Interindividual variability in nicotine metabolism: C-oxidation and glucuronidation

Drug Metab Pharmacokinet. 2005 Aug;20(4):227-35. doi: 10.2133/dmpk.20.227.

Abstract

Nicotine has roles in the addiction to smoking, replacement therapy for smoking cessation, as a potential medication for several diseases such as Parkinson's disease, Alzheimer's disease, and ulcerative colitis. The absorbed nicotine is rapidly and extensively metabolized and eliminated to urine. A major pathway of nicotine metabolism is C-oxidation to cotinine, which is catalyzed by CYP2A6 in human livers. Cotinine is subsequently metabolized to trans-3'-hydroxycotinine by CYP2A6. Nicotine and cotinine are glucuronidated to N-glucuronides mainly by UGT1A4 and partly by UGT1A9. Trans-3'-hydroxycotinine is glucuronidated to O-glucuronide mainly by UGT2B7 and partly by UGT1A9. Approximately 90% of the total nicotine uptake is eliminated as these metabolites and nicotine itself. The nicotine metabolism is an important determinant of the clearance of nicotine. Recently, advances in the understanding of the interindividual variability in nicotine metabolism have been made. There are substantial data suggesting that the large interindividual differences in cotinine formation are associated with genetic polymorphisms of the CYP2A6 gene. Interethnic differences have also been observed in the cotinine formation and the allele frequencies of the CYP2A6 alleles. Since the genetic polymorphisms of the CYP2A6 gene have a major impact on nicotine clearance, its relationships with smoking behavior or the risk of lung cancer have been suggested. The metabolic pathways of the glucuronidation of nicotine, cotinine, and trans-3'-hydroxycotinine in humans would be one of the causal factors for the interindividual differences in nicotine metabolism. This review mainly summarizes recent results from our studies.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Animals
  • Aryl Hydrocarbon Hydroxylases / genetics
  • Aryl Hydrocarbon Hydroxylases / metabolism*
  • Asian People
  • Black or African American
  • Cotinine / metabolism
  • Cytochrome P-450 CYP2A6
  • Gene Frequency
  • Genotype
  • Glucuronides / metabolism
  • Glucuronosyltransferase / genetics
  • Glucuronosyltransferase / metabolism
  • Humans
  • Liver / enzymology
  • Liver / metabolism*
  • Microsomes, Liver / metabolism
  • Mixed Function Oxygenases / genetics
  • Mixed Function Oxygenases / metabolism*
  • Nicotine / metabolism*
  • Polymorphism, Genetic
  • UDP-Glucuronosyltransferase 1A9
  • White People

Substances

  • Glucuronides
  • UGT1A9 protein, human
  • bilirubin glucuronoside glucuronosyltransferase
  • Nicotine
  • Mixed Function Oxygenases
  • Aryl Hydrocarbon Hydroxylases
  • CYP2A6 protein, human
  • Cytochrome P-450 CYP2A6
  • UGT2B7 protein, human
  • Glucuronosyltransferase
  • UDP-Glucuronosyltransferase 1A9
  • Cotinine