Skip to main content
Log in

Pharmacokinetics and Pharmacodynamics of Tamsulosin in its Modified-Release and Oral Controlled Absorption System Formulations

  • Review Article
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

Tamsulosin is an α1-adrenoceptor antagonist used for the treatment of lower urinary tract symptoms that are suggestive of benign prostatic hyperplasia. It is mostly used in a modified-release (MR) formulation, but an oral controlled absorption system (OCAS) and a ‘without-water’ tablet formulation are also available in some countries. The oral bioavailability of the MR formulation in the fasted state is close to 100%. Whereas absorption from the MR formulation is affected by concomitant food intake, that of the OCAS formulation is food independent. Tamsulosin exhibits high plasma-protein binding, largely to α1-acid glycoprotein. It is metabolized, mainly by cytochrome P450 (CYP) 3A4 and CYP2D6 to compounds with low abundance, and 8.7–15% of an oral dose is excreted renally as the parent compound. The pharmacokinetics of tamsulosin are not affected to a major extent by age, and pharmacokinetic alterations in renally impaired patients relate largely to an increased concentration of α1-acid glycoprotein. Pharmacokinetic alterations with hepatic impairment are also only moderate, thus neither renal nor mild to moderate hepatic impairment necessitates dose adjustment. Concomitant exposure to potent CYP3A4 inhibitors can more than double the exposure of tamsulosin. Clinical studies have indicated that despite its lower bioavailability, the OCAS formulation has the same treatment efficacy as the MR formulation but causes somewhat fewer cardiovascular adverse effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Table I
Fig. 2
Table II
Table III
Table IV
Table V

Similar content being viewed by others

References

  1. Barendrecht MM, Abrams P, Schumacher H, et al. Do α1-adrenoceptor antagonists improve lower urinary tract symptoms by reducing bladder outlet resistance? Neurourol Urodyn 2008; 27: 226–30

    Article  PubMed  CAS  Google Scholar 

  2. McConnell JD, Roehrborn CG, Bautista O, et al. The long-term effect of doxazosin, finasteride, and combination therapy on the clinical progression of benign prostatic hyperplasia. New Engl J Med 2003; 349: 2387–98

    Article  PubMed  CAS  Google Scholar 

  3. Roehrborn CG, Schwinn DA. α1-Adrenergic receptors and their inhibitors in lower urinary tract symptoms and benign prostatic hyperplasia. J Urol 2004; 171: 1029–35

    Article  PubMed  CAS  Google Scholar 

  4. Hieble JP, Bylund DB, ClarkeDE, et al. International Union ofPharmacology: X. Recommendation for nomenclature of a1-adrenoceptors: consensus update. Pharmacol Rev 1995; 47: 267–70

    PubMed  CAS  Google Scholar 

  5. Michel MC, Kenny BA, Schwinn DA. Classification of α1-adrenoceptor subtypes. Naunyn Schmiedebergs Arch Pharmacol 1995; 352: 1–10

    Article  PubMed  CAS  Google Scholar 

  6. Michel MC, Vrydag W. α1-, α2- and b-adrenoceptors in the urinary bladder, urethra and prostate. Br J Pharmacol 2006; 147: S88–119

    Article  PubMed  CAS  Google Scholar 

  7. Taguchi K, Saitoh M, Sato S, et al. Effects of tamsulosin metabolites at alpha-1 adrenoceptor subtypes. J Pharmacol Exp Ther 1997; 280: 1–5

    PubMed  CAS  Google Scholar 

  8. Michel MC, Grubbel B, Taguchi K, et al. Drugs for treatment of benign pro-static hyperplasia: affinity comparison at cloned α1-adrenoceptor subtypes and in human prostate. J Auton Pharmacol 1996; 16: 21–8

    Article  PubMed  CAS  Google Scholar 

  9. Nickel JC, Sander S, Moon TD. A meta-analysis of the vascular-related safety profile and efficacy of a-adrenergic blockers for symptoms related to benign prostatic hyperplasia. Int J Clin Pract 2008; 62: 1547–59

    Article  PubMed  CAS  Google Scholar 

  10. Guimaraes S, Moura D. Vascular adrenoceptors: an update. Pharmacol Rev 2001; 53: 319–56

    PubMed  CAS  Google Scholar 

  11. Rudner XL, Berkowitz BA, Booth JV, et al. Subtype specific regulation of human vascular α1-adrenergic receptors by vessel bed and age. Circulation 1999; 100: 2336–43

    Article  PubMed  CAS  Google Scholar 

  12. van Dijk MM, de la Rosette JJMCH, Michel MC. Tamsulosin-modified-release and oral-controlled absorption system formulation in the treatment of benign prostatic hyperplasia. Therapy 2006; 3: 237–46

    Google Scholar 

  13. Tsunoo M, Shishito A, Soeishi Y, et al. Phase I clinical trial of YM617, a new α1 adrenoceptor antagonist: second report. A single oral dose of controlled release formulation in healthy male subjects. Rinsho Iyaku 1990; 6: 2529–51

    Google Scholar 

  14. Tsunoo M, Shishito A, Soeishi Y, et al. Phase I clinical trial of YM617, a new α1 adrenoceptor antagonist: third report. Multiple oral doses of controlled release formulation in healthy male subjects. Rinsho Iyaku 1991; 7: 63–93

    Google Scholar 

  15. Michel MC, Korstanje C, Krauwinkel W, et al. The pharmacokinetic profile of tamsulosin oral controlled absorption system (OCASR). European Urology Supplements 2005; 4(2): 15–24

    Article  CAS  Google Scholar 

  16. Michel MC, Korstanje C, Krauwinkel W, et al. Comparison of vascular α1-adrenoceptor antagonism of tamsulosin oral controlled absorption system (OCAS) and modified release (MR) formulations. European Urology Supplements 2005; 4(2): 45–52

    Article  CAS  Google Scholar 

  17. Michel MC, Korstanje C, Krauwinkel W, et al. Cardiovascular safety of the oral controlled absorption system (OCAS) formulation of tamsulosin compared to the modified release (MR) formulation. European Urology Supplements 2005; 4(2): 53–60

    Article  CAS  Google Scholar 

  18. Tsunoo M, Shishito A, Soeishi Y, et al. Phase I clinical trial of YM617, anew α 1 adrenoceptor antagonist: first report. A single oral dose of conventional formulation in healthy male subjects. Rinsho Iyaku 1990; 6: 2503–28

    Google Scholar 

  19. Matsushima H, Kamimura H, Soeishi Y, et al. Pharmacokinetics and plasma protein binding of tamsulosin hydrochloride in rats, dogs and humans. Drug Metab Dispos 1998; 26: 240–5

    PubMed  CAS  Google Scholar 

  20. Yokoyama O, Takada A, Matsuhima H, et al. Bioequivalence study for tamsulosin hydrochloride 0.2mg oral disintegrating tablets (WOWTAB) and 0.2 mg capsules in humans under the fed condition. Jpn Pharmacol Ther 2005; 33: 521–6

    CAS  Google Scholar 

  21. Yokoyama O, Takada A, Matsushima H, et al. Bioequivalence study for tamsulosin hydrochloride 0.2mg oral disintegrating tablets (WOWTAB) and 0.2mg capsules in humans under the fasted condition. Jpn Pharmacol Ther 2005; 33: 527–33

    CAS  Google Scholar 

  22. Yokoyama O, Takada A, Matsushima H, et al. Bioequivalence study for tamsulosin hydrochloride 0.2mg and 0.1 mg oral disintegrating tablets (WOWTAB) in humans. Jpn Pharmacol Ther 2005; 33: 535–40

    CAS  Google Scholar 

  23. Elias-Al-Mamun M, Khan HA, Dewan I, et al. In vitro study on tamsulosin release kinetics from biodegradable PLGA in situ implants. Pak J Pharm Sci 2009; 22: 360–7

    PubMed  CAS  Google Scholar 

  24. Matsushima H, Kamimura H, Soeishi Y, et al. Plasma protein binding of tamsulosin hydrochloride in renal disease: role of α1-acid glycoprotein and possibility of binding interactions. Eur J Clin Pharmacol 1999; 55: 437–43

    Article  PubMed  CAS  Google Scholar 

  25. Soeishi Y, Kobori M, Kobayashi S, et al. Sensitive method for the determination of amsulosin in human plasma using high-performance liquid chromatography with fluorescence detection. J Chromatography B 1990; 533: 291–6

    Article  CAS  Google Scholar 

  26. Ding L, Li L, Tao P, et al. Quantitation of tamsulosin in human plasma by liquid chromatography-electroscopy ionization mass spectrometry. J Chromatography B 2002; 767: 75–81

    Article  CAS  Google Scholar 

  27. Qi M, Wang P, Liu L. Determination of tamsulosin in dog plasma by liquid chromatography with atmospheric pressure chemical ionization tandem mass spectrometry. J Chromatography B 2004; 805: 7–11

    Article  CAS  Google Scholar 

  28. Soeishi Y, Kobori M, Kobayashi S, et al. Absorption, distribution and excretion of 14C-amsulosin hydrochloride in rats and dogs. Pharmacometrics 1990; 40: 101–9

    CAS  Google Scholar 

  29. Witte DG, Brune ME, Katwala SP, et al. Modeling of relationships between pharmacokinetics and blockade of agonist-induced elevation of intraurethral pressure and mean arterial pressure in conscious dogs treated with a 1-adrenoceptor antagonists. J Pharmacol Exp Ther 2002; 300: 495–504

    Article  PubMed  CAS  Google Scholar 

  30. van Hoogdalem EJ, Soeishi Y, Matsushima H, et al. Disposition of the selective α1A-adrenoceptor antagonist tamsulosin in humans: comparison with data from interspecies scaling. J Pharm Sci 1997; 86: 1156–61

    Article  PubMed  Google Scholar 

  31. Taguchi K, Schafers RF, Michel MC. Radioreceptor assay analysis of tamsulosin and terazosin pharmacokinetics. Br J Clin Pharmacol 1998; 45: 49–55

    Article  PubMed  CAS  Google Scholar 

  32. Miyazawa Y, Blum RA, Schentag JJ, et al. Pharmacokinetics and safety of tamsulosin in subjects with normal and impaired renal or hepatic function. Curr Ther Res 2001; 62: 603–21

    Article  CAS  Google Scholar 

  33. Miyazawa Y, Forrest A, Schentag JJ, et al. Effect of concomitant administration of cimetidine hydrochloride on the pharmacokinetic and safety profile of tamsulosin hydrochloride 0.4 mg in healthy subjects. Curr Ther Res 2002; 63: 15–26

    Article  CAS  Google Scholar 

  34. Wolzt M, Fabrizii V, Dorner GT, et al. Pharmacokinetics of tamsulosin in subjects with normal and varying degrees of impaired renal function: an open-label single-dose and multiple-dose study. Eur J Clin Pharmacol 1998; 54: 367–73

    Article  PubMed  CAS  Google Scholar 

  35. Michel MC, Chapple CR. Comparison of the cardiovascular effects of tamsulosin oral controlled absorption system (OCAS®) and alfuzosin prolonged release (XL). Eur Urol 2006; 49: 501–9

    Article  PubMed  CAS  Google Scholar 

  36. Stevens HNE, Speakman M. Behaviour and transit of tamsulosin oral controlled absorption system in the gastrointestinal tract. Curr Med Res Opin 2006; 22: 2323–8

    Article  PubMed  CAS  Google Scholar 

  37. Flomax® (tamsulosin hydrochloride capsules): US prescribing information. Deerfield (IL): Astellas Pharma US, Inc., 2009 Dec [online]. Available from: http://bidocs.boehringer-ingelheim.com/BIWebAccess/ViewServlet.ser?docBase=renetnt&folderPath=/Prescribing+Information/PIs/Flomax+Caps/Flomax.pdf [Accessed 2009 Dec 14]

  38. Djavan B, Milani S, Davies J, et al. The impact of tamsulosin oral controlled absorption system (OCAS) on nocturia and the quality of sleep: preliminary results of a pilot study. European Urology Supplements 2005; 4(2): 61–8

    Article  CAS  Google Scholar 

  39. Yamada S, Ohkura T, Deguchi Y, et al. In vivo measurement by [3H]tamsu-losin of α1 adrenoceptors in rat tissues in relation to the pharmacokinetics. J Pharmacol Exp Ther 1999; 289: 1575–83

    PubMed  CAS  Google Scholar 

  40. Sato S, Ohtake A, Matsushima H, et al. Pharmacological effect of tamsulosin in relation to dog plasma and tissue concentrations: prostatic and urethral retention possibly contributes to uroselectivity of tamsulosin. J Pharmacol Exp Ther 2001; 296: 697–703

    PubMed  CAS  Google Scholar 

  41. Romic I, Kiss T, Kisbenedek L, et al. Tamsulosin drug ratio in prostate versus free fraction in plasma supports pharmacokinetic (PK) contribution to its uroselectivity. J Urol 2003; 169 Suppl.: 288

    Article  Google Scholar 

  42. Matushima H, Watanabe T, Higuchi S. Effect of a 1-acid glycoprotein on the pharmacokinetics of tamsulosin in rats treated with turpentine oil. J Pharm Sci 2000; 89: 490–8

    Article  Google Scholar 

  43. Koiso K, Akaza H, Kikuchi K, et al. Pharmacokinetics of tamsulosin hydrochloride in patients with renal impairments: effect of α1-acid glycoprotein. J Clin Pharmacol 1996; 36: 1029–38

    Article  PubMed  CAS  Google Scholar 

  44. Soeishi Y, Matsushima H, Teraya Y, et al. Metabolism of tamsulosin in the rat and dog. Xenobiotica 1996; 26: 355–65

    Article  PubMed  CAS  Google Scholar 

  45. Soeishi Y, Matsushima H, Watanabe T, et al. Absorption, metabolism and excretion of tamsulosin hydrochloride in man. Xenobiotica 1996; 26: 637–45

    Article  PubMed  CAS  Google Scholar 

  46. Kamimura H, Oishi S, Matsushima H, et al. Identification of cytochrome P450 isozymes involved in metabolism of the a 1-adrenoceptor blocker tamsulosin in human liver microsomes. Xenobiotica 1998; 28: 909–22

    Article  PubMed  CAS  Google Scholar 

  47. Robinson D, Cardozo L, Terpstra G, et al. A randomized double-blind placebo-controlled multicentre study to explore the efficacy and safety of tamsulosin and tolterodine in women with overactive bladder syndrome. BJU Int 2007; 100: 840–5

    Article  PubMed  CAS  Google Scholar 

  48. Michel MC, de la Rosette JJMCH. a-Blocker treatment of urolithiasis. Eur Urol 2006; 50: 213–4

    Article  PubMed  Google Scholar 

  49. Michel MC, Mehlburger L, Bressel H-U, et al. Tamsulosin treatment of 19 365 patients with lower urinary tract symptoms: does comorbidity alter tolerability? J Urol 1998; 160: 784–91

    Article  PubMed  CAS  Google Scholar 

  50. Miyazawa Y, Starkey LP, Forrest A, et al. Effects of concomitant administration of tamsulosin (0.8mg/day) on the pharmacokinetic and safety profile of theophylline (5mg/kg): a placebo-controlled evaluation. J Int Med Res 2002; 30: 34–43

    PubMed  CAS  Google Scholar 

  51. Rolan P, Clarke C, Mullins F, et al. Assessment of potential effects of tamsulosin (Omnic®) on the pharmacokinetics and pharmacodynamics of nicoumalone: are there interactions between tamsulosin (Omnis®) and nicoumalone? [abstract]. J Urol 1999; 161 Suppl.: 235

    Article  Google Scholar 

  52. Rolan P, Terpstra IJ, Clarke C, et al. A placebo-controlled pharmacodynamic and pharmacokinetic interaction study between tamsulosin and acenocoumarol. Br J Clin Pharmacol 2003; 55: 314–6

    Article  PubMed  CAS  Google Scholar 

  53. Kang HE, Bae SK, Yoo M, et al. Interaction between udenafil and tamsulosin in rats: non-competitive inhibition of tamsulosin metabolism by udenafil via hepatic CYP3A1/2. Br J Pharmacol 2009; 156: 1009–18

    Article  PubMed  CAS  Google Scholar 

  54. Miyazawa Y, Starkey LP, Forrest A, et al. Effects of concomitant administration of tamsulosin (0.8mg) on the pharmacokinetic and safety profile of intravenous digoxin (Lanoxin®) in normal healthy subjects: a placebo-controlled evaluation. J Clin Pharm Ther 2002; 27: 13–9

    Article  PubMed  CAS  Google Scholar 

  55. Suzuki K, Kawai M, Kaneko N, et al. Study of interactions among colestimide and drugs (2nd report): comparison with cholestyramine. Jpn Pharmacol Ther 2001; 29: 37–44

    Google Scholar 

  56. Troost J, Tatami S, Tsuda Y, et al. Effects of the CYP3A4 inhibitor ketoconazole on the pharmacokinetics of a single oral dose of tamsulosin. Br J Clin Pharmacol. In press

  57. Troost J, Tatami S, Tsuda Y, et al. Effects of the CYP2D6 inhibitor paroxetine on the pharmacokinetics of a single oral dose of tamsulosin. Br J Clin Pharmacol. In press

  58. Modi NB, Kell S, Aquilina J, et al. Effect of dapoxetine on the pharmacokinetics and hemodynamic effects of tamsulosin in men on a stable dose of tamsulosin. J Clin Pharmacol 2008; 48: 1438–50

    PubMed  CAS  Google Scholar 

  59. Abrams P, Speakman M, Stott M, et al. A dose-ranging study of the efficacy and safety of tamsulosin, the first prostate-selective α1A-adrenoceptor antagonist, in patients with benign prostatic obstruction (symptomatic benign prostatic hyperplasia). Br J Urol 1997; 80: 587–96

    Article  PubMed  CAS  Google Scholar 

  60. Lepor H. Phase III multicenter placebo-controlled study of tamsulosin in benign prostatic hyperplasia. Urology 1998; 51: 892–900

    Article  PubMed  CAS  Google Scholar 

  61. Narayan P, Tewari A, Members of United States 93-01 Study Group. A second phase III multicenter placebo controlled study of 2 dosages of modified release tamsulosin in patients with symptoms of benign prostatic hyperplasia. J Urol 1998; 160: 1701–6

    Article  PubMed  CAS  Google Scholar 

  62. Chapple CR, Al-Shukri SH, Gattegno B, et al. Tamsulosin oral controlled absorption system (OCAS) in patients with lower urinary tract symptoms suggestive of benign prostatic hyperplasia (LUTS/BPH): efficacy and tolerability in a placebo and active comparator controlled phase 3a study. European Urology Supplements 2005; 4(2): 33–44

    Article  CAS  Google Scholar 

  63. Michel MC, Korstanje C, Krauwinkel W. Cardiovascular safety of tamsulosin modified release in the fasted and fed state in elderly healthy subjects. European Urology Supplements 2005; 4(2): 9–14

    Article  CAS  Google Scholar 

  64. Djavan B, Chapple C, Milani S, et al. State of the art on the efficacy and tolerability of alpha1-adrenoceptor antagonists in patients with lower urinary tract symptoms suggestive of benign prostatic hyperplasia. Urology 2004; 64: 1081–8

    Article  PubMed  Google Scholar 

  65. Lowe FC. Coadministration of tamsulosin and three antihypertensive agents in patients with benign prostatic hyperplasia: pharmacodynamic effect. Clin Ther 1997; 19: 730–42

    Article  PubMed  CAS  Google Scholar 

  66. Michel MC, Bressel H-U, Goepel M, et al. A 6-month large-scale study into the safety of tamsulosin. Br J Clin Pharmacol 2001; 51: 609–14

    Article  PubMed  CAS  Google Scholar 

  67. Michel MC, Neumann HG, Mehlburger L, et al. Does time of administration (morning vs evening) affect the tolerability or efficacy of tamsulosin? BJU Int 2001; 87: 31–4

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Mr Walter Krauwinkel (Astellas Europe BV, Leiderdorp, the Netherlands) for his helpful comments on this manuscript.

Work in the authors’ laboratory has been supported in part by Astellas and Boehringer Ingelheim. Martin C. Michel has received research support, and lecture and consultancy honoraria related to tamsulosin from Astellas and Boehringer Ingelheim, as well as lecture honoraria from Schwarz Pharma. Gabriela Franco-Salinas and Jean J.M.C.H. de la Rosette have no conflicts of interest that are directly relevant to the contents of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin C. Michel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Franco-Salinas, G., de la Rosette, J.J.M.C.H. & Michel, M.C. Pharmacokinetics and Pharmacodynamics of Tamsulosin in its Modified-Release and Oral Controlled Absorption System Formulations. Clin Pharmacokinet 49, 177–188 (2010). https://doi.org/10.2165/11317580-000000000-00000

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/11317580-000000000-00000

Keywords

Navigation