Clinical pharmacokinetics of atomoxetine

Clin Pharmacokinet. 2005;44(6):571-90. doi: 10.2165/00003088-200544060-00002.

Abstract

Atomoxetine (Strattera, a potent and selective inhibitor of the presynaptic norepinephrine transporter, is used clinically for the treatment of attention-deficit hyperactivity disorder (ADHD) in children, adolescents and adults. Atomoxetine has high aqueous solubility and biological membrane permeability that facilitates its rapid and complete absorption after oral administration. Absolute oral bioavailability ranges from 63 to 94%, which is governed by the extent of its first-pass metabolism. Three oxidative metabolic pathways are involved in the systemic clearance of atomoxetine: aromatic ring-hydroxylation, benzylic hydroxylation and N-demethylation. Aromatic ring-hydroxylation results in the formation of the primary oxidative metabolite of atomoxetine, 4-hydroxyatomoxetine, which is subsequently glucuronidated and excreted in urine. The formation of 4-hydroxyatomoxetine is primarily mediated by the polymorphically expressed enzyme cytochrome P450 (CYP) 2D6. This results in two distinct populations of individuals: those exhibiting active metabolic capabilities (CYP2D6 extensive metabolisers) and those exhibiting poor metabolic capabilities (CYP2D6 poor metabolisers) for atomoxetine. The oral bioavailability and clearance of atomoxetine are influenced by the activity of CYP2D6; nonetheless, plasma pharmacokinetic parameters are predictable in extensive and poor metaboliser patients. After single oral dose, atomoxetine reaches maximum plasma concentration within about 1-2 hours of administration. In extensive metabolisers, atomoxetine has a plasma half-life of 5.2 hours, while in poor metabolisers, atomoxetine has a plasma half-life of 21.6 hours. The systemic plasma clearance of atomoxetine is 0.35 and 0.03 L/h/kg in extensive and poor metabolisers, respectively. Correspondingly, the average steady-state plasma concentrations are approximately 10-fold higher in poor metabolisers compared with extensive metabolisers. Upon multiple dosing there is plasma accumulation of atomoxetine in poor metabolisers, but very little accumulation in extensive metabolisers. The volume of distribution is 0.85 L/kg, indicating that atomoxetine is distributed in total body water in both extensive and poor metabolisers. Atomoxetine is highly bound to plasma albumin (approximately 99% bound in plasma). Although steady-state concentrations of atomoxetine in poor metabolisers are higher than those in extensive metabolisers following administration of the same mg/kg/day dosage, the frequency and severity of adverse events are similar regardless of CYP2D6 phenotype.Atomoxetine administration does not inhibit or induce the clearance of other drugs metabolised by CYP enzymes. In extensive metabolisers, potent and selective CYP2D6 inhibitors reduce atomoxetine clearance; however, administration of CYP inhibitors to poor metabolisers has no effect on the steady-state plasma concentrations of atomoxetine.

Publication types

  • Review

MeSH terms

  • Adrenergic Uptake Inhibitors / administration & dosage
  • Adrenergic Uptake Inhibitors / adverse effects*
  • Adrenergic Uptake Inhibitors / pharmacokinetics*
  • Adrenergic Uptake Inhibitors / pharmacology
  • Adrenergic Uptake Inhibitors / therapeutic use*
  • Atomoxetine Hydrochloride
  • Attention Deficit Disorder with Hyperactivity / drug therapy*
  • Chemical Phenomena
  • Chemistry, Physical
  • Child
  • Drug Interactions
  • Humans
  • Propylamines / administration & dosage
  • Propylamines / adverse effects*
  • Propylamines / pharmacokinetics*
  • Propylamines / pharmacology
  • Propylamines / therapeutic use*

Substances

  • Adrenergic Uptake Inhibitors
  • Propylamines
  • Atomoxetine Hydrochloride