Development of a miniaturized 384-well high throughput screen for the detection of substrates of cytochrome P450 2D6 and 3A4 metabolism

J Biomol Screen. 2001 Apr;6(2):91-9. doi: 10.1177/108705710100600205.

Abstract

The identification of a large number of biologically active chemical entities during high throughput screening (HTS) necessitates the incorporation of new strategies to identify compounds with druglike properties early during the lead prioritization and development process. One of the major steps in lead prioritization is the assessment of drug metabolism mediated by the cytochrome P(450) (CYP) enzymes to evaluate the potential drug-drug interactions. CYP2D6 and CYP3A4 comprise the main human CYP enzymes involved in drug metabolism. The recent availability of specific CYP cDNA expression systems and the development of specific fluorescent probes have accelerated the ability to develop robust in vitro assays in HTS format. The aim of this study was to optimize conditions for the CYP2D6 and CYP3A4 HTS assays and subsequently adapt those assays to a miniaturized 384-well format. Assay conversion to a miniaturized format presents certain difficulties, such as robustness of the signal and of compound delivery. Thus the assay optimization involved the comparison of different substrates to identify those most suitable for use in a miniaturized format. Because of current technical limitations in liquid dispensing of nanoliter volumes, assay sensitivity to organic solvents also provides a main concern during assay miniaturization. Therefore, compound activity from redissolved dry films and from DMSO stocks directly delivered into assay buffer was compared. The data indicate that compound activity was comparable in both formats. The data support the conclusion that CYP2D6 and CYP3A4 in vitro metabolism assays can be successfully performed in 384-well plate format and the substrate potencies, as evaluated by the IC(50) values, determined.

MeSH terms

  • Automation
  • Cytochrome P-450 CYP2D6 / metabolism*
  • Cytochrome P-450 CYP3A
  • Cytochrome P-450 Enzyme System / metabolism*
  • Dimethyl Sulfoxide / pharmacology
  • Dose-Response Relationship, Drug
  • Drug Evaluation, Preclinical / methods*
  • Humans
  • Inhibitory Concentration 50
  • Mixed Function Oxygenases / metabolism*
  • Software
  • Solvents / pharmacology
  • Time Factors

Substances

  • Solvents
  • Cytochrome P-450 Enzyme System
  • Mixed Function Oxygenases
  • CYP3A protein, human
  • Cytochrome P-450 CYP2D6
  • Cytochrome P-450 CYP3A
  • CYP3A4 protein, human
  • Dimethyl Sulfoxide