Skip to main content
Log in

Population Pharmacokinetics and Pharmacodynamics of Propofol in Morbidly Obese Patients

  • Original Research Article
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

Background and Objectives: In view of the increasing prevalence of morbidly obese patients, the influence of excessive total bodyweight (TBW) on the pharmacokinetics and pharmacodynamics of propofol was characterized in this study using bispectral index (BIS) values as a pharmacodynamic endpoint.

Methods: A population pharmacokinetic and pharmacodynamic model was developed with the nonlinear mixed-effects modelling software NONMEM VI, on the basis of 491 blood samples from 20 morbidly obese patients (TBW range 98–167 kg) and 725 blood samples from 44 lean patients (TBW range 55–98 kg) from previously published studies. In addition, 2246 BIS values from the 20 morbidly obese patients were available for pharmacodynamic analysis.

Results: In a three-compartment pharmacokinetic model, TBW proved to be the most predictive covariate for clearance from the central compartment (CL) in the 20 morbidly obese patients (CL 2.33L/min × [TBW/70]^[0.72]). Similar results were obtained when the morbidly obese patients and the 44 lean patients were analysed together (CL 2.22 L/min × [TBW/70]^[0.67]). No covariates were identified for other pharmacokinetic parameters. The depth of anaesthesia in the morbidly obese patients was adequately described by a two-compartment biophase-distribution model with a sigmoid maximum possible effect (Emax) pharmacodynamic model (concentration at half-maximum effect [EC50] 2.12 mg/L) without covariates.

Conclusion: We developed a pharmacokinetic and pharmacodynamic model of propofol in morbidly obese patients, in which TBW proved to be the major determinant of clearance, using an allometric function with an exponent of 0.72. For the other pharmacokinetic and pharmacodynamic parameters, no covariates could be identified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Table I
Table II
Table III
Fig. 2
Fig. 3
Table IV
Fig. 4

Similar content being viewed by others

References

  1. Ogden CL, Carroll MD, Curtin LR, et al. Prevalence of overweight and obesity in the United States, 1999–2004. JAMA 2006 Apr 5; 295(13): 1549–55

    Article  PubMed  CAS  Google Scholar 

  2. Whitlock G, Lewington S, Sherliker P, et al. Body-mass index and cause-specific mortality in 900 000 adults: collaborative analyses of 57 prospective studies. Lancet 2009 Mar 28; 373(9669): 1083–96

    Article  PubMed  Google Scholar 

  3. World Health Organization. Obesity: preventing and managing the global epidemic. Geneva: World Health Organization, 1997

    Google Scholar 

  4. Cheymol G. Effects of obesity on pharmacokinetics implications for drug therapy. Clin Pharmacokinet 2000 Sep; 39(3): 215–31

    Article  PubMed  CAS  Google Scholar 

  5. Hanley MJ, Abernethy DR, Greenblatt DJ. Effect of obesity on the pharmacokinetics of drugs in humans. Clin Pharmacokinet 2010; 49(2): 71–87

    Article  PubMed  CAS  Google Scholar 

  6. Servin F, Farinotti R, Haberer JP, et al. Propofol infusion for maintenance of anesthesia in morbidly obese patients receiving nitrous oxide: a clinical and pharmacokinetic study. Anesthesiology 1993 Apr; 78(4): 657–65

    Article  PubMed  CAS  Google Scholar 

  7. Schuttler J, Ihmsen H. Population pharmacokinetics of propofol: a multicenter study. Anesthesiology 2000 Mar; 92(3): 727–38

    Article  PubMed  CAS  Google Scholar 

  8. McLeay SC, Morrish GA, Kirkpatrick CM, et al. Encouraging the move towards predictive population models for the obese using propofol as a motivating example. Pharm Res 2009 Jul; 26(7): 1626–34

    Article  PubMed  CAS  Google Scholar 

  9. Cortínez LI, Anderson BJ, Penna A, et al. Influence of obesity on propofol pharmacokinetics: derivation of a pharmacokinetic model. Br J Anaesth 2010 Oct; 105(4): 448–56

    Article  PubMed  Google Scholar 

  10. Knibbe CA, Voortman HJ, Aarts LP, et al. Pharmacokinetics, induction of anaesthesia and safety characteristics of propofol 6% SAZN vs propofol 1 % SAZN and Diprivan-10 after bolus injection. Br J Clin Pharmacol 1999 Jun; 47(6): 653–60

    Article  PubMed  CAS  Google Scholar 

  11. Knibbe CA, Zuideveld KP, DeJongh J, et al. Population pharmacokinetic and pharmacodynamic modeling of propofol for long-term sedation in critically ill patients: a comparison between propofol 6% and propofol 1%. Clin Pharmacol Ther 2002 Dec; 72(6): 670–84

    Article  PubMed  CAS  Google Scholar 

  12. van Kralingen S, Diepstraten J, van de Garde EM, et al. Comparative evaluation of propofol 350 and 200 mg for induction of anaesthesia in morbidly obese patients: a randomized double-blind pilot study. Eur J Anaesthesiol 2010 Jun; 27(6): 572–4

    PubMed  Google Scholar 

  13. Egan TD, Huizinga B, Gupta SK, et al. Remifentanil pharmacokinetics in obese versus lean patients. Anesthesiology 1998 Sep; 89(3): 562–73

    Article  PubMed  CAS  Google Scholar 

  14. Knibbe CA, Koster VS, Deneer VH, et al. Determination of propofol in low-volume samples by high-performance liquid chromatography with fluorescence detection. J Chromatogr B Biomed Sci Appl 1998 Mar 20; 706(2): 305–10

    Article  PubMed  CAS  Google Scholar 

  15. Beal SL, Sheiner LB, Boeckmann A. NONMEM user’s guide. San Francisco (CA): University of California, 1999

    Google Scholar 

  16. Struys MM, Coppens MJ, De Neve N, et al. Influence of administration rate on propofol plasma-effect site equilibration. Anesthesiology 2007 Sep; 107(3): 386–96

    Article  PubMed  CAS  Google Scholar 

  17. Pai MP, Paloucek FP. The origin of the “ideal” body weight equations. Ann Pharmacother 2000 Sep; 34(9): 1066–9

    Article  PubMed  CAS  Google Scholar 

  18. Janmahasatian S, Duffull SB, Ash S, et al. Quantification of lean bodyweight. Clin Pharmacokinet 2005; 44(10): 1051–65

    Article  PubMed  Google Scholar 

  19. van Kralingen S, van de Garde EMW, van Dongen EPA, et al. Maintenance of anesthesia in morbidly obese patients using propofol with continuous BIS-monitoring: a comparison of propofol-remifentanil and propofol-epidural anesthesia. Acta Anaesthesiol Belg. In press

  20. Janmahasatian S, Duffull SB, Chagnac A, et al. Lean body mass normalizes the effect of obesity on renal function. Br J Clin Pharmacol 2008 Jun; 65(6): 964–5

    Article  PubMed  Google Scholar 

  21. Han PY, Duffull SB, Kirkpatrick CM, et al. Dosing in obesity: a simple solution to a big problem. Clin Pharmacol Ther 2007 Nov; 82(5): 505–8

    Article  PubMed  CAS  Google Scholar 

  22. Mathieu P, Lemieux I, Despres JP. Obesity, inflammation, and cardiovascular risk. Clin Pharmacol Ther 2010 Apr; 87(4): 407–16

    Article  PubMed  CAS  Google Scholar 

  23. Lloret Linares C, Decleves X, Oppert JM, et al. Pharmacology of morphine in obese patients: clinical implications. Clin Pharmacokinet 2009; 48(10): 635–51

    Article  PubMed  Google Scholar 

  24. Bjornsson MA, Norberg A, Kalman S, et al. A two-compartment effect site model describes the bispectral index after different rates of propofol infusion. J Pharmacokinet Pharmacodyn 2010 Jun; 37(3): 243–55

    Article  PubMed  Google Scholar 

  25. Sheiner LB, Stanski DR, Vozeh S, et al. Simultaneous modeling of pharmacokinetics and pharmacodynamics: application to d-tubocurarine. Clin Pharmacol Ther 1979 Mar; 25(3): 358–71

    PubMed  CAS  Google Scholar 

  26. Mandema JW, Veng-Pedersen P, Danhof M. Estimation of amobarbital plasma-effect site equilibration kinetics: relevance of polyexponential conductance functions. J Pharmacokinet Biopharm 1991 Dec; 19(6): 617–34

    Article  PubMed  CAS  Google Scholar 

  27. Visser SA, Smulders CJ, Reijers BP, et al. Mechanism-based pharmacokinetic-pharmacodynamic modeling of concentration-dependent hysteresis and biphasic electroencephalogram effects of alphaxalone in rats. J Pharmacol Exp Ther 2002 Sep; 302(3): 1158–67

    Article  PubMed  CAS  Google Scholar 

  28. Wang LP, McLoughlin P, Paech MJ, et al. Low and moderate remifentanil infusion rates do not alter target-controlled infusion propofol concentrations necessary to maintain anesthesia as assessed by bispectral index monitoring. Anesth Analg 2007 Feb; 104(2): 325–31

    Article  PubMed  CAS  Google Scholar 

  29. Ferreira DA, Nunes CS, Antunes LM, et al. The effect of a remifentanil bolus on the bispectral index of the EEG (BIS) in anaesthetized patients independently from intubation and surgical stimuli. Eur J Anaesthesiol 2006 Apr; 23(4): 305–10

    Article  PubMed  CAS  Google Scholar 

  30. Bouillon TW, Bruhn J, Radulescu L, et al. Pharmacodynamic interaction between propofol and remifentanil regarding hypnosis, tolerance of laryngoscopy, bispectral index, and electroencephalographic approximate entropy. Anesthesiology 2004 Jun; 100(6): 1353–72

    Article  PubMed  CAS  Google Scholar 

  31. Liu N, Chazot T, Huybrechts I, et al. The influence of a muscle relaxant bolus on bispectral and datex-ohmeda entropy values during propofol-remifentanil induced loss of consciousness. Anesth Analg 2005 Dec; 101(6): 1713–8

    Article  PubMed  CAS  Google Scholar 

  32. Bonhomme V, Hans P. Muscle relaxation and depth of anaesthesia: where is the missing link? Br J Anaesth 2007 Oct; 99(4): 456–60

    Article  PubMed  CAS  Google Scholar 

  33. Marsh B, White M, Morton N, et al. Pharmacokinetic model driven infusion of propofol in children. Br J Anaesth 1991 Jul; 67(1): 41–8

    Article  PubMed  CAS  Google Scholar 

  34. Schnider TW, Minto CF, Gambus PL, et al. The influence of method of administration and covariates on the pharmacokinetics of propofol in adult volunteers. Anesthesiology 1998 May; 88(5): 1170–82

    Article  PubMed  CAS  Google Scholar 

  35. Absalom AR, Mani V, De Smet T, et al. Pharmacokinetic models for propofol: defining and illuminating the devil in the detail. Br J Anaesth 2009 Jul; 103(1): 26–37

    Article  PubMed  CAS  Google Scholar 

  36. La Colla L, Albertin A, La Colla G, et al. No adjustment vs adjustment formula as input weight for propofol target-controlled infusion in morbidly obese patients. Eur J Anaesthesiol 2009 May; 26(5): 362–9

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Simone van Kralingen and Jeroen Diepstraten contributed equally to this work.

The authors would like to thank Brigitte Bliemer and Silvia Samson for their enthusiastic support and participation in this study.

No source of funding was used to conduct this study. The authors have no conflicts of interest that are relevant to the content of this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Catherijne A. J. Knibbe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

van Kralingen, S., Diepstraten, J., Peeters, M.Y.M. et al. Population Pharmacokinetics and Pharmacodynamics of Propofol in Morbidly Obese Patients. Clin Pharmacokinet 50, 739–750 (2011). https://doi.org/10.2165/11592890-000000000-00000

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/11592890-000000000-00000

Keywords

Navigation