Antipyrine as a dialyzable reference to correct differences in efficiency among and within sampling devices during in vivo microdialysis

J Pharmacol Toxicol Methods. 1992 May;27(3):135-42. doi: 10.1016/1056-8719(92)90034-x.

Abstract

Antipyrine was investigated as a dialyzable substance that could be used to quantitate relative differences in the efficiency of dialysis among multiple microdialysis probes and by a single probe over time. The contribution of effective membrane surface area to recovery variability was tested by the introduction of air into microdialysis probes. Reduction of effective membrane surface area reduced antipyrine recovery. Dialysates from probes implanted in the jugular vein, brain, and liver of rats receiving antipyrine demonstrated differences in antipyrine concentration among probes within the same rat. These results suggest dissimilar efficiencies of the probes to recover antipyrine, which should be uniformly distributed throughout body water. Dialysates from blood, brain, and liver probes in rats that received both antipyrine and tritiated water (3H2O) showed differences in antipyrine and 3H2O concentrations among probes. Variability of antipyrine and 3H2O concentrations over time within a probe were positively correlated, suggesting that the cause(s) of temporal variability affected both of these markers of body water. Correction of antipyrine tissue/blood ratios, using 3H2O blood/tissue ratios from the same sampling period, reduced the variability in antipyrine tissue/blood ratios, producing ratios closer to the expected value of 1. Differences in probe efficiency contributing to the variability of antipyrine and 3H2O recovery would also be expected to influence the recovery of other substances during microdialysis. The administration of antipyrine during microdialysis experiments is suggested to enable reduction of temporal and site-related differences in substance recovery that are due to differences in probe efficiency. Other methods are necessary to determine the actual extracellular concentration of dialyzed substances and the integrity of the blood-brain barrier.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Antipyrine / blood
  • Antipyrine / pharmacokinetics*
  • Brain / metabolism*
  • Dialysis*
  • Extracellular Space / metabolism*
  • Liver / metabolism*
  • Male
  • Rats
  • Rats, Inbred Strains
  • Reference Standards
  • Tritium / metabolism

Substances

  • Tritium
  • Antipyrine