Characterization of cytochrome P450 2A4 and 2A5-catalyzed 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) metabolism

Arch Biochem Biophys. 2000 Dec 15;384(2):418-24. doi: 10.1006/abbi.2000.2128.

Abstract

The tobacco-specific nitrosamine, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), is a potent lung carcinogen in the A/J mouse, and is believed to be a causative agent for human lung cancer. NNK requires metabolic activation by alpha-hydroxylation to exert its carcinogenic potential. The human P450, 2A6 is a catalyst of this reaction. There are two closely related enzymes in the mouse, P450 2A4 and 2A5, which differ from each other by only 11 amino acids. In the present study these two mouse P450s were expressed in Spodoptera frugiperda (Sf9) cells using recombinant baculovirus. The catalysis of NNK metabolism by Sf9 microsomal fractions containing either P450 2A4 or 2A5 was determined. Both enzymes catalyzed the alpha-hydroxylation of NNK but with strikingly different efficiencies and specificities. P450 2A5 preferentially catalyzed NNK methyl hydroxylation, while P450 2A4 preferentially catalyzed methylene hydroxylation. The KM and Vmax for the former were 1.5 microM and 4.0 nmol/min/nmol P450, respectively, and for the latter 3.9 mM and 190 nmol/min/nmol P450. The mouse coumarin 7-hydroxylase, P450 2A5 is a significantly better catalyst of NNK alpha-hydroxylation than is the closely related human enzyme, P450 2A6.

Publication types

  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Aryl Hydrocarbon Hydroxylases*
  • Cytochrome P-450 CYP2A6
  • Cytochrome P-450 Enzyme System / genetics
  • Cytochrome P-450 Enzyme System / metabolism*
  • Hydroxylation
  • Kinetics
  • Mice
  • Microsomes / metabolism
  • Mixed Function Oxygenases / genetics
  • Mixed Function Oxygenases / metabolism*
  • Nitrosamines / metabolism*
  • Spodoptera / genetics
  • Steroid Hydroxylases / genetics
  • Steroid Hydroxylases / metabolism*
  • Substrate Specificity
  • Transfection

Substances

  • Nitrosamines
  • 4-(N-methyl-N-nitrosamino)-1-(3-pyridyl)-1-butanone
  • Cytochrome P-450 Enzyme System
  • Mixed Function Oxygenases
  • Steroid Hydroxylases
  • Aryl Hydrocarbon Hydroxylases
  • Cytochrome P-450 CYP2A6
  • steroid 15-alpha-hydroxylase