 1989; 321: 1086–92

    Article  PubMed  CAS  Google Scholar 

  25. Showstack J, Katz P, Amend W, et al. The association of cyclosporine with the one-year costs of cadaver-donor kidney transplants. JAMA 1990; 264: 1818–23

    Article  PubMed  CAS  Google Scholar 

  26. Tilney NL, Strom TB, Kupiec-Weglinski JW. Pharmacologic and immunologic agonists and antagonists of cyclosporine. Transplant Proc 1988; 20 Suppl. 3: 13–22

    PubMed  CAS  Google Scholar 

  27. Yee GC, Rosano T, Ptachinski R. Pharmacology: profiles, parameters, interpretations and drug interactions. Transplant Proc 1988; 20 Suppl. 2: 715–21

    PubMed  CAS  Google Scholar 

  28. Como JA, Dismukes WE. Oral azoles drugs as systemic antifungal therapy. N Engl J Med 1994; 330: 263–8

    Article  PubMed  CAS  Google Scholar 

  29. Markin S, Stratta RJ, Woods GL. Infection after liver transplantation. Am J Surg Pathol 1990; 14 Suppl. 1: 64–71

    PubMed  Google Scholar 

  30. First MR, Schroeder TJ, Weiskittel P, et al. Concomitant administration of cyclosporin and ketoconazole in renal transplant recipients. Lancet 1989; II: 1198–201

    Article  Google Scholar 

  31. First MR, Schroeder TJ, Weiskittel P, et al. Cyclosporine-ketoconazole interaction. Transplantation 1993; 55: 1000–4

    Article  PubMed  CAS  Google Scholar 

  32. First MR, Schroeder TJ, Daoud J, et al. Ketoconzole is not associated with increased inpatient or outpatient resources while decreasing cyclosporine annual costs by approximately $3,300 per patient [abstract]. The 15th Annual Meeting, American Society of Transplant Physicians; 1997 May 11-14, Dallas

    Google Scholar 

  33. Odocha O, Kelly B, Trimble S, et al. Cost-containment strategies in transplantation: the utility of cyclosporine-ketoconazole combination therapy. Transplant Proc 1996; 28: 907–9

    PubMed  CAS  Google Scholar 

  34. Sobh M, El-Agroudy A, Moustafa F, et al. Co-administration of ketoconazole to cyclosporin-treated kidney transplant recipients: a prospective randomized study. Am J Nephrol 1995; 15: 493–9

    Article  PubMed  CAS  Google Scholar 

  35. Patton PR, Brunson ME, Pfaff WW, et al. A preliminary report of diltiazem and ketoconazole: their cyclosporine-sparing effect and impact on transplant outcome. Transplantation 1994; 57: 889–92

    Article  PubMed  CAS  Google Scholar 

  36. Keogh A, Spratt P, McCosker C, et al. Ketoconazole to reduce the need for cyclosporine after cardiac transplantation. N Engl J Med 1995; 333: 628–33

    Article  PubMed  CAS  Google Scholar 

  37. Butman SM, Wild JC, Nolan PE, et al. Prospective study of the safety and financial benefit of ketoconazole as adjunctive therapy to cyclosporine after heart transplantation. J Heart Lung Transplant 1991; 10: 351–8

    PubMed  CAS  Google Scholar 

  38. Sergent WK, Martin JE, Schroeder TJ, et al. Pharmacokinetics of the interaction between itraconazole oral solution and cyclosporine in stable post-liver transplant recipients [abstract]. The American Society of Health System Pharmacists Midyear Clinical Meeting; 1998 Dec, Las Vegas

    Google Scholar 

  39. Rossi SJ, Martin JE, Gelhot A, et al. A randomized prospective trial of fluconazole vs. clotrimazole for fungal prophylaxis in liver transplant recipients. The 14th Annual Meeting of the American Society of Transplant Physicians; 1995 May 14-17, Chicago

    Google Scholar 

  40. Loose DS, Kan PB, Hirst MA, et al. Ketoconazole blocks adrenal steroidogenesis by inhibiting cytochrome P-450 dependent enzymes. J Clin Invest 1983; 71: 1495–9

    Article  PubMed  CAS  Google Scholar 

  41. Meredith CG, Maldonado AL, Speeg KV. The effect of ketoconazole on hepatic oxidative drug metabolism in the rat in vivo and in vitro. Drug Metab Dispos 1985; 13: 156–62

    PubMed  CAS  Google Scholar 

  42. Ferguson RM, Sutherland DER, Summons RL, et al. Ketoconazole, cyclosporine metabolism and renal transplantation. Lancet 1982; II: 882–3

    Article  Google Scholar 

  43. Schroeder TJ, Melvin DB, Clardy CW, et al. The use of cyclosporine and ketoconazole without nephrotoxicity in two cardiac transplant recipients. J Heart Lung Transplant 1987; 6: 84–9

    CAS  Google Scholar 

  44. Gandhi BV, Kale S, Bhowmik DM, et al. Concomitant administration of cyclosporine and ketoconazole in renal transplant patients. Transplant Proc 1992; 24: 1715

    PubMed  CAS  Google Scholar 

  45. Canafax DM, Graves NM, Hilligoss DM, et al. Interaction between cyclosporine and fluconazole in renal allograft recipients. Transplantation 1991; 51: 1014–8

    Article  PubMed  CAS  Google Scholar 

  46. Lopez-Gil JA. Fluconazole-cyclosporine interaction: a dosedependent effect? Ann Pharmacother 1993; 27: 427–30

    PubMed  CAS  Google Scholar 

  47. Sugar AM, Saunders C, Idelson BA, et al. Interaction of fluconazole and cyclosporine [letter]. Ann Intern Med 1989; 110: 844

    PubMed  CAS  Google Scholar 

  48. Pfizer, Inc. Fluconazole product information insert. Groton (CT): Pfizer, Inc., 1990

    Google Scholar 

  49. Kruger HU, Schuler U, Zimmermann R, et al. Absence of significant interaction of fluconazole with cyclosporin. J Antimicrob Chemother 1989; 24: 781–6

    Article  PubMed  CAS  Google Scholar 

  50. Canafax DM, Graves NM, Hilligoss DM, et al. Increased cyclosporine levels as a result of simultaneous fluconazole and cyclosporine therapy in renal transplant recipients: a double-blind, randomized pharmacokinetic and safety study. Transplant Proc 1991; 23: 1041–2

    PubMed  CAS  Google Scholar 

  51. Jackson CA, Dismukes WE. Oral azole drugs as systemic antifungal therapy. N Engl J Med 1994; 330: 263–72

    Article  Google Scholar 

  52. Novakova I, Donnelly P, De Witte T, et al. Itraconazole and cyclosporine nephrotoxicity. Lancet 1987; II: 920–1

    Article  Google Scholar 

  53. Shaw MA, Gumbleton M, Nicholls PJ. Interaction of cyclosporine and itraconazole [letter]. Lancet 1987; II: 637

    Article  Google Scholar 

  54. Lavrijsen K, Van Houdt J, Thijs D, et al. Interaction of miconazole, ketoconazole and itraconazole with rat-liver microsomes. Xenobiotica 1987; 17: 45–57

    Article  PubMed  CAS  Google Scholar 

  55. Kramer MR, Marshall SE, Denning DW, et al. Cyclosporine and itraconazole interaction in heart and lung transplant recipients. Ann Intern Med 1990; 113: 327–9

    PubMed  CAS  Google Scholar 

  56. Kwan JT, Foxall PJ, Davidson DG, et al. Interaction of cyclosporine and itraconazole [letter]. Lancet 1987; II: 282

    Article  Google Scholar 

  57. Trenk D, Brett W, Jahnchen E, et al. Time course of cyclosporine-itraconazole interaction. Lancet 1987; II: 1335–6

    Article  Google Scholar 

  58. Luke RG. Pathophysiology and treatment of post-transplant hypertension. J Am Soc Nephrol 1991; 2 Suppl. 1: S37–44

    Google Scholar 

  59. Cheigh JS, Stenzel KHS, Wang J. Hypertension is associated with decreaed graft survival in long-term kidney transplant recipients. Transplant Proc 1985; 17: 174–5

    Google Scholar 

  60. Murray BM, Paller MS. Beneficial effects of renal denervation and prazosin on GFR and renal blood flow after cyclosporine in rats. Clin Nephrol 1986; 25: 537–9

    Google Scholar 

  61. Xue H, Bukoski RD, McCarron DA, et al. Induction of contraction in isolated rat aorta by cyclosporine. Transplantation 1987; 43: 715–8

    Article  PubMed  CAS  Google Scholar 

  62. Jao S, Waltzer W, Arbeit LA. Acute cyclosporine induced decrease in GFR is mediated by changes in renal blood flow and renal vascular resistance [abstract]. Kidney Int 1986; 29: 431

    Google Scholar 

  63. Kawaguchi A, Goldman MN, Shapiro R, et al. Increase in urinary thromboxane B2 in rats caused by cyclosporine. Transplantation 1985; 40: 214–8

    Article  PubMed  CAS  Google Scholar 

  64. Kon V, Sugiuza M, Inagami T, et al. Cyclosporine causes endothelin-dependent acute renal failure [abstract]. Kidney Int 1990; 37: 486

    Article  Google Scholar 

  65. Landmann J, Mihatsch MJ, Ratschek M, et al. Cyclosporine A and intravascular coagulation. Transplant Proc 1987; 19: 1817–9

    PubMed  CAS  Google Scholar 

  66. Smith C, Hampton EM, Pederson JA, et al. Clinical and medicoeconomic impact of the cyclosporine-diltiazem interaction in renal transplant recipients. Pharmacotherapy 1994; 14: 471–81

    PubMed  CAS  Google Scholar 

  67. Valantine H, Keogh A, McIntosh N, et al. Cost containment: coadministration of diltiazem with cyclosporine after heart transplantation. J Heart Lung Transplant 1992; 11: 1–7

    PubMed  CAS  Google Scholar 

  68. Pirsch JD, D’Alessandro AM, Roecker EB, et al. A controlled, double-blind, randomized trial of verapamil and cyclosporine in cadaver renal tranplant patients. Am J Kidney Dis 1993; 2: 189–95

    Google Scholar 

  69. Chan C, Maurer J, Cardella C, et al. A randomized controlled trial of verapamil on cyclosporine nephrotoxicity in heart and lung transplant recipients. Transplantation 1997; 63: 1435–40

    Article  PubMed  CAS  Google Scholar 

  70. McCauley J, Ptachcinski RJ, Shapiro R. The cyclosporine-sparing effects of diltiazem in renal transplantation. Transplant Proc 1989; 21: 3955–7

    PubMed  CAS  Google Scholar 

  71. Chrysostomou A, Walker RG, Russ GR, et al. Diltiazem in renal allograft recipients receiving cyclosporine. Transplantation 1993; 55: 300–4

    Article  PubMed  CAS  Google Scholar 

  72. Al Edreesi M, Caille G, Dupuis C, et al. Safety, tolerability, and pharmacokinetic actions of diltiazem in pediatric liver transplant recipients on cyclosporine. Liver Transplant Surg 1995; 1: 383–8

    Article  Google Scholar 

  73. MacDonald P, Keogh A, Connell J, et al. Diltiazem co-administration reduces cyclosporine toxicity after heart transplantation: A prospective randomized trial. Transplant Proc 1992; 24: 2259–62

    PubMed  CAS  Google Scholar 

  74. Kiowski W, Linder L, Buhler FR. Arterial vasodilator and anti-hypertensive effects of diltiazem. J Cardiovasc Pharmacol 1990; 16 Suppl. 6: S7–10

    Google Scholar 

  75. Hung J, Hackett PL, Gordon SPF, et al. Pharmacokinetics of diltiazem in patients with unstable angina pectoris. Clin Pharmacol Ther 1988; 43: 466–70

    Article  PubMed  CAS  Google Scholar 

  76. Pochet JM, Pirson Y. Cyclosporin-diltiazem interaction [letter]. Lancet 1986; I: 979

    Article  Google Scholar 

  77. Grino JM, Sabate I, Castelao AM, et al. Influence of diltiazem on cyclosporine clearance [letter]. Lancet 1986; I: 1387

    Article  Google Scholar 

  78. Renton KW. Inhibition of hepatic microsomal drug metabolism by the calcium channel blockers diltiazem and verapamil. Biochem Pharmacol 1985; 34: 2549–53

    Article  PubMed  CAS  Google Scholar 

  79. Bourge RC, Kirklin JK, Naftel DC, et al. Diltiazem-cyclosporine interaction in cardiac transplant recipients; impact on cyclosporine dose and medication costs. Am J Med 1991; 90: 402–4

    PubMed  CAS  Google Scholar 

  80. Kohlhaw K, Wonigeit K, Frei U, et al. Effect of the calcium channel blocker diltiazem on cyclosporine A blood levels and dose requirements. Transplant Proc 1988; 20: 572–4

    PubMed  CAS  Google Scholar 

  81. Shennib H, Auger JL. Diltiazem improves cyclosporine dosage in cystic fibrosis lung transplant recipients. J Heart Lung Transplant 1994; 13: 292–6

    PubMed  CAS  Google Scholar 

  82. Sketris IS, Methot ME, Nichol D, et al. Effect of calcium-channel blockers on cyclosporine clearance and use in renal transplant patients. Ann Pharmacother 1994; 28: 1227–31

    PubMed  CAS  Google Scholar 

  83. Wagner K, Philipp TH, Heinemeyer G, et al. Interaction of cyclosporin and calcium antagonists. Transplant Proc 1989; 21: 1453–6

    PubMed  CAS  Google Scholar 

  84. Jones TE, Morris RG, Mathew TH. Diltiazem-cyclosporin pharmacokinetic interaction: dose-response relationship. Br J Clin Pharmacol 1997; 44: 499–504

    Article  PubMed  CAS  Google Scholar 

  85. Jones TE, Morris RG. Diltizem does not always increase blood cyclosporin concentration. Br J Clin Pharmacol 1996; 42: 642–4

    PubMed  CAS  Google Scholar 

  86. Schroeder J, Gao S-Z, Alderman E, et al. A preliminary study of diltiazem in the prevention of coronary artery disease. N Engl J Med 1993; 238: 164–70

    Article  Google Scholar 

  87. McMillen MA, Lewis T, Jaffe BM, et al. Verapamil inhibition of lymphocyte proliferation and function in vitro. J Surg Res 1985; 39: 76–80

    Article  PubMed  CAS  Google Scholar 

  88. McMillen MA, Baumgarten WK, Schaefer HC, et al. Potentiation of cyclosporine by verapamil in vitro. Transplantation 1995; 40: 444–6

    Google Scholar 

  89. Angermann CE, Spes CH, Anthuber M, et al. Verapamil increases cyclosporin-A trough levels in cardiac transplant recipients [abstract]. J Am Coll Cardiol 1988; 11: 206A

    Google Scholar 

  90. Peterson JC, Brannigan J, Pickard T, et al. Cyclosporine-verapamil interaction. Kidney Int 1988; 33: 449–50

    Google Scholar 

  91. Dawidson I, Rooth P, Lu C, et al. Verapamil improves the outcome after cadaver renal transplantation. J Am Soc Nephrol 1991; 2: 983–90

    PubMed  CAS  Google Scholar 

  92. Tjia JF, Back DJ, Breckenridge AM. Calcium channel antagonists and cyclosporine metabolism: in vitro studies with human liver microsomes. Br J Clin Pharmacol 1989; 28: 362–5

    Article  PubMed  CAS  Google Scholar 

  93. Bourbigot B, Guiserix J, Airiau J, et al. Nicardipine increases cyclosporin blood levels [letter]. Lancet 1986; I: 1447

    Article  Google Scholar 

  94. Kessler M, Renoult E, Jonon B, et al. Influence of nicardipine on renal function and plasma cyclosporin in renal transplant patients [letter]. Eur J Clin Pharmacol 1989; 36: 637–8

    Article  PubMed  CAS  Google Scholar 

  95. Cantarovich M, Hiesse C, Lockiec F, et al. Confirmation of the interaction between cyclosporine and the calcium channel blocker nicardipine in renal transplant patients. Clin Nephrol 1987; 28: 190–3

    PubMed  CAS  Google Scholar 

  96. Ludden TM. Pharmacokinetic interactions of the macrolide antibiotics. Clin Pharmacokinet 1985; 10: 63–79

    Article  PubMed  CAS  Google Scholar 

  97. Fabre I, Fabre G, Maurel P, et al. Metabolism of cyclosporin A. III: interaction of the macrolide antibiotic, erythromycin, using rabbit hepatocytes and microsomal fractions. Drug Metab Dispos 1988; 16: 296–301

    PubMed  CAS  Google Scholar 

  98. Henricsson S, Lindholm A. Inhibition of cyclosporine metabolism by other drugs in vitro. Transplant Proc 1988; 20: 569–71

    PubMed  CAS  Google Scholar 

  99. Kohan DE. Possible interaction between cyclosporine and erythromycin [letter]. N Engl J Med 1986; 314: 448

    PubMed  CAS  Google Scholar 

  100. Ptachcinski RJ, Carpenter BJ, Burckart GJ, et al. Effect of erythromycin on cyclosporine levels [letter]. N Engl J Med 1985; 313: 1416–7

    PubMed  CAS  Google Scholar 

  101. Gonwa TA, Nghiem DD, Schulak JA, et al. Erythromycin and cyclosporine. Transplantation 1986; 41: 797–9

    Article  PubMed  CAS  Google Scholar 

  102. Wadhwa NK, Schroeder TJ, O’Flaherty E, et al. Interaction between erythromycin and cyclosporine in a kidney and pancreas allograft recipient. Ther Drug Monit 1987; 9: 123–5

    Article  PubMed  CAS  Google Scholar 

  103. Jensen CWB, Flechner SM, Van Buren CT, et al. Exacerbation of cyclosporine toxicity by concomitant administration of erythromycin. Transplantation 1987; 43: 263–70

    Article  PubMed  CAS  Google Scholar 

  104. Kreft-Jais C, Billaud EM, Gaudry C, et al. Effect of josamycin on plasma cyclosporine levels. Eur J Clin Pharmacol 1987; 32: 327–8

    Article  PubMed  CAS  Google Scholar 

  105. Torregrosa JV, Campistol JM, Franco A, et al. Interaction of josamycin with cyclosporine A. Nephron 1993; 65: 476–7

    Article  PubMed  CAS  Google Scholar 

  106. Gersema LM, Porter CB, Russell EH. Suspected drug interaction between cyclosporine and clarithromycin. J Heart Lung Transplant 1994; 13: 343–5

    PubMed  CAS  Google Scholar 

  107. Burke MD, Omar G, Thomson AW, et al. Inhibition of the metabolism of cyclosporine by human liver microsomes by FK506. Transplantation 1990; 50: 901–2

    Article  PubMed  CAS  Google Scholar 

  108. Pichard L, Fabre I, Fabre G, et al. Cyclosporine A drug interactions: screening for inducers and inhibitors of cytochrome P-450 (cyclosporine A oxidase) in primary cultures of human hepatocytes and in liver microsomes. Drug Metab Dispos 1990; 18: 595–606

    PubMed  CAS  Google Scholar 

  109. Adrianus AMJ, Hollander MD, Jeroaen van Rooij MD, et al. The effect of grapefruit juice on cyclosporine and prednisone metabolism in transplant patients. Clin Pharmacol Ther 1995; 57: 318–24

    Article  Google Scholar 

  110. Yee GC, Stanley DL, Pessa, et al. Effect of grapefruit juice on blood cyclosporine concentration. Lancet 1995; 345: 955–6

    Article  PubMed  CAS  Google Scholar 

  111. Brunner LJ, Munar MY, Vallian J, et al. Interaction between cyclosporine and grapefruit juice requires long-term ingestion in stable renal transplant recipients. Pharmacotherapy 1998; 18: 23–9

    PubMed  CAS  Google Scholar 

  112. Ameer B, Weintraub RA. Drug interactions with grapefruit juice. Clin Pharmacokinet 1997; 33: 103–21

    Article  PubMed  CAS  Google Scholar 

  113. Rouseff RL, Martin SF, Youtsey O. Quantitative survey of narirutin, naringin, hesperiden and neohesperidin in citrus. J Agric Food Chem 1987; 35: 1027–30

    Article  CAS  Google Scholar 

  114. Didlake RH, Dreyfus K, Kerman RH, et al. Patient non-compliance: a major cause of late graft failure in cyclosporinetreated renal patients. Transplant Proc 1988; 20: 63–9

    PubMed  CAS  Google Scholar 

  115. Gaston R, Hudson S, Ward M, et al. The relationship between graft loss and noncompliance [abstract]. Presented at the XVII World Congress of The Transplantation Society; 1998 May 10-13, Chicago

    Google Scholar 

  116. Kiley DJ, Lam CS, Pollak R. A study of treatment compliance following kidney transplantation. Transplantation 1993; 55: 51–6

    Article  PubMed  CAS  Google Scholar 

  117. Murphy J, Coster G. Issues in patient compliance. Drugs 1997; 54: 797–800

    Article  PubMed  CAS  Google Scholar 

  118. Blum RA, D’Andrea DT, Florentino BM, et al. Increased gastric H and the bioavailability of fluconazole and ketoconazole. Ann Intern Med 1991; 114: 755–7

    PubMed  CAS  Google Scholar 

  119. Karlix JL, Cheng MA, Brunson ME, et al. Decreased cyclosporine concentrations with the addition of an H2-receptor antagonist in a patient on ketoconazole. Transplantation 1994; 57 (6): 889–92

    Article  PubMed  Google Scholar 

  120. Michalets EL. Update: clinically significant cytochrome P-450 drug interactions. Pharmacotherapy 1998; 18: 84–112

    PubMed  CAS  Google Scholar 

  121. Monahan BP, Ferguson CL, Killeavy ES, et al. Torsdes de pointes occurring in association with terfenadine use. JAMA 1990; 264: 2788–90

    Article  PubMed  CAS  Google Scholar 

  122. Oberg K, Bauman JL. QT interval prolongation and torsades de pointes due to erythromycin lactobionate. Pharmacotherapy 1995; 15: 687–92

    PubMed  CAS  Google Scholar 

  123. Illingworth DR, Tobert JA. A review of clinical trials comparing HMG-CoA reductase inhibitors. Clin Ther 1994; 16: 366–85

    PubMed  CAS  Google Scholar 

  124. Zurcher RM, Frey BM, Frey FJ. Impact of ketoconazole on the metabolism of prednisolone. Clin Pharmacol Ther 1989; 45: 366–72

    Article  PubMed  CAS  Google Scholar 

  125. Gillum JG, Isreal DS, Polk RE. Pharmacokinetic drug interactions with antimicrobial agents. Clin Pharmacokinet 1993; 25: 450–82

    Article  PubMed  CAS  Google Scholar 

  126. Cooke CE. Nontherapeutic cyclosporine levels: sustained-release diltiazem products are NOT the same. Transplantation 1994; 57: 1687–8

    PubMed  CAS  Google Scholar 

  127. Jones TE, Morris RG, Mathew TH. Formulation of diltiazem affects cyclosporine-sparing activity. Eur J Clin Pharmacol 1997; 52: 55–8

    PubMed  CAS  Google Scholar 

  128. Moore LW, Alloway RR, Acchiardo SR, et al. Clinical observations of metabolic changes occurring in renal transplant recipients receiving ketoconazole. Transplantation 1996; 61: 537–41

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martin, J.E., Daoud, A.J., Schroeder, T.J. et al. The Clinical and Economic Potential of Cyclosporin Drug Interactions. Pharmacoeconomics 15, 317–337 (1999). https://doi.org/10.2165/00019053-199915040-00001

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00019053-199915040-00001

Keywords

Navigation